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Abstract— Fused deposition modelling (FDM) machines are 

increasingly being used to manufacture parts for functional use. 

The need to ensure that the parts have good surface finish and 

dimensional accuracy thus exist. The work described in this 

paper aim to determine the optimum process parameters that 

can be used to produce parts with both good surface finish and 

dimensional accuracy. Test parts were fabricated on FDM 

machine with different factor levels of layer thickness, speed of 

deposition and fill density. Factorial design of experiment (DOE) 

and desirability function were used to investigate the optimum 

factor levels for fabricating parts.  The optimum factor levels for 

dimensional accuracy was observed to be different from that of 

surface roughness. Optimum process factors levels for 

minimization of both surface roughness and dimensional 

accuracy were then determined in this research work. The 

experimental results was validated by producing parts with the 

obtained optimum process parameters.  
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I. INTRODUCTION 

Rapid product development is very crucial for organization to 

have competitive advantage over its competitors. Increasing 

market globalization and reduction in  product development 

cycle is a necessity for survival in industrial economies [1]. 

High quality products that are introduced into the market 

before those of their competitors enjoy more patronage and 

are more profitable. As a result of these advantages great 

efforts are put into bringing high quality product into the 

market quickly. A technology which considerably speeds up 

the product development cycle is the concept and practice of 

rapid prototyping (RP)/ additive manufacturing (AM). 

Fused deposition modelling (FDM) is one of the most 

important AM processes because of  ease of operation, low 

cost of machinery of part made by the process, durability of 

product and easy material changeability [2, 3].  

An FDM machine (Figure 1) consists of an extruder head 

with nozzle for depositing heated filaments, some machines 

have a single nozzle while others have multiple nozzles. One 

of the nozzle is used for depositing part material and the other 

for deposing  support material. The tool path of the extruder 

head is based on computer numerical control system which 

enables material to be deposited in precise pattern and on the 

platform and also controls movement of the platform. The 

process involves the movement of filaments from the 

filament reels  through a system of rollers into the extruder 

head where it is heated to semi – liquid (molten state) and 

then deposited on the movable platform. The deposited 

material is called ―road‖ which then  cools and solidifies. On 

completion of deposition of a layer the movable platform will 

move downward (Z – direction) and another layer will then 

be deposited or bonded on the previous layer. This process 

continues until the part is fully built. 

 
 

Figure 1 (a) 3D Touch FFF machine (b) extruder head depositing material 

However, improvement is still required for FDM to move 

from rapid prototyping to manufacturing of functional parts. 

The need for parts to have good mechanical properties during 

service conditions and the need for dimensional accuracy to 

be controlled  and better surface finish [4, 5] has been 

identified. McClurkin [6] and Kruth et al. [7] pointed out that 

dimensional accuracy of parts made using rapid prototyping 

system is very important for it to be used as a primary 

manufacturing process. The quality of FDM fabricated part is 

also dependent on the processing conditions[8]. There is thus 

need of studing the effect of processing parameters on the 

quality of fabricated part  with  the aim of optimising the 

parameters in order to produce part with good surface finish 

and dimenstional accuracy. Due to capability of FDM to be 

used for manufacturing of functional parts, some work has 

been done on improving the quality of part made by FDM 

process. 
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Pennington et al. [9] investigated effect of the position of 

parts in the building envelope, part size and envelope 

temperature on dimensional accuracy of parts made by FDM 

using ABS material. And it was reported that the studied 

factors have significant effect on dimensional accuracy. 

Surface finish and dimensional accuracy are very important 

either for aesthetic purpose or for mating and  functional parts 

in service condition. Surface roughness of parts is also 

affected by the speed of deposition, layer thickness and road 

width [10]. Vasudevarao et al. [11] also pointed out surface 

roughness of parts made by using FDM  machine to be 

significantly affected by layer thickness and part orientation. 

Wang et al.[12] used Taguchi method with the Gray 

relational analysis to optimise dimensional accuracy and 

ultimate tensile strength of FDM ABS made part. Martínez et 

al.[13] also uses Taguchi methodology and ANOVA analysis 

to select the best process parameters for surface finish of 

FDM made part.  

However, it can be observed from literature that most of the 

previous work in FDM either focused on optimization of a 

single response or limited to ABS material unlike this 

research work. Also, the significance of factors  for 

optimisation of a single response does not necessarily mean 

they can be significant for optimisation of multiple responses 

[14]. There is thus need for multiple response optimisation of 

quality characteristics of dimensional accuracy and surface 

finish. 

