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Dimensional Analysis of Nonlinear Oscillations in Brain, Heart and Muscle

G. Mayer-Kress **t’n,F. Eugene Yatest, Laurel Bentont, M. Keidel”, W. Tirsch”, S.J,

Poppl”, K. Geistti’”

AkdJA we p=nt ~me numerical studies on the dimensional analysis of temporal oscil-

lations measured in the human electroencephalogram (EEG ), heart rates (HR), and muscle

tremor. We show that it is insticient to characterize the individual system by a single -

dimension value alone. We give some detailed numerical analysis 01’the scaling structure

of the attractors reconstructed from the time signal.

Our methods are baaed on the concept of local gauge functions which we derive from the

raw signals M well aa from the transformed signal obtained from singular value decompose -

tiokL.We were able to confkm and improve earlier results on the change of dimensiondit y

of EEG signals, For heart rates and muscle tremor we obseme significant changes in the

dimtwkxmlity aepending on the state of the eystem,

We further try to indicate which factora enter dimension estimates and where specific

problems lie in each of the examples,
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1. Introduction

There are many mathematical models in the literature, which try to explain the origin

of self generated rhythmical behavior in biological systems [1,2,3]. Some of the models

are of a deterministic and nonlinear nature which can undergo a Hopf bifurcation to a

periodically oscillating state. Pure periodicities are, however, rarely realized in biological

systems and thus stocha.st ic forces are introduced to reproduce the irregubwit ies in the

oscillations. The cngins of these stochastic forces can be in the uncontrollable influences

of microscopic processes, which perturbe the frequencies and phases of the oscillators,

Other sources of irregularities can be feedback loops which couple the oscillating system

to other slowly varying processes in the organism. For instance in the generation of the

EEG, aa well aa in other processes, which are generated by neural activity, one can envision

.

that uncorrelated firings of neurons might cause quasi-stochastic perturbat ions, Here we

are more interested in slow changes of the dynamics, e.g. changes in mental activity (shift

of concentration, sensory input etc.). In the variabilityy of heart rates it has been possible

to identify several low frequency perturbations as discussed in more detail below. In the

contt xt of muscle tremor the main source of rwnstationarity seems to be the tiring of the

muscle.

In this paper we don’t try to model the biological mechanisms which genmate these

oscillations but we try to describe and apply tioxne methods from nonlinear dynamical

systems theory which we have used to study the oscillatory signws from three of the mo it

prominent biological oscillators: The electrical signal from human brains (EEG) and hearts

(EKG ) and muscles (EMG). During the last couple of years one could observe a growing

research @ivity of analysing dynamical properties of biological systems both in chwsicnl

terms [4] and using algorithms from nonlinear dynamical systmns like fractal dime, ~sions

and entropies [5]. It appears that in the field of nonlinear dynamical amdyuis we nr~
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still in the beginning stages of a

common agreement aa of how to

about possible artefacts that have

methodological evolution. Thus there typically exists

compute and interpret spect ml information and also

to be taken care of. The situation is different, however,

in the calculation of, say, fractal dimensions from a timeseries. Many different algorithms

and methods have been proposed which efficiently produce converging results in simple

cases (d < 3), but for more complicated sets the different methods seem to have problems

in reproducing reliable dimension values with a realistic number of data points.

There have been some efforts, however, to standardize the methods of dimension cal-

culation, so that results from different authors can be compared (“pecos standard”).

2. Estimating the dominant dimension from local gauge functions
.

2.1 Geometrical reconstruction

In this section we would like to give a brief overvue of the concepts of dynamical dimension

estimates and then describe in some detail the method~ we have used to obtain an unbiased

estimate of the most dominating dimension and some detailed structure of the scaling

properties of the reconstructed attractors. We start with the -now clemical- method of

time-delayed variables for reconstruct ing at tra.ctora [6]: Assume we are measuring a single

variable time-series z(t~ ) = z~ then we can reconstruct vectors ;~ in a n-dimensional

state apace through time delay coordinates: Em = (Z~, z~.k, z~-ak, ..., Z~-(~-l)&)J where

m rune from (n – l)k + 1 to the number nd~~.of data points and k is the time delay [6]. In

fig, 1 we plot the time series z~ and also state space reconstructions in the plane (n = 2)

for two different delay times k = 1 and k = 4.*

The time delay should be chosen in a way that the coordinates of Em are maximally

independent, We use the concept of mutual information content [7,8] to determine the

optimal delay time.

“ Horw utd In thQ followtng fipru w want to illuotmto our mahod on hoti rat. dsts from ● hmlthy f~m!dc, tdwn dudns WUIU

daily ~tivity with tha hdp ofs t401t@rmonitor A mom dct~ld dacdptlon follow bdow
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2.2 Local Gauge fimctions and pointwise dimensions

From the data vectors z‘~ we select a subset of nr~t equally spaced (in time) reference

-
vectors (j = RjM where v = [~]. For ewh of the n-dimensional reference vectors we

determine the local gauge function NF,(r) = ~~~’” @(r – 11~1– ~jII), which counts

the number of data points in a neighborhood of size r 1). In a log-log-representation this

function typically exhibits a scaling region [r~i~, rma. ] 2, over which a slope can be defined.

