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Dimensional and metric structures in
multidimensional stimuli

WILLA KAY WIENER-EHRLICH
Brown University, Providence, Rhode Island 02912

The present experiments investigated two characteristics of subjects’ multidimensional
representations: their dimensional organization and metric structure, for both analyzable and
integral stimuli. In Experiment 1, subjects judged the dissimilarity between all pairs of
stimuli differing in brightness and size (analyzable stimuli), while in Experiment 2, subjects
made dissimilarity judgments for stimuli varying in width height, and area shape (integral
stimuli). For the brightness size stimuli, the findings that (a) brightness judgments were
independent of size (and vice versa) and (b) the best fitting scaling solution was one that
depicted an orthogonal structure are strong evidence that subjects perceived brightness size
as a dimensionally organized structure. In contrast, for the rectangle stimuli, neither width
height nor area shape contributed additively to overall dissimilarity. The results of the metric
fitting were more equivocal. For all stimulus sets, the Euclidean metric yielded scaling
solutions with lower stress values than the city block metric. When bidimensional ratings
were regressed on unidimensional ratings, the city block metric yielded a slightly higher
correlation coefficient than the Euclidean metric for brightness size stimuli. The two rules
of combination were equivalent for the width-height stimuli, but the Euclidean metric pro-
vided a better approximation for the area shape stimuli. The results were discussed in terms
of how subjects integrate physical dimensions for the case of integral stimuli and the

superiority of dimensional vs. metric structure as an indicator of stimulus analyzability.

Much research with multidimensional stimuli is
based on the assumption that such stimuli are per-
ceived and organized in a dimensional fashion.
However, recent studies suggest that the decom-
position of stimuli into the component dimensions
that generate them may be possible for only some
multidimensional stimuli. For example, color patches
varying in terms of brightness, hue, and saturation
are processed in a wholistic scan and therefore the
global properties of the stimulus are emphasized over
the underlying constituent dimensions. Since such
stimuli cannot be easily analyzed into their com-
ponents, they produce interference when a subject
must selectively attend to one dimension of an ortho-
gonally varying stimulus set and ignore (or filter)
the irrelevant dimensions (Egeth & Pachella, 1969;
Felfoldy, 1974; Garner & Felfoldy, 1970; Gottwald
& Garner, 1975; Pomerantz & Garner, 1973;
Pomerantz & Schwaitzberg, 1975) but yield an
improvement in processing speed when both di-
mensions are correlated and perceptual integration
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is desirable (Eriksen & Hake, 1955; Garner &
Felfoldy, 1970; Lockhead & King, 1977; Monahan &
Lockhead, 1977) or when both dimensions must be
attended to anyway (Lockhead & King, 1977;
Monahan & Lockhead, 1977; Pomerantz &
Schwaitzberg, 1975).

Furthermore, because unanalyzable stimuli are per-
ceived as differing on only one complex dimension,
subjects can make judgements of perceived similarity
directly. Hence they yield Euclidean metrics in
direct distance scaling (Indow & Kanazawa, 1960;
Indow & Uchizono, 1960; Kruskal, 1964) and
similarity structures in free classification experiments
(Handel, 1967; Handel & Imai, 1972) where both
dimensional and similarity classifications are possible.
Thus, the hallmark of nonanalyzable stimuli is the
dominance of similarity relations over dimensional
organization. ‘

In contrast, schematic faces varying in terms of
shape of face, empty or filled eyes, and type of
mouth (Tversky & Krantz, 1969), parallelograms
varying in size and tilt (Attneave, 1950; Hyman &
Well, 1967), brightness and size stimuli (Attneave,
1950; Gottwald & Garner, 1975; Handel & Imai,
1972), and stimuli varying in color and form
(Gottwald & Garner, 1972) are analyzed into con-
stituent dimensions, and each dimension can selec-
tively engage the attention of the visual scanner.
Since subjects can selectively attend to component
dimensions, variation in the irrelevant dimension
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does not interfere with the processing of the relevant
dimension, and there is no loss in processing speed
with orthogonally varying stimuli (Garner & Felfoldy,
1970; Gottwald & Garner, 1972, 1975; Imai & Garner,
1965). At the same time, however, because percep-
tual fusion or integration is less likely with highly
analyzable stimuli, subjects cannot make use of
dimensional redundancy to improve their class-
ification performance (Garner & Felfoldy, 1970), and
they find the processing of information from both
dimensions (e.g., assigning red circles and blue
squares to one category and blue circles and red
squares to another) to be quite difficult (Gottwald
& Garner, 1972, 1975).

The fact that selective attention is possible with
such stimuli has two additional consequences. First,
dimensional classifications predominate in free class-
ification experiments, and dimensional preferences
can occur (Imai, 1966; Imai & Garner, 1965).
Second, when subjects are asked to give similarity
ratings, they do so by summing distances along each
dimension. Thus, a city block metric provides a
close approximation to subjects’ proximity ratings
(Shepard, 1964). Stimuli perceived as homogeneous,
unitary wholes are termed integral stimuli, while
those stimuli that are analyzed into perceptually dis-
tinct parts are called analyzable stimuli. Analyzable
stimuli are perceived as dimensionally organized
structures, while integral stimuli are not.

A more formal approach to dimensional structure,
based on properties fundamental to subjective
dimensions, is embodied in the additive difference
model of dimensional organization (Beals, Krantz,
& Tversky, 1968; Krantz & Tversky, 1975; Tversky
& Krantz, 1969, 1970). The first necessary condition
for a psychological dimension is a kind of context-
independent property, that it be independent of the
level of the other dimension. If width and height
are psychologically valid dimensions of figures, then
similarity judgments of figures that differ in width
should be independent of the height of the figure.
This property is referred to as interdimensional
additivity and requires that the distance between
items be a function of the sum of their differences
on the constituent dimensions. A second basic
property of subjective dimensions is that of intra-
dimensional subtractivity, in which the contribution
of any single dimension to similarity depends on the
absolute difference between the two stimuli on that
dimension. It should be emphasized that this
approach treats dimensional models as quantitative
psychological theories that can be confirmed by
certain patterns in the similarity data.

The present experiments incorporate Krantz and
Tversky’s measurement theoretic techniques to com-
pare subjects’ representations of integral wvs.
analyzable stimuli. First, several product structures

thought to be representative of analyzable and
integral stimuli were constructed. In Experiment 1,
subjects judged the dissimilarity between all pairs of
stimuli differing in brightness and size (analyzable
stimuli), while in Experiment 2, subjects made
dissimilarity ratings for stimuli varying in width and
height, and area and shape (integral stimuli). These
dissimilarity ratings were then used to diagnose
subjective dimensions as follows. The judgments
were first examined for interdimensional additivity.
(Predictions derivable from the axiom are discussed
below.) It was expected that the analyzable stimuli
would exhibit this property while integral stimuli
would not. The best fitting metric was then examined
for the two stimulus types. Since independence of
subjective dimensions (interdimensional additivity)
is one characteristic of stimulus analyzability, stimuli
that exhibit interdimensional additivity should be
best represented by a city block metric, while stimuli
that do not (i.e., integral stimuli) should be best
represented by the Euclidean metric.

