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Abstract: The rise in popularity of Additive Manufacturing technologies and their increased adoption

for manufacturing have created a requirement for their fast development and maturity. However,

there is still room for improvement when compared with conventional manufacturing in terms of

the predictability, quality, and robustness. Statistical analysis has proven to be an excellent tool

for developing process knowledge and optimizing different processes efficiently and effectively.

This paper uses a novel method for printing overhanging features in Ti-6Al-4V metal parts, by varying

process parameters only within the down-facing area, and establishes a methodology for predicting

dimensional errors in flat 45◦ down-facing surfaces. Using the process parameters laser power, scan

speed, scan spacing, scan pattern, and layer thickness, a quadratic regression equation is developed

and tested. An Analysis of variance (ANOVA) analysis concluded that, within the down-facing area,

the laser power is the most significant process parameter, followed by the layer thickness and scan

speed. Comparatively, the scanning pattern is determined to be insignificant, which is explained

by the small down-facing area where the various scanning patterns play no role. This paper also

discusses the interaction effects between parameters. Some thoughts on the next steps to be taken for

further validation are discussed.
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1. Introduction

Additive Manufacturing (AM), colloquially known as 3D printing, is a rapidly evolving group

of fabrication techniques that are currently revolutionizing design and production practises across

industries [1]. They have displayed potential to disrupt and beneficially affect globally established

process chains and business models [2,3]. Their main advantages include an increased design freedom,

shortening of lead times, and reduction in material usage [4]. Additionally, combined with their ability

to print on demand, AM techniques align well with today’s industrial trends of digital manufacturing

and mass customization [5,6]. Therefore, this combination of competencies that AM offers and modern

trends has allowed AM to arrive as a unique solution for current and future demands.

Laser-based powder bed fusion (L-PBF) is one of the AM techniques that is gaining an increased

market acceptance and penetration, particularly in a wide range of industrial applications that include

automotive, aerospace, medical/dental, and robotics industries [4]. In addition to all the advantages

mentioned above, the availability of printable super-alloys, such as Ti-6Al-4V, allows metal products

with superior properties to be produced, i.e. high strength-to-weight ratio and corrosion resistance,

which were not easily obtainable using conventional manufacturing methods [7–9]. This makes AM
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techniques prime candidates for applications where low-density and excellent corrosion-resistant

materials are required, such as in the aerospace industry [10].

However, the L-PBF process still faces some technological challenges that need addressing in

order to improve the robustness and repeatability of the parts produced. In particular, when compared

to other conventional manufacturing technologies, AM, and L-PBF in particular, lags behind when it

comes to being able to predict different quality-based performance indicators of the parts produced,

such as the dimensional accuracy and surface quality.

Therefore, a significant portion of current AM research is focussed on investigating these

different aspects of precision, namely the repeatability, predictability, and robustness of the process.

Various approaches have been employed for this purpose, including investigating the design for

precision AM using topology optimization [11], computational modeling of the L-PBF process [12],

and statistical process optimization studies [13]. These methods are also complemented by studies on

improving methods for the finishing of parts [14], as well as for metrology [15].

In particular, Sinico et al. compared two topology optimization (TO) techniques—one based on

commercial software and another based on an in-house developed TO method that also compensates

for localized overheating caused during part manufacturing. This work discusses the precision

benefits that are achieved when manufacturing constraints are included within topology optimization,

rather than just purely geometric constraints [11]. Bayat et al. developed a multi-physic numerical

model of the L-PBF process, which was then used to track the formation of porosities that cause

imprecision while printing. Their results indicate that porosities are largely caused due to the improper

fusion of particles between tracks [12]. Charles et al. investigated the effects of process parameters

on the surface texture of a down-facing part and showed that the interaction and interdependency of

process parameters have the greatest effect on the surface roughness as they directly affect the degree

of dross formation due to the various levels of energy density applied to the powder [13]. Solheid et al.

investigated improving the precision of AM-produced surfaces by carrying out a subsequent laser

polishing step after printing. This early study investigated the various process parameters and

discussed their effect on the achieved surface. They were able to achieve a significant reduction in

surface roughness (Ra) by using higher values of laser power under lower values of the feed rate and

scan speed [14]. Baier et al. developed a methodology for precise measurement of the focal spot of

a Computed tomography (CT) scanner as it is one of the essential factors in determining the uncertainty

in CT dimensional measurements of AM parts. Their results showed progress towards defining the

optimal process parameters to be used for desired resolutions [15].