This slope is then interpreted as the pointwise dimension d{, of the system at point ~j (see

e.g. [5,9,10]).

Due to the non-uniformity property [1I] of generic attractors we expect that the lo-

cat ion as well as the size of the scaling region depends on the reference point ~j. In the

widely used Gramberger-Procaccia tdgorit hrn [10] for dimension estimation the average-

Value of .N/,(r) is computed over all reference points /j at a fixed value of r, This induces

for the case of finite scaling regions an extra error which can be avoided by computing

the pointwise dirmmsion individually for

the dimension is determined through the

practical sense this is not only unfeasabk

each of the reference points In the strict sense

scaling behavior at infinitesimal distances. In a

but also in many cases unphysical: The relevant

dynamics which we want to study is not necessarily the dynamics at very small scales,

where we know that noise becomes dominant. Also for very small scales and limited data

sets we know that the statistics becomes bad. Therefore we want to study the dominant

dimension in the sense that it describes the scaling behavior with the least disturbances

(i,e. the best fit of a straight line in a log-log plot) over the hugest range [12] In fig. 2

we ohow a series of gauge functions in a log-log representation for embedding dimensions

1 < n < 20 for the same heart rate data as in fig,1, We see for small values of log r

the efkct of the finite resolution of the measurement (s 1%), The solid line indicate the

1, 0(?) ● 1bfr >0 and QP(r) = Oaloowhcm

~) Thit mcMo thot for F ~ [p-,., rm6, J w hcw Nt (F) ● e({)) P’tl wh~m c(fJ) is ● P~l~~~ d.p~d.nt ~csla ‘Mtm’
I
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fit region for each embedding dimension determined by the algorithm. We think that this

method corresponds in a more systematic way to the procedure of extracting a dimension

value from a visual inspection of the dimension curves. In fig. 3 we can see an example of

how the scaling range is selected by our algorithm for embedding dimensions n <20.

In order to minimize the bias in dimension estimates we introduced an algorithm which

determines fit-range, goodness of fit (GF) and estimated dimension alitomatically for each

reference point and for each embedding dimension. In this way we want to make sure

that the same criteria are entered in each of the data sets and therefore results become

better reproducible and can be compared with other data sets. The main assumption

in the “dominant” dimension estimate is that the relevant scales at each location on the

attractor can be found by scxmhing -for a given minima! scaling factor a = ~ over

which the attractor scales- for that value of /cg r for which the fit of a linear segment of

length log a to the iog of the gauge function becomes optimal. ln order to get well defined

conditions and also in order to make optimal use of the local scaling properties, we expand

the scaling region in the next step until the specified goodness of fit is reached. We use

linear interpolation to compensate for the discontinuities due to the finite coarseness of

our sequence of distance values r~.

Since our reference points are sampled with equal time intervals v = [~] we obtain

a sequence of dimension valuea which reflects the temporal ordering on the attractor. This

temporal information is completely lost in a direct calculation of the Gramberger Procaccia

(GP) dimension. Our method is also superior to repeated calculation of the GP- dimension

on subsets of the time series, since in that case one ia considerably more limited in the

number of relevant data pointu available for the estimate.

It is possible through our method to localize specific regions on a reconstructed attrac-

tor which are respmmible for significant than es in the apparent local dimensionality.
#



In our fitting procedure we determine a dimension estimate for each value of the em-

bedding dirnenaion. Again for stability reasona we want to avoid a discontinuous jump

in the dimension estimate aa a function of the embedding dimension throug a change in

the fitting interval. Thus we monitor the dependence of the fitting interval, selected by

our algorithm, on the embedding dimension and in moat caaea the discontinuity in the

dimension va!uea is due to this shift in the fit region. In 6g.3 we show an example where

we have plotted the extension of the fit region for increasing embedding dimensions for

one specific reference point. In fig. 4 we plot the pointwise dimension obtained in this

way as a function of the reference point. Th.h is equivalent to probing the attractor at

different geometrical locationa and aleo at different instancea in time. We think that this

information is very helpfull in aanociating changes in the complexity of the dynamica with -

geometrical featureaof the reconstructed dataset and there for get mme better insight into

the characteristics of the system. The oscillating variation of the dimension vduea in fig.

4 is quite apparent, its clinical interpretation is not clear yet.

2.3 Singular value decomposition

If we chose a optimal del~time for which the mutual information betwn z. and Z..h

becomes minimal then we only know that the coordinate of the datwvectora 3. are pair-

wioe optimally independent but still there might be a large redundancy contained in the

datavectora through e.g. higher order correlations. A method which repreeento the data

vectors in a basis with minimal correlation hna ben flint applied to dimension calculation

by Broomhead and King [14,15]. It ia based on a singular value decomposition method

which corresponds to an expansion of the datavectom into modes which are dominantly

contained in the eignal. In their original paper Broomhead and King were interested in the

high frequency content of their signal and therefoxe used a high sampling rate nnd recon-

atrutted vectom which would cover windowe 6$ the timeseriea of a period corresponding to



the highest relevant frequency contained in the signal. Since most of the chaotic phenom-

ena appear in the subharmonic low frequency range we have chosen windows (patterns) in

the timeseries of maximal length of the order of typical decaytimes of correlations. To be

more precise, we determined the window lenght as the product of the characteristic time

determined by the first minimum of the mutual information content and the maximal em-

bedding dimension used for the dimensional analysis without singular value decomposition

(SVD). Thus the maximal time segment covered by any data vector is of the same order

in both methods. We expect that patterns of a larger temporal extension would be too

cent aminated by noise which will be amplified by the chaotic dynamics of the system. In

fig. 5 we show the gauge function of the same reference point as in fig. 2 after SVD with

windowlength 100. In fig.6 we see that the oscillating structure of the time dependence of

the pointwise dimension is also visible after SVD. In fig. 7 we show the histogram for the

data of fig. 4 (“mlidlines) and for fig. 6 (dotted lines). Typically the distribution becomes

more normal after SVD.