Stimulus Structure

In the present experiments, the coordinate systems
are restricted to only two dimensions and to four
levels on each dimension. Thus, as shown in Figure 1,
one of the stimulus sets is represented as a 4 X 4
structure in perceived brightness and size. For each
structure, 120 dissimilarity ratings corresponding to a
subject’s perceived distance of 120 stimulus pairs
were collected. Since predictions from the inter-
dimensional additivity axiom are stated in terms of
stimulus pairs, the following notation, taken from
Krantz and Tversky (1975), is introduced to
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Figure 1. The 16 figures from Experiment 1 plotted in log area
and Munsell value coordinates.



describe the stimulus pairs. (The reader will find
the notation easier to follow if he refers to Figure 1.)
Brightness and size are the canonical dimensions;
the notation is similar for width height and area
shape.

Pairs of brightness (size) levels will be referred to
as B (S) intervals. Atomic intervals will be denoted
as B,, B;, By, (S, Sy, Ss); hence, B, = (by,b;) =
(bs,bs) and B; = (bs,bs) = (bs,bg) {and S, = (54,
Ss5) = (52,8¢) and S; = (85,815) = (S10,514)]. Adjacent
intervals can combine, and these combined intervals
are denoted by subscripts. For example, B,, (S:;)
denctes intervals B, and B, (S, and S,) [B. =
(b1,bs) = (bs,bs), Siz = (51,5) = 52,510)1; Bas (S23)
denotes intervals B, and B, (S; and S;) [B.s = (b,
bs) = (be,bs), Sz = (S5,513) = S6,510)}; and By,
(S.23) denotes intervals B,, B,, B; (S;, S2, S3) [B12s =
(b1,bs) = (bs,bs), Sizs = (81,513) = (52,514)]. The total
number of different intervals for a dimension is
seven B, By, B;, B, Bz, By, Bizsand So, S4, Sz, Ss,
Sn, szs: Slza-

If the 120 stimulus pairs are considered as elements
in a factorial design whose factors are brightness
intervals and size intervals, that design can be
represented as in Table 1. Note that this design
is an unbalanced one. As Table 1 indicates, there are
four stimulus pairs for cells that exhibit undimen-
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sional variation but only two stimulus pairs in the
bidimensional cells.

Interdimensional Additivity

Interdimensional additivity asserts that the con-
tribution of different dimensions to overall dis-
similarity is additive, so that dissimilarity can ‘be
decomposed into dissimilarity of component parts.
(The particular type of additive combination rule is
left unspecified.) Two sets of predictions are derivable
from the interdimensional additivity axiom. The first
set of predictions, called the equality predictions,
is easily explained in terms of the interval notation
introduced earlier: Any stimulus pair designated by
the same interval notation should yield equal dis-
similarity ratings. For example, the four stimulus
pairs (1, 13), (2, 14), (3, 15), (14, 16) differ by the
same interval notation along the size dimension, but
at increasing brightness value. Since they differ by
the same interval along each dimension (i.e., a S,,3
interval on the size dimension and no difference,
Bo, on the brightness dimension), they all have the
same interval notation. Hence, their dissimilarity
rating should be equal. Pairs occupying the same
cell in Table 1 should thus have equal dissimilarity
ratings.

The second set of predictions is called the order-

Table 1
The 120 Stimulus Pairs Arranged in Brightness Interval by Size Interval Matrix, Experiment 1

Brightness Interval

Size
Interval B, B, B, B, B,, B,, B,,,
1, 2 2,3 3, 4 1, 3 2, 4 1, 4
S 56 6, 7 7, 8 517 6, 8 5,8
° 9,10 10,11 11,12 9,11 10,12 9,12
13,14 14,15 15,16 13,15 14,16 13,16
i, S 1, 6 2,17 3,8 1, 7 2, 8 1, 8
S 2, 6 2,5 3,6 4,7 3,5 4, 6 4,5
! 3,7
4, 8
59 5,10 6,11 7,12 5,11 6,12 5,12
S 6,10 6, 9 1,10 8,11 7. 9 8,10 8,9
2 7,11 '
8,12
9,13 9,14 10,15 11,16 9,15 10,16 9,16
S 10,14 10,13 10,14 12,15 11,13 12,14 12,13
3 11,15
12,16
1, 9 1,10 2,11 3,12 1,11 2,12 1,12
S 2,10 2,9 3,10 4,11 3,9 4,10 4,9
1z 3,11
4,12
5,13 5,14 6,15 7,16 5,15 6,16 5,16
S 6,14 6,13 7,14 8,15 7,13 8,14 8,13
23 7,15
8,16
1,13 1,14 2,15 3,16 1,15 2,16 1,16
S 2,14 2,13 3,14 4,15 3,13 4,14 4,13
123 3,15

4,16
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ing predictions. Empirically, this would mean that
a given disimilarity ordering of intervals along one
dimension is preserved when adding any interval
from a second dimension to each of them, and
vice versa. For example, if the psychological dis-
similarity, d, of interval S, of the size dimension
is greater than the psychological dissimilarity of in-
terval S, [i.e., d(S;) > d(S:)], then the effect of
adding a second interval, B;, to S, and S, should
be to maintain the ordinal relationship between S,
and S, [i.e., d(B,S-) > d(BsS,)].

EXPERIMENT 1

Method
Subjects
The subjects were 10 undergraduate students enrolled at Brown
University. There were four male and six female subjects. All
subjects completed two 50-min sessions and were paid $4 for their
participation.

Stimuli

The stimuli were 16 achromatic squares, cut from glossy
Munsell paper, that varied both in size (area) and Munsell
value (brightness). The Munsell system divides luminous reflect-
ance into 11 perceptually equal steps called Munsell values, with
a perfect black as 0 and a perfect white as 10. Thus, equal
increments on the Munsell scale correspond to equal increments
in perceived brightness. The scale yielding equal spacing among
Munsell values is calibrated for Munsell chips presented under
a standard light source (i.e., artificial daylight that has a
correlated color temperature of 6,700°K) against an intermediate
gray background (Newhall, 1940). Therefore, the present
experiment employed artificial daylight fluorescent bulbs and, as
background for the Munsell chips, an intermediate gray matte
surface, approximating a Munsell value of 5. The surface on which
the stimulus pairs were placed was also covered with matte paper,
approximating the Munsell level of 5.

To make the size dimension comparable with the brightness
dimension, adjacent levels of the size dimension must corres-
pond to equal increments in perceived size. A logarithmic mani-
pulation of the size (area) continuum was introduced to achieve
the goal of perceptually equal size intervals. The a priori effec-
tiveness of this manipulation is suggested by the following findings:
(a) Attneave (1950) had indicated that the psychological distance
between squares varying in area from 6.45 to 40.32 cm? is a
linear function of difference in logarithm of area. (b) Krantz
and Tversky (1975) provided scaling data for rectangles varying
in area and shape that indicated that logarithmic spacing was
effective in inducing the perception of equal area intervals.