Desirability function analysis had been used successfully in 

optimization of multiple objectives. Ramanujam et al. [15] 

used desirability function analysis for optimization of 

multiple machining process parameters for turning  of Al-

15%SiCp composites. Anoop et al. [16] also used it for 

optimizing  process parameters for maximizing tensile 

strength, flexural strength  and impact strength of fused 

deposition modelling parts.  

This research aim at optimization of multiple objectives of 

dimensional accuracy (and surface roughness of FDM made 

parts using desirability fuction. This paper will thus combine 

full factorial experimental design with desirabily function 

analysis to evaluate the effect of process parameters on 

quality characteristics and determine optimimum parameter 

settings for fabrication of part in FDM. This research will 

thus be useful in fabrication of part with good quality 

characteristics that are understudied in this research.  

 

II. EXPERIMENTAL PLAN 

The FDM system from Bits from Bytes that is owned by 3D 

Systems is a low cost rapid prototyping system. 3D Touch 

printer (Figure 1) from the company was used for this 

experiment and it uses Axon software for setting the process 

parameters (factors). The part design was firstly created in 

Autodesk Inventor and then converted to STL file format 

before being imported into the Axon software for setting of 

processing parameters and conversion of the STL file to a 

BFB print file that defines the tool path for printing of the 

parts.  

 

 

 

However, it was observed in literature that surface finish and 

dimensional accuracy are affected by layer thickness and 

speed of deposition, they are thus considered in these 

experiments, in addition to fill density that was not 

considered in previous studies by various authors each at two 

levels as shown in Table 1. The available process parameters 

that were used in these experiments are thus described as: 

 Layer thickness: It is thickness of deposited filament 

layer  

 Fill density: The building of a part begins with 

deposition of molten filament called ‗road‘ and 

collection of roads form the layer. The deposited 

road is used for defining the perimeter of the part to 

form a close boundary which will later be fill using a 

fill pattern. The density of filling process is called 

fill density and the fill style is called fill pattern.  

 Print speed: Is the linear speed of movement of the 

nozzle in the XY plane. In the BFB machine a 

―speed multiplier‖ is used for increasing the speed of 

deposition. The speed multipliers of 1X and 1.3X 

are approximately equivalent 16 mm/s and 21.33 

mm/s respectively. 

The FDM machine build specification showing the low and 

high factors levels settings that were used in these 

experiments is shown in Table 1.  
Table 1 Experimental plan: Process factors settings  

Factors Low level (-1) High level (1) 

Layer thickness 0.25mm 0.5mm 

Speed multiplier 1X  1.3 X  

Fill density 20% 100% 

 

A. Experimental procedures 

Test specimens were made using PLA material source from 

Bits from Bytes and built on 3D –touch printer. The 

processing factors are as shown in Table 1. 

1) Experimental design 

Design of experiments (DOE) and Taguchi method have been 

used for optimization of process parameters in various fields 

[10, 17-24].   Factorial design of DOE  with two –levels for 

each factor have been reported to be efficient in factors 

screening or process characterization [25]. It is therefore 

adopted in this experiment. The experiment plan consist of 16 

runs, four blocks, two replicates and was randomized. 

Minitab 16.0 was used to generate the design matrix for the 

DOE with each run corresponding to the various factor levels 
combination that will produce the responses for quality 

characteristics of dimensional accuracy and surface finish 

that are examined in this study. 

2) Test specimens 

The design of specimens used for evaluating the dimensional 

accuracy and surface finish is as shown in Figure 2.  
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Figure 2 Specimens for dimensional accuracy and surface roughness with 

dimensions 

B. Dimensional measurement 

Dimensions of the fabricated set of specimens were measured 

using a Mitutoyo Digital Calliper with a resolution of 

0.01mm and then compared with the CAD design to find out 

the dimensional accuracy of the process with respect to 

length, width and thickness per sample. Deviation is the 

difference between the nominal dimensions from that of the 

measured dimensions.  

C. Surface roughness measurement 

Surface roughness of fabricated part (Figure 2) were 

measured using Taylor – Hobson (Talysurf) surface texture 

measuring instrument and in accordance to BS ISO 

4287:1997. It involve movement of  Talysurf  stylus tip 

across the top surface of specimen in order to acquires 

deviations in surface  profile or to measured roughness of  the 

surface in measurement direction shown in Figure 2. 