L-PBF, down-facing, or down-skin surfaces are present on parts that contain overhanging features

that are not printed over solid bulk material, but on lose powder (as seen in Figure 1). It is especially

difficult to print these surfaces as they normally show large dimensional errors and require support

structures, thereby necessitating extra process steps for support removal and finishing. The main cause

of these dimensional deviations is dross formation, which is seen in Figure 1 [16]. This is the result

of the melting of excess material. This excess melting is caused by the overheating of lose powder,

resulting in the formation of large dimensional deviations from the Computer-aided design (CAD)

model. The degree of dross formation is dependent on the process parameters and the effect of dross

formation on the dimensional deviation and surface topography can vary [13,17].
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Figure 1. Depiction of dross formation on the down-facing surfaces of a part produced by laser-based

powder bed fusion.

A number of studies have investigated overhangs and down-facing surfaces, as well as the

accompanying support structures required by overhangs, with the aim of improving the printability and

processability of these structures. Cacace et al. approached this issue from a mathematical point of view,

and proposed a level set-based method to create object-dependent support structures for filament-based

3D printing [18]. In a similar shape optimization study, Zhang et al. demonstrated a topology

optimization framework that considers overhangs as a constraint during topology optimization

and proposes printable designs [19]. Similarly, Driessen et al. proposed a density gradient-based

approach for determining the overhang constraint and their results showed promise for the inclusion

of build orientation into topology optimization in an effective way [20]. Mertens et al. conducted

an experimental parameter optimization study for down-facing surfaces in L-PBF and compared the

results to a thermal simulation model. Their research showed that for inclined surfaces, low powers

exhibited better surface qualities, but at an inclination angle of 60◦ to the build platform [21].

An alternative approach to improving the quality of overhangs without the use of support

structures is achieved through the use of contact-free support structures. Cooper et al. have

demonstrated and highlighted its benefits in terms of it not requiring or only requiring very little post

processing, while effectively reducing overhang distortion and deformation. Their conclusions remain

positive for the adoption of the contact-free support structures technique for industrial applications [22].

In subsequent research, Wang et al. proposed two different minimal contact supports, namely a thin wall

tooth contact and a non-contact design. They showed promising results in terms of heat dissipation and

reduced distortions [23]. Paggi et al. developed a novel contactless support structure, specifically a thin

blade parallel to the critical down-facing area, to transfer heat away from the melt pool via conduction

through the powder bed instead of through direct contact and also conducted numerical modeling in

order to understand the parameters that define the optimal distance between the down-facing area

and the support structure [24].

Fox et al. analysed the inter relationships between the laser power, scan speed, and various

overhang angles and their results indicated that certain surface texture parameters (Rpc, RSm, and Rc)

could indicate a shift between surfaces dominated by partially melted particles and surfaces dominated

by material from re-solidified melt tracks. Another conclusion from their work also indicated that
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distinct correlations between process parameters and the surface texture parameter Ra were not

conclusive; however they mentioned that further analysis on down-facing surfaces is warranted [17].

A number of researchers have employed different analytical and statistical approaches to build

predictive process models for various fields within Additive Manufacturing [25,26]. Tapia et al.

developed a Gaussian process regression formula for the prediction of porosity in L-PBF processes

and discussed the difficulty in modeling the L-PBF processes due to the low process repeatability [27].

Sun et al. used the Taguchi method for parametric optimization of the L-PBF process. They conducted

an ANOVA analysis and established a regression equation that revealed a linear relationship between

the part density, laser power, scan speed, powder thickness, and scan strategy [28]. Similarly, a popular

method for the modeling and optimization of processes is conducted through the use of artificial

neural networks (ANN). Marrey et al. used an artificial neural network to develop an ANN model

based on the results of a series of experiments and were able to draw conclusions on the effects of

different process parameters on the mechanical properties of L-PBF parts [29]. Charles et al. also

employed a similar methodology to create an ANN model for L-PBF parts to predict surface roughness

in down-facing surfaces [30]. However, a research gap does exist in correlating the L-PBF process

responses with input parameters to predict the dimensional deviation that occurs in overhangs. This is

the problem that this research starts to solve for parts made of Ti-6Al-4V metal alloys.

Therefore, this current work aims to understand the effects of process parameters on the

dimensional accuracy of printed parts, considering the stochastic effect of down-facing surfaces

on the obtainable dimensional accuracy. In particular, a statistical analysis of the L-PBF processes for

the hard-to-process 45◦ down-facing surfaces produced with a Ti-6Al-4V titanium alloy was conducted.

Then, a quadratic regression equation was formulated for the dimensional error in down-facing

areas of L-PBF parts using various scanning strategies, layer thicknesses, and down-facing process

parameters and the equation was tested by printing a number of samples in order to obtain its accuracy.