In Figure 1, each square is represented as a point in a size
brightness coordinate system. The size dimenson is given in log
area coordinates, where the ratio between the adjacent levels is
1.6.

Procedure

Each subject was presented with a sequence of 120 achromatic
Munsell chips and asked to indicate the degree of dissimilarity
between the two figures on a 10-point scale. The order of
presentation was randomized for each subject and for each
session. Before each session, subjects were read the following
instructions: ‘“This is an experiment in mental organization. The
procedure is quite simple. You are being asked to perform a
type of psychological task called a dissimilarity task. In this
experiment, we will show you pairs of figures and we’ll ask you
to indicate, on a ten-point scale, the degree of dissimilarity

between the two figures. For example, if the figures are almost
identical, that is, the dissimilarity between them is very small,
use that part of the scale marked 1. If the figures are very
different from one another, use that part of the scale marked
10. In the same fashion, for all intermediate levels of dissimilarity
between the figures, use the intermediate values of the scale
depending on the judged degree of dissimilarity. We are in-
terested in your subjective impression of degree of dissimilarity.
Different people are likely to have different impressions, so there
are no correct or incorrect answers. Simply look at the pair of
figures for a short time, and use the number that corresponds
to the degree of dissimilarity between the figures.”’

Throughout the session, subjects were reminded that low num-
bers should correspond to low dissimilarity and high numbers
to high dissimilarity. Reference to dimensional structure of the
dimensions brightness and size were avoided.

The subjects were run individually in a session that lasted for
50 min. The subjects were required to attend two sessions, where
the two sessions occurred within 2 days of each other.

Design

Table 1 presents the 120 brightness size stimulus pairs in a
factorial design whose factors are brightness intervals and size
intervals. Since each subject was presented with all 120 stimulus
pairs over both sessions, the design was a complete within-subject
factorial design with the factors Brightness (B), Size (S), Time
(T), Subjects (K), and Stimulus Pairs (P). Stimulus pairs were
nested with the factors Brightness and Size [P (B x S)] and
crossed with Subjects and Time [P(B X S) x K x T}.

Results

A basic assumption is that within the psychological
space, the stimuli can be decomposed into dimensions
where the distances between adjacent levels are equal.
The first goal is to discover the psychophysical
function that describes the mapping of the physical
input onto each of the dimensions; second, to deter-
mine whether the 16 stimuli are embedded in a
dimensionally organized space; and third, to see
which metric best describes the psychological space.

Psychophysical Function

If the reader examines the 24 stimulus pairs that
vary along a single continuum, he can observe that
there are only six different types of variation, Several
of these intervals are the same step size (e.g., By,
B;, and B;), and they can be grouped together.
Thus, if the unidimensional scales contain percep-
tually equal steps, then (a) intervals that are of the
same step size should have the same dissimilarity
ratings and (b) the dissimilarity ratings should
increase linearly with interval step size.

The left-hand panel of Figure 2 presents the mean
dissimilarity ratings (averaged over time and subject)
of stimulus pairs as a function of difference in
logarithm of area, with brightness held constant. The
right-hand panel presents the average dissimilarity
rating of stimulus pairs as a function of difference
in Munsell value, with area held constant. Note that
the two functions are approximately linear; the mean
dissimilarity ratings do increase at a constant rate
as a function of interval size. However, intervals that
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Figure 2. Psychological difference between Munseil squares as a
function of difference in logarithm of area with Munsell value
constant (left panel) and as a function of difference in Munsell
value with area constant (right panel).

are of the same step size do not have the same mean
dissimilarity rating. This visual observation of
Figure 2 is borne out by an analysis of the difference
in mean ratings of theoretically equivalent intervals.
Interval B, is more dissimilar than interval B,
[F(1,45) = 6.07, p < .025], and interval S, is more
dissimilar than the mean of intervals S, and S,
[F(1,45) = 4.25, p < .05]. One can conclude, then,
that the differences between dimension levels are not
equivalent, Thus, for these stimuli, the psycho-
physical relationship is not given by a simple log-
arithmic transformation (for size), or by a power
function relating perceived brightness and luminous
reflectance (the relation between Munsell values and
luminous reflectance, Krantz, 1972).

Dimensional Representation

Analysis of variance. As indicated previously, two
sets of predictions are derivable from the inter-
dimensonal additivity axiom. Both sets of predictions
have straightforward rules of correspondence to a
standard factorial design. In terms of an analysis of
variance, the equality prediction is equivalent to a
nonsignificant stimulus pairs effect {i.e., P(B X S}]
while the ordering prediction is equivalent to a null
interaction effect. Since the number of stimulus
pairs varies for different brightness size combin-
ations, the Stimulus Pairs effect was analyzed
separately for each of 24 stimulus pairs exhibiting
unidimensional variation and the 72 stimulus pairs
exhibiting bidimensional variation. The degree of
invariance of the relationship between intervals within
one dimension across intervals of the second di-
mension (the interaction effect) was analyzed for the
72 stimulus pairs that exhibited bidimensional
variation. Stimuli varying in terms of both brightness
and size are assumed to be analyzable stimuli, and
thus capable of being decomposed into constituent
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dimensions. The predictions are: (a) unidimensional

-and bidimensional stimulus pairs should yield a non-

significant Stimulus Pairs effect and (b) bidimen-
sional stimulus pairs should yield a nonsignificant
interaction effect when analyzed in terms of their
mean dissimilarity ratings.

The Stimulus Pairs effect was nonsignificant for
all three analyses. Apparently, then, any fixed in-
terval on one dimension contributed approximately
the same amount to dissimilarity irrespective of the
level of the orthogonal dimension, confirming the
equality prediction. The interaction effect was non-
significant for stimulus pairs varying in terms of both
brightness and size. The null interaction effect is
illustrated in Figure 3. Each set of six curves shows
the effect of varying differences in one dimension,
with difference on the other dimension held constant
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Figure 3. Psychological difference between Munsell squares as
a function of difference in logarithm of area, with difference
in Munsell value held constant at six values (top panel) and as
a function of difference in Munsell value, with difference in area
held constant at six values (bottom panel).
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at some value. The top panel of Figure 3 presents
the mean dissimilarity ratings between squares,
averaged over time and subject, as a function of
difference in the logarithm of area, with brightness
held constant at six interval values. The bottom
panel presents a similar comparison with the dimen-
sions reversed. Casual inspection of these curves
show that these functions are parallel. It can be
concluded that brightness and size contribute
additively to determine overall dissimilarity.

Note, however, that the invariance of dissimilarity
scores for one dimension across levels of the second
dimension refers to the invariance of the ordinal
relationships between stimulus scores. A nonpara-
metric analysis of variance, the Friedman rank order
test (Bradley, 1976; Winer, 1971) was used to test
for the presence of an interaction. A chi square
equal to 29.06 (df = 25) was obtained, which was
not significant at the .05 level of significance. The
data therefore do not contradict the hypothesis of
an invariant ranking of intervals on one dimension
across different intervals of the second dimension.