Roughness of the surface (Ra) is obtained from the machine 

output result and is the arithmetic average of the departures of 

the roughness profile from the centerline within the 

evaluation length [26]. 

   (2) 

Where, is the mean roughness of the evaluated surface 

profile,   is the height of the surface profile, and   is 

the sampling length 

III. EXPERIMENTAL ANALYSIS 

1) Pareto chart analysis 
Pareto chart is used in DOE for comparison of relative size of 

effects and evaluating their statistical significant. The chart 

display in Minitab consist of absolute value of effects with a 

reference line which corresponds to α = 0.05 drawn on the 

chart for evaluating the significance of factors effects. An 

effect that crosses the reference line is statistically significant. 

2) Desirability function analysis (DFA) 

One method of optimizing multiple responses simultaneously 

is the use of desirability function as demonstrated by 

Derringer and Suich [27]. The methodology involves the use 

of desirability function, while the factors level with highest 

desirability is the optimal factors settings for the response. 

Desirability is calculated by using Eq. (4) to (5) [28]: 

The individual desirability function is given by Eq. (4) 

     (4) 

Where:  is the weight for response , and the function 

 is dependent on optimization objective which may be 

to hit a target, minimize or maximize response.  is the 

response value. Since the goal of this experimentation is 

minimization of responses, then  is given as: 

 

(5) 

Where, U represent the upper acceptable response value and  

T is the target value. 

Composite desirability (D) is calculated as follows: 

  

(6) 

 is the individual desirability for response  and  is the 

importance for response   

For the same importance for each response, the overall 

desirability is given as the geometric mean of the individual 

desirability :  

 

  

(7) 

The composite desirability for both weights and importance is 

given by Eq. (8) and is obtained by substituting Eq. (4) into 

Eq. (6)  

(8) 

3) Optimization  

In order to determine optimal factor level settings, for 

minimization of variations in length, width, thickness and 

surface roughness, desirability function analysis (DFA) was 

used. The individual desirability (d)  is normally used for 

evaluating the extent to which factor settings optimize a 

single response while composite desirability (D) evaluates the 

extent to which factor settings optimize a group of responses 

generally [29]. Desirability value varies between 0 and 1. 

One represents an ideal situation while zero means that one or 

more of the responses are not within the desired acceptable 

limits.  Weight is used for defining the shape of desirability 

function for each response. It is used for emphasizing or de – 

emphasizing the target. A weight that is less than one will 

place less importance on the target and a weight of one places 

emphasis on target and bound. If all the responses are equally 

important a default value of 1 is to be used. Since all the 

responses, target and bound are equally important to obtain a 

realistic optimal value. Weight and importance of one were 

chosen for each response in this analysis. The goal of this 

experiment is to minimize response, thus the optimal setting 

will be obtained by maximizing the composite desirability 

(the higher the better) [15, 30].  

IV. EXPERIMENTAL RESULTS  

Five specimens (see Figure 2) were made for each 

experimental run and the mean of the responses is taken as 

the representation of the values of dimensions and surface 

roughness (Ra) for each of the 16 experimental runs as shown 
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in Table 2. Each run has a combination of factor levels which 

will be used for evaluating the significance of factors on the 

respective responses. Where, La, SD and FD in the table 

represent layer thickness, speed of deposition and fill density 

respectfully. 

 

Table 2 Experimental design matrix and data of respective responses for each run 

Run Order Blocks La SD FD % Δ length % Δ width % Δ thickness Ra (µm) 

1 4 -1 -1 1 0.81 4.08 10.40 3.72 

2 4 -1 1 -1 0.69 3.02 7.50 2.46 

3 4 1 1 1 0.24 0.78 8.95 13.42 

4 4 1 -1 -1 0.16 0.22 5.90 17.52 

5 3 -1 1 1 1.13 5.70 14.80 13.18 

6 3 1 1 -1 0.16 0.32 7.45 11.98 

7 3 1 -1 1 0.12 0.56 5.85 16.82 

8 3 -1 -1 -1 0.39 1.72 5.15 2.12 

9 1 1 1 -1 0.15 0.56 6.75 16.02 

10 1 1 -1 1 0.03 0.76 6.90 19.34 

11 1 -1 1 1 1.21 5.86 13.65 17.24 

12 1 -1 -1 -1 0.59 1.94 8.70 2.12 

13 2 1 -1 -1 0.11 0.86 8.40 22.48 

14 2 1 1 1 0.17 0.40 6.90 13.62 

15 2 -1 -1 1 0.96 3.84 11.45 5.84 

16 2 -1 1 -1 0.69 2.56 4.45 1.86 

 

A. Dimensional accuracy and surface roughness 
 

 

Figure 3 shows Pareto charts of the effects for percentage change in thickness, width,  length and surface roughness at 95% confidence level (α = 0.05). 