In fig. 8 we show the dependence of the estimated dimension value c d~, >f, on the

embedding dimension n. The error bars correspond to to the standard deviation of the

dimension distribution over the reference points which have reached the minimal goodness

of fit. They are solid lines for the original data and broken lines after singular value

decomposition. Note the fast saturation to a smaller value in the latter case. This seems

to be typical for this method, but we have cases where this can lead to underestimation of

the true dimension values [16]. In order to get some idea of the overal scaling properties of

the datasets we plot the percentage of reference points wh;ch reac!! a certain goodness of

fit GF M a function of GF and embedding dimension n. We see in fig. 9 that without SVD

most of the reference points fulfill our criterion for GF > 0.3 for our example set. The

scaling properties become much bet ter in the case of SVD, and it is also typically better for
7



data of brain- or muscle oscillations. We also tested how the observed dimension depends

on GF and on the embedding dimension n. The results for our test example are presented

in fig. 10. We observe a steady increase of t be dimension when we increase GF and n.

Again we see much better convergence after SVD (fig. 11). The opposite tendency seems

to hold for the standard deviation of the dimension values, i.e. a good scaling behavior

(small GF) is associated with a high variability of the dimension values (fig. 12). A more

detailed information about this phenomenon can be obtained in fig. 13, where we show

how the histogram of fig. 6 evolves with increasing embedding dimension n.

In the following we try to examine a few specific examples from the three areas brain,

heart and muscle and discuss some problems and results.

3. Dimensionality of the Electroencephalogram (EEG)

There exists now a fairly large number of publications on estimating dimensions from EEGs

[17,. . . ,24],

It is known for a long time that the electrical signal of the EEG is in some way related

to the mental activity of the brain, So, for instance it is possible for trained individuals to

distinguish between sleep and awake states by visually inspecting the EEG. Thus there have

many attempts to find some quantitative observable which could me~ure these changes

[4], A limited success was achieved by fourier analyzing the

the different mental states according to the distribution of

different frequency bands. The most famous among them is

EEG signal and specifying

the power of the signal in

the frequency band around

10Hz (alpha waves) which is in some way related to a relaxed state with eyes closed, The

implicit assumption in this and similar ways of analysis id that the “active modes” in the

brain which produce the electro-magnetic signal, are linear periodic oscillators. It is known,

however that the number of these fourier modes can bc much larger than the number of
8



modes which act ually are responsible for the physical, or in this case, bio-chemical processes

[25].

Thus, while spectral methods, which analyze frequency bands are optimized for regular

periodic or quasi-periodic signals, the applicability of these methods becomes very limited

in cases where the signal is intrinsically very irregular wit bout very sharp and well defined

frequency bands. This situation of deterministic chaos is known to be fairly

nonlinear dynamical systems and is discussed as an origin of many biological

cases of temporal discners.

Improvements in nonlinear methods should make it possible to classify

according to their degree of complexity or according to the number of nonlinear modes
-

which are generating them.

common in

and clinical

EEg signals

3. Influence oft he excitatory anesthetics fluroxene

One important application of EEG analysis is anesthesia, where a reliable monitoring

and control of its depth is still a problem which causes many fatalitie~ every year. For a

certain excitatory anestetic an increase in the observed Grassberger-Procaccia was reported

[17,23,24]]. The dimension, measured at the lead P3-01 was reported to increase from

d# = 4,3 + 2.2 before anesthesia to a value of d# = 8.0 + 3.8 during medium fluroxene

anesthesia. The computation of the averaged pointwise dimension yiehls in the first case

a value of dAP =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.4+ 1.2 and in the second case a value of dAp = 7.1 + 0.5 [24]. We

redid the calculation with slightly modified algorithm (details in the way the optimal fit

range is obtained and the omission of datapoints which are strongly correlated with the

reference points) and found values of dAp = 5.2 + 1.3 for GF = 0.1 (dAp = 6.7A 2*Oa for

GF = 0.2) and dAp = 8.7 + 1.1. In fig. 14 we see how, for a given embedding dimension,

the observed dimension increasea when the fit gets worse. In a stronger sense this is true
9



for the anesthesia data. For the dimensions obtained after singular value decomposition

the same tendency holds but for GF <0.5 we still have dsv <5.0.