Multidimensional scaling. A representation of
Munsell squares in a two-dimensional space was ob-
tained by applying Kruskal’s (1964) MDSCAL IV
program (Version SMS) to the mean dissimilarity
ratings of the 120 stimulus pairs. One widely known
difficulty with this method is the problem of arriving
at a local minimum rather than the true overall
minimum. To reduce the possibility of obtaining a
solution that is a local minimum solution, the data
were analyzed from 10 different random starting
configurations (Arabie, 1973). The best fitting con-
figuration is presented in Figure 4. Since the same
solution (up to changes in rotation and reflection)
occurred several times and had a stress value that
was considerably less than the value found for the
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Figure 4. Best fitting scaling configuration for the 16 Munsell
squares (Experiment 1). (This configuration is based on a random
starting configuration, Euclidean metric, secondary approach to
ties and Stress Formula 1.)

other solutions, it appears that it is the true
minimum solution.

Inspection of Figure 4 shows that brightness sizes
are orthogonal dimensions. It should be pointed out,
however, that according to Kruskal’s system of labels
for particular values of stress (Kruskal, 1964), the
goodness of fit of the final configuration to subjects’
proximity data (stress = .117) is only fair. The
stress value is but one of the many pieces of evidence
that can be used in interpreting scaling results.
Since the stimuli’s spatial arrangement is theoretically
interpretable, one can conclude that the obtained
solution is valid and not heavily influenced by factors
such as random fluctuations in the data, degeneracy,
and/or a merely local minimum.

Figure 4 also provides information relevant to the
function relating perceived brightness to Munsell
value. If the reader compares intervals B, and B,
of the brightness dimension, he can observe that
B, is psychologically more dissimilar than B, (i.e.,
stimulus pairs differing by a B, interval are
spatially more distant than stimulus pairs differing
by B,). Note that the greater dissimilarity of B,
over B, is maintained across all levels of the size
dimension. Thus, the Munsell spacing on the bright-
ness dimension did not result in subjectively equal
intervals.

Metric Fitting

The data up to this point converge on a common
finding that subjects employed the additive combin-
ation rule in their judgments of bidimensional
variation. This section provides a more precise
characterization of the additive combination rule by
analyzing how the dissimilarities along each
dimension combine to determine overall dissimilarity.
Since brightness size dimensions appear to be easily
isolated perceptually, subjects should judge the
stimulus distance separately for each dimension, and
then combine the distances to get an overall dis-
tance. The city block metric should therefore yield
a solution with the lowest stress.

Multidimensional scaling. For each of the two
Minkowski metrics under consideration, Euclidean
vs. city block, the mean dissimilarity ratings were
analyzed in 10 different scaling runs. Each scaling
solution was based on a random starting config-
uration and secondary approach to ties. In all cases,
the Euclidean configuration of metric distances pro-
vided the best fit to the data in terms of Stress
Formula 1 (stress = .117 to .272, median value =
.117 for Euclidean; stress = .158 to .363, median
value = .334 for city block). Furthermore, since the
““best’’ configuration (theoretically most interpretable
configuration) was selected from among the
Euclidean scaling runs, it seems that the underlying
rule of combination is best approximated by an
Euclidean metric. The city block is, of course, the



metric one would expect if subjects were judging the
dissimilarity on each dimension independently, and
then combining the dissimilarities to get an overall
subjective dissimilarity.

The above analysis assumes that different
Minkowski solutions are equally robust under
deviations from the posited metric. Shepard (1974),
however, cites results that indicate that *‘purely
Euclidean solutions can be surprisingly robust in the
face of certain kinds of rather marked departures
from the assumed Euclidean metric”’ (p. 407). Thus,
the present pattern of results may be an artifact
of the nonmetric multidimensional scaling procedure,
namely, that minor discrepancies in the true under-
lying metric are of greater consequence to the city
block vs. the Euclidean solution. This consideration
suggests a change in the method of metric fitting.

Multiple regression analysis. To determine which of
the two rules of combination is most appropriate,
for each rule of combination, the mean dissimilarity
ratings corresponding to the 120 stimulus pairs were
regressed on the dissimilarity judgments of one-
dimensional differences. The goodness of fit of the
two rules of combination was assessed by comparing
the resulting multiple correlation coefficients.

For the city block metric,

_ K
D;; = kzl w* Ixi5 — Xjkl)s

the prediction equation takes the form
Y, = wpB; + WSy + c.
For the Euclidean metric,
K
2 Witk — xj)? ,

Dy =

the prediction equation takes the form
sz = wpB;? + wS;? + ¢.

Fitting these equations by the method of least
squares, we obtain

Y, = .87B; + .875;y + .23
and _
Yp® = 1.59Bi* + 1.845;” — 4.37.
These equations indicate that the variables of bright-
ness and size are equally effective in determining

psychological distance. The muitiple correlation co-
efficient is .983 for the city block metric (implying
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that 97% of the variance in the Y wvalues was
explained) and the multiple correlation coefficient is
961 for the Euclidean metric (implying that 92%
of the variance in the Y? values was explained).
These results indicate that the city block metric
provides only a marginally better approximation to
subjects’ rule of combination than the Euclidean
metric.

Discussion .

The present experiment started off by asstiming
that the 16 stimuli could be described by a vector
of values on each of two dimensions, and that an
ordinal measure of dissimilarity between stimuli was
given. The next step was to uncover configuration
of metric distances, primarily by analyzing the
ordering of these dissimilarities. The finding that per-
ceived differences along the two dimensions con-
tributed additively to overall dissimilarity implies
independent dimensions and is consistent with the
posited dimensional structure. The finding that the
dissimilarities conformed to a city block metric
agrees with the dimensions’ perceptual distinctive-
ness. Taken together, these two findings support a
multidimensional metric model of the stimulus
space.

Support for a dimensional analysis was based on
the fact that judgements of the brightness of
figures were independent of the size of the figures,
and vice versa. The nonsignificant Stimulus Pairs
effect indicated that a pair of brightness (or size)
levels defined the same interval regardless of the level
of the orthogonal dimension. The finding of a non-
significant interaction effect indicated that the
ordering of brightness (or size) intervals was pre-
served by adding a common size (or brightness)
interval to them. Furthermore, since the best fitting
solution to the dissimilarity data was one that
depicted an orthogonal structure, there is strong
evidence that the 16 stimuli were perceived as a
dimensionally organized structure.