 
 

Figure 3 Pareto chart of standardized effects for (a) Surface roughness (b) % change in length (c) % change in width (d) % change in thickness 
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B. Response Optimization  

Table 3 and Table 4 show the goal of the optimization which in this case is minimization, the specified response target and 

upper bounds, weight and importance values and optimal parameter levels and composite desirability values. 

Table 3 Optimal factor levels for individual dimensional accuracies and surface roughness 

Parameters  

 Goal Target Upper Weight importance Global solution (coded units) di 

%Δ L           Minimum   0.03    1.21 1 1        LA =1, SD  = -1, FD = -1 0.897 

%Δ W           Minimum    0.22    5.86 1 1        LA =1, SD  = -1, FD = -1 

%Δ T           Minimum    4.45    14.80 1 1        LA =1, SD  = -1, FD = -1 

Ra (µm)       Minimum   1.86 22.48 1 1        LA = -1, SD  = -1, FD = -1 0.987 

 

Table 4 Optimal factor levels for combine response (dimensional accuracies and surface roughness) 

Parameters  

 Goal Target Upper Weight importance Global solution (coded units) di 

%Δ L           Minimum   0.03    1.21 1 1        LA =-1, SD  = -1, FD = 1 0.927 

%Δ W           Minimum    0.22    5.86 1 1        LA =-1, SD  = -1, FD = 1 

%Δ T           Minimum    4.45    14.80 1 1        LA =-1, SD  = -1, FD = 1 

Ra (µm)       Minimum   1.86 22.48 1 1        LA = -1, SD  = -1, FD = 1 

 

Ten specimens was also produced for the confirmation experiments based on the obtained optimal solutions from the analysis of 

data obtained in the experimental runs. The dimensional accuracy and surface roughness from experimental runs based on 

optimization settings in Table 4 is shown Figure 4. Where  ΔL is change in length, ΔW is change in width, ΔT is change in 

thickness. 
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Figure 4

 

Confirmation experiments for (a) Dimensional accuracy (b) Surface roughness, error bars indicate 95% confidence interval
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V. DISCUSSIONS 

A. Variation of dimensional accuracy and surface 

roughness with parameter sets 

From  

Figure 3 the most significant factor affecting dimensional 

accuracy and surface roughness is layers thickness. All the 

factor effects that crosses the reference line (2.31) are 

statistically significant. The order of the significant effects 

of the evaluated parameters is also as shown in that figure. 

This results also suggest that the level of significance for 

each evaluated response vary from each other. Speed of 

deposition have not effect on the surface roughness and 

percentage change in thickness but interaction between 

speed of deposition and fill density is significant for 

surface roughness.   

B. Optimal process parameters 

From Table 3 the optimal parameter sets for dimensional 

accuracy are high layer thickness, low speed of deposition 

and low fill density while that for surface roughness are 

low layer thickness, low speed of deposition and low fill 

density. Because of the mismatch between the required 

optimum process parameter sets for both dimensional 

accuracy and surface roughness a need to determine a 

combine optimum parameter sets for both properties thus 

exist. Optimization was then carried out to find the 

optimum global solution for both dimensional accuracy and 

surface roughness (see Table 4). The obtained combine 

desirability function value is 0.927 thus the optimal 

solution is satisfactory since it is very close to highest 

possible value of 1. Reduction in dimensional inaccuracy 

and surface roughness (see Figure 4) can be observed when 

the optimum process parameters that was obtained from the 

analysis of experimental results was used to fabricate 

test parts. The experimental results is thus 

validated. 

VI. CONCLUSION 

The effect of process parameters of speed of deposition, 

layer thickness and fill density on dimensional accuracy 

and surface roughness of FDM made parts have been 

evaluated. The process parameters were observed to affect 

those properties differently. Desirability function was then 

used to determine the optimum process parameters for the 

minimization of both dimensional inaccuracy and surface 

roughness. The experimental results was validated by 

producing parts with the obtained optimum process 

parameters. Experimental results tend to suggest that it is 

possible to produced parts with both optimum surface 

roughness and dimensional accuracy. 
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