These results show a delicate dependence on details especially at high values of the

dimension. Also we see the estimate [26] confirmed that dimension values considerably

above d = bglo(ndata) are difficult to reproduce. Finally we used the method of singular

value decomposition (figs.15,16) on these data and found values of dsv = 4.7+ 1.3 and

dsv = 6.3 + 1.5. The encouraging result is that we consistently find an increase in the

dimensionality which supports the conjecture that it would be difficult in biological systems

to estimate the absolute value of the dimension but it might be a valuable tool for detecting

relative changes in the complexity of the dynamics.

4. Analysis of Variation in Heart Rate and of Heart Rate Variability

The human heart is a nonlinear, near-periodic oscillator (van der Pol) that operates on a

“squirt-relax” two-process cycle producing an asymmetric waveform. Associated with the

mechanical cycle is an electrical cycle of the same period but of more complex waveform.

The heart rate is usually determined by counting the x.Amber of beats (maxima in the

pressure cycles) per minute that result from the mechanical pumping of the heart into

the blood vessels. But the heart rate can also be defined as the number of R waves (or

P waves) in the elect- cardiographic signal of each mechanical cycle. Because the R

waves are much larger than the P waves, the RR intervals (ranging from 30( msec for fast

heart rates to 2,000 msec for slow heart rates in adults) are often used ae the database.

A ordered set suitable for “time series” analysis can then be created by plotting the RR

interval magnitude (msecs) vs. interval number in the sequence of heart beats (of which

there are approximately 100,000 per 24 hours) (see fig. 1), Standard power spectral density

analysis can be applied to such a series. The shape cf the power spectral density function
10



then gives some indication ~bout variations in heart rate, both periodic and broad band

noise.

For a closer analysis of the variability of heart rate, it is customary to examine the

time series of RR(n+l) - RR(n) (hmeafter designated DRR) where n is the beat number

in the temporally ordered sequence. To correct for the fact that many natural processes

have constant coeflicieuts of variation (i.e., constant fractional error - meaning that large

numbers have larger dispersions than do smaller numbers), it is customary to correct the

heart rate variability for the underlying heart rate itself, creating an ordered series of

DRR /RR plotted agaiust sample number in a temporally ordered sequence. These data

are also suitable for” time series” analysis. They may be thought of roughly as a normalized
.

derivative of the raw data.

A question of fundamental physiological and clinical interest concerns the character of

the modulation of the time relation of heart beats. For example, data on heart rate and

heart rate variability in premature

changes and reactivity to stimuli.

infants have proved valuable as indices of developmental

Similar meavues have been used in adults to estimate

risk of sudden cardiac death and to predict mortality after acute myocardial infarction [28

- 40].

It is well known that respiratory cycles are coupled to cardiac cycles, with an overall

ratio of four heart beats per breath for all members of Claus Mammalia. Therefore, the

respiratory frequency almost always shows up in a spectral analysis of heart rate data, But

beyond the respiratory sinus arrhythmia, as this coupling is called, there is also a broad

1/f spectrum of the heart beat period [41], and other peaks in heart rate Bpectra have been

identified [35, 42], It haa been suggested that these various sped ral peaks are associated

with thermal regulation, respiration. vaaomotor tone *lterat ions and baroreceptor reflexes

[42, 43]. But apart from these couplings of heart rate to other near-periodic physiological
11



processes, there is interest in the residual spectrum after these few peaks are accounted for,

Specifically, what is the character of the broad band noise in the background? Particularly,

one might aak whether there is a 1/! spectral property, as may be typical of chaotic

dynamics and as has been reported by Kobayashi and Musha [41]. It is also of interest

know what will happen to heart rate variability in the case of denervation of the heart,

seen after heart transplantation (see [27]).

4.1 Is Heart Rate a State Variable?

to

as

Biological state variables may be thought of as those involved in thermodynamic forces

and fluxes, whose behaviors strongly aifect the overall stability (health) of the system, An

example of a macroscopic flux variable is cardiac output; an example of a macroscopic

force variable is mean arterial pressure. (Heart rate is a crude estimation of the state -

variable cardiac output under conditions in which stroke volume is nearly constant, but

those conditions are not always sharply defined.) The behavior of a biological state variable

reflects at least four influences: (1) development influences that act over a lifetime, (2)

status influences that operate over mont ha or years, (3) modd influences that have to do

with ongoing behavior and operate over seconds to hours, and (4) transients, also operating

over seconds to hours. Respective examples might be: (1) developmental lifetime variable

. the constraints that a person is a mammalian, human male; (2) status variable - age;

(3) modal variable - wakefulness (versus sleep), and (4) a trwsient variable - exercise or

emotion, (Even though heart rate is not a state variable, it responds to the same four

influences, )

IWny physiological state variables are homeodynaxnically rather than hommstatically

regulated. That is to say that their mean operating behavior is not that of a relatively fixed

point or value (homeostasis), but rather that of a generalized limit cycle (orbital stability

au a biological rhythm), In the case of a nonatate variable such as heart rate, underlying
12



homeostatic or homeodynamic regulatory processes may be masked by transients and noise.