Support for the €ity block metric was more
equivocal. The city block metric yielded higher stress
values and less interpretable configurations as com-
pared to solutions obtained for the Euclidean
metric. since the Euclidean metric is more robust
under violations of metric assumptions than other
Minkowski r metrics, suboptimal or local minimum
solutions may be more likely to occur with city
block and other nonEuclidean solutions. When the
brightness size data were rescaled using a different
iterative procedure, the MINISSA-I/SSA-I algo-
rithm (Lingoes, 1973), a Kruskal stress value of .119
was obtained for the Euclidean metric and a Kruskal
stress value of .043 for the city block metric.
Apparently, the Guttman Lingoes SSA-I algorithm
is a better procedure for avoiding suboptimal
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solutions (Spence, 1972; Lingoes & Roskam, Note 1),
either because its rational initial configuration re-
duces the likelihood of being trapped in a non-
optimal position or because its iterative procedure
(double-phase rank image procedure preceding a
single-phase procedure) ignores local minima when
far from the minimum solution. Furthermore, since
in the multiple regression analysis, the city block
metric yielded a slightly higher multiple correlation
coefficient than the Euclidean rule of combination,
it appears that the metric approximates a city block
one.

The present experiment is the first study that the
author knows of to contrast the distance metric
underlying a set of multidimensional stimuli with an
explicit measure of the stimuli’s dimensional
structure. Although Tversky and Krantz (1969) in-
vestigated interdimensional additivity for schematic
faces, they did not test the goodness of fit of a
variety of metric models. (They indicate, however,
that a city block metric would not give a good fit
to their mean ratings, notwithstanding their stimuli’s
analyzability.) Handel and Imai (1972) used a derived
measure of dimensional organization, classification
structure in a free classification task, to contrast
with the best fitting distance metric. Although these
investigators were able to pinpoint the metric under-
lying brightness size stimuli as a city block one
(in contrast to our demonstration of only an approx-
imation toward the city block metric), the present
experiment provides a more precise measure of
dimensional structure than their classification
analysis.

A strong empirical association between dimen-
sional organization and the underlying metric was
reported by Hyman and Well (1967). They indicate
that dimensional interaction was greater for the
homogeneous color patches than for the more
analyzable geometric stimuli (Attneave parallelo-
grams and Shepard circles). Furthermore, within each
stimulus set, the degree of interaction was correlated
with the metric’s deviation from the city block and
toward the dominance end of the Minkowski con-
tinuum. Note that, in contrast to this experiment,
Hyman and Well tested only one dimensional
additivity prediction, that of interstimulus distance
equality.

Taken as a whole, then, the results suggest a
dependency between the dimensional organization
underlying a stimulus set and the particular com-
bination rule subjects use for bidimensional variation.
It still remains to be determined whether stimuli that
are reacted to as homogeneous, unanalyzable wholes
exhibit both an Euclidean metric and a nondimen-
sional structure when analyzed according to the
additive difference axioms. The remainder of the
paper is addressed to the relationship between

dimensional structures and Minkowski metrics for
unitary (integral) stimuli.

EXPERIMENT 2

The present experiment considers two alternative
product structures of rectangles, width and height,
and area and shape to determine which, if either,
satisfies the interdimensional additivity axiom of the
additive difference model. Although brightness
size stimuli can be characterized naturally in terms
of multiple subjective attributes, dimensional struc-
tures appear to be less relevant to form perception.
Wender (1971) collected dissimilarity ratings of rec-
tangles varying in area and shape, in order to deter-
mine whether they satisfied decomposability and
intradimensional subtractivity. His results indicated
an interaction between the area and shape dimen-
sions: an increase in dissimilarity produced by a
given area interval as the shape became more ex-
treme. Felfoldy (1974) used a speeded classification
paradigm to investigate how subjects integrated
width and height. He reported that there was
significant interference produced with orthogonally
varying stimuli when the task was to sort by a given
dimension. Krantz and Tversky (1975) performed a -
formal analysis of both product structures using
ordinal dissimilarity judgments. They indicate that
for both sets, there was a tendency for an interval
along one dimension to appear larger, the higher
or more extreme the level of the orthogonal dimen-
sion. (The effect, however, was more pronounced
for the area shape structure.)

These findings indicate that rectangles should be
especially good exemplars of homogeneous, wholistic
stimuli. Hence, they should provide a sensitive test
of the relationship between dimensional structure
and metric representations for the case of integral
stimuli.

Method
Subjects
The subjects were 10 undergraduate students enrolled at Brown
University. There were five male and five female subjects. All
subjects completed two 1%4-h sessions and were paid $8 for their
participation.

Stimuli

The stimuli were 32 white rectangles on an intermediate gray
background. In Figure 5, each rectangle is plotted in log width x
log height coordinates, in which the ration between adjacent levels
along the width height dimensions is 1.3. Note that the 32
rectangles are simultaneously members of a second dimensional
structure, area shape. (This structure is represented in Figure 5
by dashed lines at 45° to the width height structure.) Thus, the
stimuli form the larger part of an incomplete 7 x 7 factorial
structure in width height and a complete 4 X 4 structure in
perceived area shape.

Krantz and Tversky (1975) indicate that a logarithmic spacing
yielded approximately equal spacing for both sets of dimensions,
and therefore a logarithmic manipulation was employed in the
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Figure 5. The 32 figures from Experiment 2 plotted in log width -
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diaates are represented by dashed lines at 45° to the width height
structure.)

current experiment. Krantz and Tversky also report that a sig-
nificant area illusion existed in the perception of rectangle size:
Tall rectangles looked bigger than shorter rectangles of equal
area. To avoid this, they selected rectangles to be squat, so that
the largest height value was smaller than the smallest width value.
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In the present experiment, the largest height value was approx-
imately equal to the next-to-the-smallest width value.

To reduce the complexity of subsequent analyses, as well as
to insure that the present dimensional structures were equivalent
to the 4 X 4 brightness size structure, the 32 rectangles were
divided into two sets of 16 stimuli. Stimuli 1-16 corresponded
to a 4 x 4 width-height coordinate system, while Stimuli 17-32
corresponded to a 4 X 4 area-shape coordinate system. There are
120 stimulus pairs for each product structure and a total of 240
stimulus pairs. Dissimilarity judgments were analyzed separately
for each product structure.

Notation. The same notation used for brightness size stimuli
will be used for pairs of area levels, shape levels, widtb. levels,
and height levels. There are seven different intervals on each
dimension. The three atomic A intervals will be denoted as A;,
A,, A;, proceeding from low area to high area. Thus, A, =
(a23,250) and A; = (a,s,4,5). Combination of adjacent intervals are
represented as Ai: = (313,418), Az = (320,317), and A,;; =
(223,a,7,). In terms of S intervals, S, = (517,515), Si2 = (517,522)s
etc. Similar notation is introduced for H and W intervals:
H, = (hi,hs), Hy = (hy,hy); and W, = (Wi,W2), Wy =
(wth)'

Procedure

The subjects were presented with a random sequence of 240
stimulus pairs (120 stimulus pairs from each product structure)
and asked to indicate the degree of dissimilarity on a 10-point
scale. Low numbers corresponded to low dissimilarity and high
numbers corresponded to high dissimilarity. Before each session,
the subjects were read the same instructions used in Experiment 1.
Reference to dimensional structure was scrupulously avoided.

The subjects were run individually in a session that lasted for
about 90 min. The subjects attended two sessions that occurred
approximately within 2 days of each other. The order of pre-

Table 2
The 120 Stimulus Pairs Arranged in Area Interval by Shape Interval Matrix, Experiment 2

Shape Intervals

Area
Interval S, S, S. S, S,. S,s S,2s
17,19 19,22 22,26 17,22 19,26 17,26
A 18,21 21,25 25,29 18,25 21,29 18,29
° 20,24 24,28 28,31 20,28 24,31 20,31
23,27 27,30 30,32 23,30 27,32 23,32
23,20 23,24 27,28 30,31 23,28 27,31 23,31
A 27,24 27,20 30,24 32,28 30,20 32,24 32,20
! 30,28
32,31
20,18 20,21 24.15 28,29 20,25 2429 20,29
A 24,21 18,24 28,21 31,25 28,18 31,21 31,18
2 28,25
31,29 )
18,17 18,19 21,22 15,26 18,22 21,26 18,26
A 21,28 17,21 19,25 29,22 25,17 29,19 29,17
3 25,22
29,26
23,18 23,21 27,25 30,29 23,25 27,29 23,29
A 27,21 27,18 30,21 32,25 30,18 32,21 32,18
12 30,25
32,29
20,17 20,19 24,22 28,26 20,22 24,26 20,26
A 24,19 17,24 19,28 22,31 17,28 31,19 31,17
23 28,22
31,26
23,17 23,19 27,22 30,26 23,22 27,26 23,26
A 27,19 17,27 30,19 22,32 17,30 19,32 32,17
113 30,22

32,26
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sentation of rectangle pairs was randomized for each subject and
for each session.

Design

If the 120 pairs of rectangles corresponding to a given dimen-
sional structure are considered as elements in a complete 7 x 7
factorial design, whose factors are width intervals and height
intervals (or area intervals and shape intervals), that design can
be represented as in Tables 1 and 2. Substituting width (W) for
brightness (B) and height (H) for size (S), Table 1 presents the
120 width-height stimulus pairs in a Width Interval by Height
Interval matrix. Table 2 presents the 120 area shape stimulus pairs
in an Area Interval by Shape Interval matrix. Since each subject
was presented with ail rectangle pairs, for both sessions, the
design was a within-subject factors design, with the factors Width
(W), Height (H) [or Area (A), Shape (S)], Time (T), Subjects
(K), and Stimulus Pairs (P). Stimulus pairs were nested within
the two dimension factors [P(W x H), P(A x S)], and crossed
with Subjects and Time [P(W X H) Xx K X T and P(A x S)
X K x T]. As in Experiment 1, the design was an unbalanced
one. Thus, there are four levels of the Stimulus Pair factor for
stimuli exhibiting unidimensional variation, and only two levels
of the Stimulus Pair factor for stimuli exhibiting bidimensional
variation.

Results
Psychophysical Function

Krantz and Tversky (1975) report that a log-
arithmic manipulation yielded perceptually equal
spacing for both sets of factors. Thus, the present
experiment should also be successful in developing
unidimensional scales with perceptually equal steps.
The predictions are (a) equal-sized intervals (i.e.,
W.2,W,,) should receive the same mean dissimilarity
rating and (b) mean dissimilarity ratings should in-
crease linearly with interval size.

Figures 6 and 7 present mean dissimilarity as a
function of difference in logarithm of one dimension,
with the orthogonal dimension held constant, Each
figure is based on the ratings obtained from the 24
rectangle pairs that appear either in the first row or
first column of Tables 1 and 2. The ratings were
averaged over time and subject, and then the mean
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Figure 6. Psychological difference between rectangles as a
function of difference in logarithm of width with height con-
stant (left panel) and as a function of difference in logarithm
of height with width constant (right panel).
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Figure 7. Psychological difference between rectangles as a
function of difference in logarithm of shape with area constant
(left panel) and as a function of difference in logarithm of area
with shape constant (right panel).

ratings of the four stimulus pairs within a given
interval were obtained. The left-hand panel of Figure 6
presents dissimilarity ratings as a function of difference
in logarithm of width with height constant. The right-
hand panel presents a similar analysis with the dimen-
sions reversed. Figure 7 presents dissimilarity as a
function of difference in logarithm of shape with area
held constant in the left panel; on the right, the
same analysis is presented but with the dimensions
reversed. Casual inspection of these figures indicates
that the functions appear to be reasonably linear for
three out of four dimensions. (the only exception is
the height dimension). Equal-sized intervals also tended
to receive equal dissimilarity ratngs, again with the ex-
ception of the height dimension. These observations
are borne out by planned comparisons on the ratings
of theoretically equivalent intervals. There were no
significant differences in the dissimilarity of theo-
retically equivalent intervals for the width and shape
dimensions, and only one significant difference,
between A,; and A,; [F(1,45) = 4.82, p < .05] for
the area dimension. In contrast, for the height
dimension, all three comparisons on equal-sized in-
tervals were significant. Interval H, was statistically
more dissimilar than interval H, [F(1,45) = 8.56,
p < .001], interval H, was statistically more dissimilar
than the mean of intervals H, and H, [F(1,45) =
6.21, p < .025], and interval H,; was more dissimilar
than H,, [F(1,45) = 15.03, p <.001]. Thus, the
logarithmic manipulation appears to be successful in
developing unidimensional scales with perceptually
equal intervals for three of four physical dimensions.

Dimensional Representation

Analysis of variance. Since rectangles may be
better characterized as wholistic forms rather than
dimensionally derived stimuli, they should not be
easily decomposed into their underlying perceptual
attributes. Thus, an additive combination rule should



not apply. Both a significant Stimulus Pairs effect
and a significant interaction effect are predicted for
width height and area shape product structures.

In order that there be a constant number of
stimulus pairs across all interval combinations, the
Stimulus Pairs effect was analyzed separately for the
unidimensional and bidimensional stimulus pairs.
Stimulus pairs varying on both dimensions are
needed to test for an interaction, and there fore only
the 72 bidimensional pairs were tested for an inter-
action effect. Thus, there were six separate analyses—
three for each product structure,

First, there was a significant Stimulus Pairs effect
for both width height and area shape [F(18,162) =
5.91, p<.001, for width; F(18,162) = 6.00, p < .001,
for height; F(36,324) = 5.93, p < .001, for width
height; F(18,162) = 5.47, p < .001, for area; F(18,162)
= 11.31, p < .001, for shape; F(36,324) = 9.33,
p < .001, for area shape] and therefore a violation of
the equality prediction. The Stimulus Pairs effect was
readily interpretable for one of the dimensional struc-
tures, width height. For these rectangles, there was a
tendency for the width interval to appear larger, the
more extreme the level of the height dimension. For
example, (1,2) was less dissimilar than (5,6), which was
less dissimilar than (9,10), although all are W;H, pairs.
Since, as one goes from (1,2) to (9,10), the level of
the orthogonal height dimension increases, this effect
can be described as an augmentation effect. Al-
though Krantz and Tversky report a pronounced
augmentation effect for area and shape, our area
shape rectangles failed to exhibit systematic de-
viations from the equality prediction. Thus, there
was no tendency for a pair of shapes to be more
dissimilar as their (equal) area value decreased.