A major problem in the study of heart rate variability is to determine whether or not it

reflects masking influences or underlying physiological state and state changes,

In the case of heart rate, y(t), the following influences might apply:

y(t) = f(l/l!v2! . ● ● ?V7)

where VI is the dlomctric relation for mammals -

HR interval = 0.2 (body weight in kg)O.25

; ~2 carries the influences of the order, family, genus and species; y3 carries the influence

of sex (women have higher heart rates than men for the same conditions); y4 carries the

iniluence of age; y5 carries the influence of the recent past, including the lifestyle (e.g.,
.

how much coffee is regularly drunk); ya reflects the field influence of the ongoing situation

(e.g., exercise); y7 constitutes a wastebasket term, including noise that is unresolvable, plus

deterministic or stochastic couplings to other physiological systems such au respiration,

In this analysis items VI through y4are not negotiable, but fixed for a particular individ-

ual at a particular age. Items ~5- y~ may be altered by lifestyle changes, drug interventions

or environmental changeII. Most of the variabilityy of heart rate arises horn ye and ~7, items

which are not under internal regulation. some of the HR variability ariees from manipu-

lated variables in the regulation of other aapecto of circulatory functions. The linear decline

in maximum achievable heart rate with age exemplifies this fact. As Weisfeldt et al, (1984)

have clearly shown, cardiac output during (submaximal) exerciee is well sustained until

about age 80 in subjects without coronary artery or other serious cardiovascular diseaae,

in spite of the fa ll in maximum or near maximum heart rate. An incnmee in stroke volume

compensates, Cardiac out put appeam M a defended and regulated variable, but not heart

rat e,
1s



Sources of heart rate variability inch ~de microscopic channel noise in pacemaker cur-

rents; temperature fluctuations; environmental chemicals such aa co~~eine; couplings to

respiration; high energy or high maas activities such aa exercise, eating, sleep/wake trsmi-

tions or pcstural shifts; and low energy/mass inputs that are more “informational”, such aa

being criticized or being embarrassed (i.e., emotional inputs). Viewed this w ay heart rate

variability is seen aa being a sort of final common pathway for a wide variety of influences;

therefore it will be intrinsically difficult to resolve time series records of heaxt rate into

state assessments, except under very well defined conditions. Such conditions might in-

clude anesthesia? strictly controlled environments, and dominant physiological state (rest,

fasting). A disadvantage of stud~’ing heart rate under such conditions is that its behavior

may be irrelevant and there may be poor generalizability beyond the very special condi- -

tions under which the measurements were made. Therefore, one is temptcrl to study heart

rate in adults, and some children, under 24 hour or longer monitoring conditions in which

the subject is leading his (nearly) usual life,

‘The questions that concern us are: (1) how do we exprese and analyze non-lethal

heart rate variability and (2) what can be learned from heart rate variability, if it is

not a physiological state variable? (Potentially lethal dysrhyt hmiaa such aa ventricular

tachycardia, ventricular fibrillation, or extreme bradycardia and asystole, are clinically

important in adults but not really relevant to the issue addrewed by this conference. )

4,2 Signal Analysis of Heart Rate Variability

Sayers opens Chapter Three of the Kitney book [31] with this comment on the signal

analysis of heart rate variability:

“The beat-by-beat variations of heart-rate are neither quite deterministic nor entirely

random and, as with most biological variables, su~cessive periods of lead to somewhat

different remits - partly because of the oper~~ of changing biological factors, and partly



due to statistical sampling effects (,..), The cardiac signal in this context can be regarded

as a sequence of point events (occurrences of P or R waves in an ECG ) and two types of

approach are possible. First, some global feat ures of the point-sequence could be measured.

Two such global measures are mean heart-rate and variance of interbeat intervals; this

kind of measure certainly reflects the existence of changing physiological conditions, but

only in a rather unspecific way (.,.). Such an approach can indicate nothing about any

sequential patterns traced out by successive intervals; but, aa far aa the heart-rate variable

is concerned, these patterns offer the only prospect of any detailed picture of the behavior

of underlying physiological mechanisms. Thus, a second type of approach is desirable, that

studies patteru features of the fluctuations of heart-rate.

An analysis which draws on the coherent dynamic features of these fluctuations, rather -

than on their global description, is potentially more likely to illuminate detailed system

structure and properties of the underlying physiological mechanisms.”

Because of h hyperbolic (inverse) relationship between the time series of interbeat

intervals (RR) and the -called “instantaneous heart rate”, one must choose the form of

the data for analysis, focusing either on intervals or on rate, At slow heart ratee variations

in interbeat intervals are not very sensitive indicators of variations in physiological effects;

conversely, at high heart rates variations in instantaneous rate are insensitive indicators,

One way around thie uneven weighting is to uee a uequence of interbeat intervals aa the

primary data, but to exprem variability M done by Mazza et nl, [34], viz, normalim thv

DRR defined aa : DRR. = RR.+l - R& where RR is the time in millieecondm from

the peak of one R wave to the next and “n” ia the interval number in the ordered set

of a time history of the variable, The ratio ~ normalize the absolute variability of

the heart beat interval to the underlying rate itself and correctm for the linear correlation

between DRR and RR which merely expre:~ the (essentially trivial) fact that in many



natural processes the absolute variability around a mean value increases as the value of the

mean itself increases (i.e., many processes naturally tend to have constant fractional error,

or coefficient of variation). After the normalization a new time series results that can be

analyzed for global statistical properties during different epochs, or that can be subjected

to spectral amlysis, or treated in more advanced ways such of those of nonlinear mechanics.