Second, the interaction effect was significant for
both product structures [F(25,225) = 5.14, p < .001,
for width height; F(25,225) = 7.00, p < .001, for
area shape]. The significant interaction effects are
illustrated in Figures 8 and 9. Each set of curves
shows the effect of varying difference on one
dimension (e.g., moving from W, to W,;;), with
difference in the other dimension held constant
(e.g., at H,,). Figure 8, top panel, presents the
dissimilarity ratings between rectangles, averaged
over time and subjects, as a function of difference
in logarithm of width, with difference in logarithm
of height held constant at six interval values. The
bottom panel presents a similar comparison, but with
the dimensions reversed. The top panel of Figure 9
presents the dissimilarity ratings as a function of
difference in logarithm of area with difference in
logarithm of shape held constant, and the bottom
panel presents the same comparison but with the
dimensions reversed. Since the functions with a given
family of curves are not parallel, the ordering be-
tween intervals on one dimension is dependent on
the interval of the second dimension. This con-
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clusion is supported by the results of a Friedman
nonparametric analysis of variance which also yielded
significant interaction effects for both structures
[x*(25) = 78.70, p < .001, for width height; ¥*(25)
= 101.78, p < .001, for area shape]. Apparently,
then, width height and area shape combine in a
nonadditive fashion to determine overall similarity.

Multidimensional scaling. For each product
structure, Kruskal’s 1964 MDSCAL 1V program was
applied to the dissimilarity data collected on all
possible stimulus pairs. The best fittings two-
dimensional configurations are presented in Figures 10
and 11. Since the same solution (up to changes in
rotation and reflection) occurred several times, the
configurations appear to be the ‘‘true’’ underlying
configurations.
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Figure 8. Psychological difference between rectangles as a
function of difference in logarithm of width, with difference
in logarithm of height held constant at six values (top panel), and
as a function of difference in logarithm of height, with differ-
ence in logarithm of width held constant at six values (bottom
panel).
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The goodness of fit is only *‘fair’” for both
product structures (.105 for width height, .113 for
area shape; the expected stress under the hypothesis
of a random ordering is .279; see Klahr, 1969).
However, the two configurations faithfully capture
the interaction between attributes. Furthermore, the
augmentation effect is clearly evident in the width-
height structure. Inspection of Figure 10 indicates
that same width interval appears larger, the higher
the height level. The analogous increase in dis-
similarity produced by a given height interval, as
width becomes more extreme, is less compelling.
There is no evidence of an augmentation effect for
the area shape structure. These results are therefore
consistent with the results reported in the analyses

of variance: namely, interacting dimensions and an
augmentation effect for only the width height
product structure.

Metric Fitting

The data up to this point indicate that rectangles
are perceived as homogeneous wholistic forms that
are not easily decomposed into their underlying con-
stituent components. Since the lack of dimensional
structure implies that subjects are unable to attend
selectively to dimensions, subjects should view these
stimuli as differing on only one complex dimension.
Hence, the rectangles should yield Euclidean as
opposed to a city block metric in direct distance
scaling.

Multidimensional scaling analysis. For each set of
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Figure 10. Best fitting scaling configuration for 16 width-height
rectangles (Experiment 2). (This configuration is based on a
random starting configuration, Euclidean metric, secondary
approach to ties, and Stress Formula 1.)
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Figure 11. Best fitting scaling configuration for 16 area shape
rectangles (Experiment 2). (This configuration is based on a
random starting confignration, Euclidean metric, secondary
approach to ties, and Stress Formula 1.)



stimulus pairs corresponding to a given product
structure, 10 scaling solutions were obtained for the
Euclidean and city block metrics. In all cases, the
Euclidean solution yielded lower stress values than
the city block. For the width-height stimuli, the
stress (Formula 1) values ranged from .193 to .356,
with a median value of .336 for the city block
metric, and from .105 to .128, with a median value
of .105 for the Euclidean metric. For the area shape
stimuli, the stress values ranged from .146 to .363,
median value .285, for the city block metric; for the
Euclidean metric, stress values ranged from .113
to .312, median value .128. Furthermore, since the
theoretically most interpretable configurations were
Euclidean scaling solutions, one can conclude that
this metric provides a better fit to subjects’ data
than the city block one.

Multiple regression analysis. The superiority of the
Euclidean metric over the city block metric may be
due to the fact that the Euclidean metric is more
robust under violations in metric assumptions. As
in the first experiment, a second procedure was used
to fit the two combination rules under consideration.
The mean dissimilarity scores corresponding to the
120 stimulus pairs were regressed on the unidimen-
sional dissimilarity scores. The multiple regression
analysis was performed separately for each product
structure and for each value of r.

Fitting the equations

Y

p

wp1Dyj + WpaDy;r + ¢
and
Yp? = wpiDyi* + wpDoi? + ¢
by the method of least squares, we obtain
Yp = .61W; + .67TH; + 1.38
and
Yp? = L1IW + 1L10H;? + 1.12
for the width height structure, and
Y, = 375 + .22A¢ + 2.76
and
Yp? = .64S5® + 44A;* + 6.77
for the area shape product structure. For the width-
height structure, the multiple correlation coefficients
are .923 and .922 for city block and Euclidean

metrics (implying that 85% of the variance in both
Y and Y? values was explained). For the area shape
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product structure, the multiple correlation co-
efficients are .61 and .75, implying that 37% of the
variance in the Y values and 56% of the variance
in the Y2 values was explained by the particular
combination rule. These results indicate that the city
block and Euclidean metrics provide equivalent
approximations to a subject’s rule of combination
for the width-height stimuli, but that the Euclidean
metric provides a better approximation for the area
shape stimuli.

" Discussion

Experiment 1 investigated two characteristics of
subject’s representations of highly analyzable stimuli:
their muitidimensional organization and their metric
distances. In contrast, Experiment 2 examined that
refationship in wholistic forms. The findings can be
briefly summarized as follows: (a) There was an inter-
action between perceptual dimensions for both product
structures. (b) The Euclidean metric provided a better
fit to the proximity data than did the city block
metric.

Two major analyses were employed to illustrate the
perceptual interaction among dimensions. In the first
analysis, an analysis of variance on interstimulus dis-
tances, the finding of a significant Stimulus Pairs effect
indicated a violation of the prediction that stimulus
pairs designated by the same interval notation should
yield equal dissimilarity ratings. The significant interac-
tion effect indicated that the ordering between intervals
along one dimension was not invariant across intervals
of the second dimension. In the multidimensional
scaling analysis, the best fitting solutions to the
proximity data were configurations of interacting
dimensions—spatial arrangements of nonparallel lines
consisting of points that varied on one attribute.
Hence, it was concluded that width and height, as
well as area and shape, combined in a nonadditive
fashion to determine overall dissimilarity.