Whenever spectral analysis is used on a physiological time history it is desirable to create

an artificial, control time series by shuffling the ordered set of the original. Shuffiing

pr~serves the amplitude distribution but destroys the ordinal relationships. As a result of

shuflling the spectrum should be whitened and putative peaks seen in the spectrum of the

original time series should disappear (see Odell et al. [44]).

Once the normalized interval measure has been chosen as baaic to the representation -

and analysis of heart rate variabilityy, analytical descriptions such aa the serial correlation

of intervals, the interval spectrum, and the band-filtered version of the interval sequence

all are useful. It is then necessary to decide whether the sample number in the sequence,

or time, should be used as the basis for displaying the sequencs of events. It is not

necessary to convert a series of point events into a form that models the sequence as a

continuous underlying signal sampled reUWlarly in time. In practice, such regularization

of the sequenceof SUIIpkb turns out to be entirely unimportant, except perhaps when it

is required to compare the cardiac signal with some simultaneous ongoing waveform, such

M mean mterial blood pressure, with reasonably high precision, But that can be done by

basing a cross-spectral analysi~’ or coherence analysis b~tween two time series on a series of

sampled numbers, rather than qually spaced sampling times, Ultimately, of course, after

a spcctrd analysis it is desirable to ccmvmt any significant “peaks” into some statement

about variations in time, in order to scale a problem physiologically, But that can be a

last step in the analysis.
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4.3 Respiratory Sinus Arrhythmia (RSA) (Respiratory- Circulatory System Coupling)

The importance of the coupling between respiratory periodicities and heart rate vari-

ability during development in infants is well illustrated by the work of Mazza, Gordin et

al. [34] Katona et al. [45], and Harper et al. [46]. F, Raschke [47] has shown that the

strength of coupling between the cardiac and respiratory system 3 in adults varies with the

underlying physiological state. Spectral analysis of a time history of RR intervals in normal

young human beings reveals three peaks: 15/rnin (respiratory frequency), 7/rnin (changes

in mean arterial pressure) and l/rein (thought to represent flow mechanics of the arterial

system itself ). In young subjects studied on a low protein diet at constant bed rest in a

constant environment, there is no clear circadian rhythm in RR interval, but during sleep

the distribution of periods is much narrower. The cardiovascular system has less variance -

du~ing sleep in adults, as in infants.

The coupling between the respiratory and cardiac systems has been expressed as a

phaue coordination between a preceding R wave and inspiratory onset [48]. The coupling

is tightest during sleep; it is moderate during restful wake~ulness when the RSA ~hows

as a frequency modulation of heart rate, au expected. However, the two systems are en-

tirely decoupled during exercise - the relationship between them is then random. Thew

varioua degrees of coupling repreeent physical and hemodynarnic constraints at the lowest

level, vagal-induced reflex coordination at the middle level, and central coordination at

the highest level. During exerciee in untrained individuals a coupling between inspira-

tion/expiration respiratmy cycling and the rhythm of walking or running is moderately

strong; Mathletic training is mcreaaed, the coupling becomes tighter between these two os-

cillatory behaviors, while the coupling between respiration and cardiac cyclen is weakened.

We cite Raachke’o work merely M an example of the fact that coupling strengths between

the cardiovascular and the respiratory oystems vary with physiological state in adulto, M
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well as in infants. Thus, a raw estimate of RSA, without providing some context, will be

insufficient for interpret at ion. An independent measure not involving respiration or circu-

lation is needed to define the state context in which RSA strength can be meaningfully

interpreted. There is no agreement on what that additional state information should be.

4.4 Is There a Chaotic Attractor that can be Revealed by Dimensional Analysis of Heart

Rate Viability?

The modem techniques of analysis of nonlinear dynamical systems [5] are just begin-

ning to be applied to time histories of normal heart rate data. These approaches emphasize

lag plots, mutual information, and the search for an attractr- and its dimension, that would

be characteristic of a physiological “state.” The state can be gross, merely sleep vs. wake-

fulness, or it might be more refined to encompass the minor states of e~ting, exercise, sexual -

activity, etc. An example of an analysis of the heart rate record from a normal 35-year

old woman (obtained horn a time segment of a 24 hour Helter monitor recording) is dis-

cussed in section 2 above. This segn~ent corresponds to the time of n~~~O= 828 heart beats

recorded during normal activity, Since perturbations in the recording are unavoidable this

also corresponds to the limit of contiguous data segments, The results from a later data

segment inaicat’~ that the fluctuation of dimensionality is of the order of Ad u 0.5 which

corresponds to a relative change of about 10~o.

As one pomibility for increasing the number of data points we make the assumption that

both segments are generated by the same dynamical system and therefore the reconstructed

vectors lie on the same attractor. Therefore we can compute the dimmaion from both sets

as long m we make m.re that the reconst mction is done properly, i,e. wit bout mixing

of the segments. The results are shown in fig, 17 for the comfiirLation of two eegments of

n~~t~,~= 828 and n~.t.,~ = 752 where we plot the domhmnt dimension M a function of the

embedding dimension, Note the better con:~gemce and smaller erroro compared to the



single segment data of fig. 8 (dAp = 5.$+ 2.4 for the first segment, dAP = 5.6+ 1.6 for the

second segment, and dAp = 4.8+ 1.9 for the combination of the two segments. In fig. 18

we see that the histogram is more normal compared to that of fig. 7. With this and similar

improvement it might t wm out that dimension est irnat ion has its cwn value as diagnostic

tool.

3. Muscle tremor

The neuronal

system (especial]

organism or parts

tion thresholds of

activity and the time course

the motor system) leads to

of excitation within the human nervous

minute oscillatory motions of the whole

of it, which normally are in an order of magnitude far below percep-

cmr (e.g. visual or acoustic) sensory organs. This vibratory output of

the CNS shows frequencies ranging from approx. 1 -120 Hz and is usually classified as -

body sway (1 -3 Hz), different (limb- or finger-) tremors (6 – 16 Hz, max. <25 Hz)

including eye tremor ( <120 Hz) and as muscle trem~~ or vibration (1 -100 Hz), which

is of special interest in this context, The latter is mainly based on the phenomenon

of electro-mechanical coupling: Electrical impulses (spikes) of the motor system are con-

verted in mechanica! “ripples” (twitch cent ract ions) of the related single muscle fibres,

which are connected m the innervating motor neurons via neuro-muscular junctions, This

mechanism leads to a muscular vibration pattern, which mainly resembles the firing statis-

tics of related motor units. Indeed, spectral analysis (by FFT) of such “vibromyogram”

(VMG) reflecting the mechanical grooa activity of a skeletal muscle reveals frequw,cy ~~aks

nimilar to the mean rhythrnicity of spike diecharge rates described in single unit studies

[49], Other possible mechatnisma underlying endogenous muscular vibrations are discussed

elsewhere more thoroughly [49], In the presented study concerning muscle oscillations the

following questions have been addressed: (i) 1s the complexity of the mechanical spinal

CNS output (VMG) comparable to that of the supraspinal el~ctrical CNS output (EEG)?
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(ii) Are the complexity parameters of the VMG stable obserlables. (iii) Does the VMG-

signal’s complexity vary with the functional state of the muscle comparing relaxation $vit h

isometrical contraction? (iiii) Do lesi~ns of ime CNS, for instance caused by unilateral

cerebral infarctions tiect the dimensionahty of the oscillation pattern of the paretic (and

spastic) muscles? Tibialis and biceps muscles were inve:~tigated at rest and during isomet-

rical contraction, The muscle vibrations were recorded with an accelerometer at tached

to the skin overlying the muscle of interest. The subjects and patients were !ying in a

supine position with eyes closed, Different constant levels of force had to be maintained

over 4 minutes. Oscillations of the non-contracted rmrscles exhibited a low dimensional

‘chaos’ with a (Grassberger-Procaccia) dim.cnsionaiity of D x 4. Such resulting dimen-

sionalit y of a vibromyogram obtained from a ‘resting’ right biceps muscle is shown in fig.19 -

(c& = 4.4+ 2.4 at a goodness of fit GF = O.12). Investigating the time course over 4 min-

utes by analyzing successive 20 sec segments a remarkable constancy of the dimensionality

became evident (fig,20), In fig. 21 we show the sequence of pointwise dimension values

which yield an average of dAP = 4.3 *1.4. (see fig. 22 for the histogram; note the difference

to figs. 7, 13, 18), The good agreement with dcp could indicate a low non-uniformity of

the system [11].

In contrast, during isometrical contraction of the same biceps muscle (load of 30 New-

ton) higher dimensional chaos occurred. It wu paralleled by M increase in dimensionality

up to dap s 8. The correapoxiding spectral army can be found in ref. [49]*

In patientQ with spaatic hemiparesis causedby a ccmtmlateral cerebral infarction intra-

individual side-differences in the dimensiormlity (up to a A D s 3) of bilateral muscle

oscillations ~irnult aneously recorded could be fbund [to be pubhshed]. This change in

complexity may be due - among othem - to a ‘pathological’ mode of motor unit ~ctivity

[50,51]. The increase of the dimensional compkxity of muscle vibrations during contraction
20



seems to be reasonable aa the whole ‘motor machinery’ of the nervous system is coming

into play. Thus, the preliminary results point out the predominant role of suprsspinal CNS

influences to the chaos dimensiomdit y of the muscular vibratory output. The disclosed

‘range of entropy’ seems to be a general feature of the human CNS activity as the order

parameters of the ‘rnechatno-spinal’ VMG correspond to dimensionalities of the ‘electro-

cortical’ EEG output [17-24].

Because of the preliminary nature of the results it is too early to draw definite conclu-

sions. But so fax, ~ suggest a pragmatic value of chaos analysis in basic research

and clinical applicati.., - methods of non-linear dynamics seem to determine character.

ist ics of (vibratory) bios;.gnals~ which are related to different (patho- )physiological states

and which cannot be disclosed by conventional unalysis-techniques.
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Figure Captions

Fig. 1: Time series a,nd planar state space reconstruction from inter beat intervals of a

heart of a healthy female, taken during regular daily activity with the help of a Helter

monitor. The delays in the reconstructions are k = 1 and k = 4.