As for the brightness size stimuli, support for the
Euclidean metric was more equivocal. The Euclidean
metric yielded lower stress values and more inter-
pretable configurations for both product structures
than scaling solutions obtained under the city block
metric. Since a similar result has previously been
reported for the brightness size stimuli, where just
the opposite result was predicted, this finding could
be artifactual, and therefore a second procedure was
used to fit a metric. For each product structure,
bidimensional ratings were regressed on unidimen-
sional ratings according to either an Euclidean or
city block combination rule. The multiple correlation
coefficients were identical in the width-height
product structure, and the Euclidean metric yielded
a higher coefficient in the area shape structure. Thus,
although there is some evidence that the Euclidean
metric is the true distance metric, it appears that
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metric structure is less discriminating than dimen-
sional structure in differentiating analyzable from
integral stimuli.

Augmentation Effect and Dimensional Structure

The findings provide a partial replication of the
results reported by Krantz and Tversky (1975).
Although they also report an interaction among
perceptual dimensions, they were able to character-
ize this interaction as an augmentation effect for
both product structures. The effect, however, was
greatest for area shape. The most pronounced effect
was the increased dissimilarity for a given pair of
shapes as area increased. In contrast, in the present
experiment, the interaction effect was interpretable
for only width height, in which the width interval
appeared larger, the more extreme the level of the
height dimension.

If a systematic interaction effect is interpreted as
a basic dimensional structure that must be modified
to include an interaction component, then it appears
that the two experiments differed in terms of the
best fitting dimensional structure. Krantz and Tversky
report that a majority of subjects (14 of 17) violated
the width-height ordering prediction in favor of area
shape in contrast to 8 of 17 subjects who violated
the area shape ordering prediction in favor of width
height. Since the width-height violations also tended
to be larger than the area shape violations, they
concluded that area shape provided a better account
of the data even though neither dimensional structure
was acceptable. The present experiment did not
analyze systematic violations in one dimensional
structure in terms of the alternative structure. How-
ever, the finding that an additive combination rule
accounted for a greater proportion of variance in
width-height ratings than for area shape, suggests
that width height provided a better fit.

Our failure to isolate the same dimensional
structure (i.e., area shape) as Krantz and Tversky
is puzzling. At present, the discrepancy cannot be
satisfactorily explained, but the following should be
noted. (a) Krantz and Tversky analyzed only 62 out
of the 92 possible stimulus pairs in their Width
Interval by Height Interval design. Thus, it may
have been more difficult to diagnose systematic
deviations from the equality or ordering predictions
in the width-height structure. (b) Krantz and Tversky
reported a significant area illusion: Tall rectangles
looked bigger than shorter ones of equal area. They
therefore chose their rectangles to be squat (the
largest height value was smaller than the smallest
width value), and indicated that no variation in per-
ceived area was subsequently observed within this
range of squat shapes. In contrast, the present
experiment provided no independent check of
whether the effect had been successfully controiled.

If perceived area did vary as a function of height,
then this might have introduced additional noise into
the area shape design over and beyond that pro-
duced by interacting dimensions.

To summarize, multidimensional models do not
satisfactorily explain the integration of rectangle
attributes. The size illusions are attributed to some
global stimulus property that presumably is no
simple function of single stimulus dimensions (Cantor
& Thomas, 1977).

GENERAL DISCUSSION

Integration of Perceptual Dimensions

The present experiments analyzed several pre-
dictions made by multidimensional models in an
attempt to infer how subjects perceive multivalued
variation. The results indicated an additive combin-
ation rule of the city block type for brightness size
stimuli, but a violation of interdimensional additivity
for wholistic forms. It was concluded that brightness
size stimuli are dimensionally organized while rec-
tangular forms are not. But how, then, do subjects
integrate physical dimensions for the case of un-
analyzable stimuli?

It seems to the author that there are two solutions
to this problem. If there is an interaction between
attributes, then one can go on and investigate more
complex combination rules of the type suggested by
Kraniz and Tversky, 1975 (e.g., Equation 6 in their
paper.) The new combination rules take into account
an interaction effect and, at the same time, main-
tain the attributes’ status as psychological dimen-
sions. Since interactions between perceptual dimen-
sions ia a widespread phenomenon, it would seem
that this approach has some merit. On the other
hand, rejection of an additive combination rule
excludes a large class of multidimensional scaling
models, including the Euclidean and other Minkowski
I metrics.

A second approach would be to continue to main-
tain interdimensional additivity and intradimensional
subtractivity as basic dimensional properties, and to
search for more derived dimensions that satisfy them
(Carroll & Wish, 1974; Schonemann, 1977). In this
approach, the subjective dimension is a more com-
plicated mapping of the physical dimension, but the
overall combination rule is still of the additive type.
This second approach is adopted by most multi-
dimensional scaling models which assume both
additivity and subtractivity in the underlying dimen-
sions. Thus, in the second experiment, the stimuli
could be embedded in a two-dimensional Euclidean
space, even though the physical dimensions were
interacting. In the scaling configuration, this inter-
action between original attributes is reflected by non-
parallel lines (as in Figures 10 and 11) and the



introduction of additional dimensions.

If it can be assumed that the physical dimensions
correspond to some underlying psychological process,
then it would seem that the first approach is the
preferred one. If, however, our major goal is the
reduction of complex data, then the second pro-
cedure should be followed. In this case, however,
the resulting dimensional structure may not neces-
sarily correspond to the underlying psychological one.

Dimensional vs. Metric Structures as
Indicaters of Analyzability

Several considerations suggest that the concept of
dimensional structure should take precedence over
‘metric representation. First, since the Minkowski
r metrics are special cases of the additive difference
model, dimensional organization is a logically more
prior consideration than metric structure. Second,
because selective attention occurs with highly
analyzable stimuli, subjects might not succeed in
attending to all multidimensional components at
once (Shepard, 1964). Intra- and intersubject fluc-
tuations in attention states might make metric fitting
especially difficult for such stimuli, as well as lead to
inaccurate estimates. Third, the best fitting metric
becomes difficult to interpret if it is based on derived
dimensions. This is because the dimensional structure
obtained from multidimensional scaling may not
necessarily be a valid approximation to the under-
lying psychological one. Fourth, metric fitting gives
us only an overall picture of the metric’s goodness
of fit. In contrast, a dimensional analysis enables us
to investigate interactive patterns in different
regions of the stimulus space. Finally, the goal of
finding the appropriate metric by obtaining scaling
solutions separately for different r is both expensive
and time consuming. Since the problem of slow con-
vergence and local minima are more likely for non-
Euclidean metrics (Shepard, 1974), many more
scaling runs are needed. (Arabie reports that for two-
dimensional solutions, one should use as many as 100
different starting configurations for each value of r
to insure a nonlocal minimum.) Thus, although
nonmetric multidimensional scaling makes possible
the fitting of a variety of non-Euclidean metrics,
this approach may not be practical.

In summary, our results support a distinction
between integral and analyzable stimuli in terms of
-dimensional organization. Extension of this tech-
nique to a variety of different stimuli and to more
behavioral measures of proximity remains the next
logical step.
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