Fig. 2: A series of gauge functions in a log-log representation for embedding dimensions

1 < n < 20 for the same heart data as in fig,l. We see for small values of log r the effect

of the finite resolution of the measurement (s l%). The solid line indicate the fit region

for each embedding dimension determined by the algorithm.

Fig. 3: Selected scaling ranges for dimension estimation of the data of fig. 1. The solid

lines corresponds to a goodness of fit of GF = 0.2.

Fig, 4: Pointwise dimension di, vs. index j. Since we have nda~. = 828 interbeat intervals, -

the reference points ~j are separated by roughly four heart beats. The errorbars indicate

the goodness of fit relative to a value GF = 0.2 indicated in the inset. For reference points

which reached this value we did not plot errorbars. The initiai lenght of the fit region

corresponds to a scale factor a = ~ = @ The embedding dimension is n =zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200

Fig. 5: Same as in fig. 2 after singular value dccumposition with windowlength 100.

Fig. 6: Same as in fig. 3 after singular value decomposition.

Fig, 7: Histogram for the data of ilg. 3 (solid lines) and for fig. 5 (dotted lines).

Fig. 8: Estimated dimension value < d& >3 vs. embedding dimension n. The error bars

correspond to to the standard deviation of the dimension distribution and are solid lines

for the original data and broken lines after singular value decomposition, Same data and

parameters as above.

Fig. 9: Percentage of reference points which reach a certain goodness of fit GF M ti

function of CF and embedding dimension n, (Same scale factor M in fig. 3, no WD)

Fig. 10: Dominant dimension u a function of the goodness of fit GF and embedding

dimension n. Same data and parameter as ;bove.



Fig. 11: Same w in fig. 9 after SVD.

Fig. 12: Standard deviation of dominant dimension as a function of the goodness of fit

GF and embedding dimension n (same condition as fig. ).

Fig. 13: same aa fig. 6 but here we can see how the observed histogram depends on the

embedding space. (dotted line corresponds to fig. 7)

Fig. 14: Observed dimension of eeg data before anesthesia as a funct ion of the embedding

dimesnion and teh goodness of fit (GF).

Fig. 15: Same as fig. 8 for eeg data before anesthesia. (GF = 0.1, scale factor a = 2.0)

Fig. 16: Same as fig. 15 during medium fluroxene anesthesia.

Fig, 17: Same as in fig. 8 for the concatenation of two data segments of length nde~.,l = 828

and nd~t~,z= 752.
.

Fig, 18: Histogram for the data of fig. 17. (same parameter aa in fig. 7)

Fig, 19: Graasberger-Procaccia dimension for non-contracted biceps muscles. (nd.ta =

10s, CF = 0.12, a = 2, sampling rate u = 500Hz)

Fig, 20: Sequence of dimension values of successive segments of nd.t.,~ = 104 datapointsi

Fig, 21: Sequence of pointwise dimension values for data of fig. 19.

Fig, 22: Histogram of data of fig. 21 (note the difference to t igs, 7, 13, 18).
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20FILE lmlRm81EiBllunuDlM:20

NSEG :1 NDTOT :828 NDAT :743
NREF :200 KREF :100 FITGUE 0020
IRNU1 :4 NDEIJXY 4 NWIND :4
NREFOK :170 DIM20: S,80 STA20: 2.35
NO SING. VALUE DECOMPOSmON
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NSEG :1 NDTOT :828 NDAT :743
NREF :200 KREF :100 flTGUE 0.20
IRNU1 :4 NDEIJW 4 NWIND :4
NREFOK :T70 DIM20: 5,80 STA20: 2.35
NO SING, VALUE DECOMPOSITION
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NSEG :1 NDTOT :828 NDAT :743
NREF :200 KREF :100
IRNUI :4

FITGUE 0.20
NDELA)t 4 NWIND :4

NO SING. VALUE DECOMPOSfflON
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NSEG :1 NDTOT :828
NREF :200

NDAT :743
KREF :100 FITGUE Jlr8t) 0,2

iRNUl :4 NDELAY 4 NWIND :4

NO SING. VALUE DECOMPOSITION
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NSEG :1 NDTOT :828 NDAT :743
NREF :200 KREF :100 FITGU& WO>2
IRNU1 :4 NDELA” 4 NWIND :4

NO SING. VALUE DECOMPOSITION
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NSEG :1 NDTOT :15360 NDAT :15142
NREF :200 KREF :100 FITGLE 0.50
IRNU1 :8 NDELAY 11 NWIND :4

NO SING. VALUE DECOMPOSITION
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NSEG :1 NDTOT :15360
NREF :200 KREF :100
IRNU1 :8 NDELAW 11
NREFOK :83 DIM20: 6.66
N() SING, VALUE DECOMPOSITION

NDAT :15142
FITGUE 0.20
NWIND :4
STA20: 1.99
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GRRSSBERGER
SLOPE 5.003,FIT : 0.034
SLOPE+ 7.436 - 7.436
FILENO.330,REF:20G,DFITR:1OOOOO
DELfWll,EMB. DIM.:2il
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Complexity Parameter vs Time
Muscle Oscillations (med33(D
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REF.PT.

D- 4.271 +/- 1.393FIT 10.005
FILENO.330,REF:200,DRTR:1OOOOO
DELRY:11, IIIMRX:20,POW:8
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