Additionally, an ANOVA analysis determined the most significant process parameters within the

down-facing area, as well as the insignificant parameters.

2. Methodology

2.1. Experimental Design

Since this paper focusses on investigating down-facing surfaces, a simple design with a 45◦

inclined down-facing surface was used as the test piece. Although the printing of surfaces below 45◦ is

generally possible, 45◦ is conventionally considered the limit for printing high-quality down-facing

surfaces without support structures [31–33]. For surfaces below 45◦, large dimensional deviations

and deteriorating surface textures are exhibited. Therefore, achieving minimal errors at an angle of

45◦ without support structures would represent an improvement compared to the state-of-the-art

approaches. The different process parameters and their levels chosen to investigate the effect on the

dimensional accuracy are listed in Table 1. All test pieces were built using a commercial laser-based

powder bed fusion system manufactured by 3DSystems, the ProX® DMP 320 (3DSystems, Rock Hill,

USA), and the Ti-6Al-4V metal powder used was also supplied by 3DSystems under the brand name

Laserform Ti Gr23(A) (3DSystems, Rock Hill, USA).

Table 1. Process parameters and levels.

Parameter Levels

Laser Power (W) 50, 90, 150, 210, 250
Scan Speed (mm/s) 200, 465, 850, 1235, 1500
Scan Spacing (µm) 50, 60, 75, 90, 100

Scan Pattern Stripes, rectangular cells, hexagonal cells
Layer Thickness (µm) 60, 90
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An inscribed central composite (CCI) experimental design was used and the Design of Experiments

(DoE) is shown in Table 2. A central composite design is a type of fractional factorial design of

an experiment where all levels and all combinations of process parameters are not tested during the

experimentation phase. Fractional factorial designs provide detailed insights into a process while still

keeping the number of trials as low as possible [34]. Such a design was therefore chosen to reduce the

number of experimental trials and expenditure of time and resources, without losing any insight into

the process.

Table 2. Design of Experiments (DoE) for experimental trials.

Experiment Nr. Laser Power (W) Scan Speed (mm/s) Scan Spacing (µm)

1 90 465 60
2 90 465 90
3 90 1235 60
4 90 1235 90
5 210 465 60
6 210 465 90
7 210 1235 60
8 210 1235 90
9 50 850 75

10 250 850 75
11 150 200 75
12 150 1500 75
13 150 850 50
14 150 850 100

15–24 150 850 75

The parameters presented in Table 2 were used to print the samples for each of the various

scan patterns (as seen in Figure 2) and layer thicknesses, resulting in six unique tables and a total of

144 test pieces for analysis. Trials 15 to 24 represent parts printed with the same parameters, while

the test pieces were arranged in the build platform following no particular order in order to improve

the randomization.

 

Nr. (W) s) ) 

–

Figure 2. The three different scan patterns used in the study were (a) stripes, (b) rectangular cells,

and (c) hexagonal cells.

In the unique methodology followed within this research, the process parameters were only varied

within the down-facing area of the part (depicted with light gray in Figure 1), while the rest of the

parts were printed with the same standard printing parameters as recommended by the manufacturer

for all test pieces, as seen in the image (depicted with darker gray in Figure 1). The down-facing area

in this research is a flat surface and does not include any curvature in the surface.
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2.2. Test Piece Design

The test piece was designed to be a 10 mm by 20 mm down-facing surface area, as seen in Figure 1.

All parts were pre-processed using the 3DXpert™ (3DSystems, Rock Hill, USA) software for assigning

of the process parameters and printing strategies. All parts were also printed with teeth connecting

the part with the build platform. Such teeth are required for easy removal of the part from the build

platform after printing.

2.3. Measurements

In order to measure the dimensional error caused by the varying parameters in the down-facing

area, the thickness of the overhang was measured, and the deviation of the thickness was compared

with the CAD dimension to calculate the error. The methodology of the measurement is as follows.

Using an optical microscope, images of the side view of all test pieces were captured. An image

processing technique was developed and employed to measure the thickness of the overhanging

surface. The image processing technique first works by gray scaling the image and applying a threshold,

in order to detect the edges of the test piece. The program then scans the image both vertically and

horizontally and extrapolates a straight line though the detected edge points. As the scale of the image

is known, it is then possible to calculate the distance between the two straight lines, which gives the

thickness of the overhanging surfaces of the parts. The measured thickness was then compared to the

CAD design to determine the error in the printed part and the percentage of this error. Both sides

of the part were measured to detect any differences in thickness within the same part. As seen in

Figure 3, the dotted lines depict the detected edge of the part, which are used to measure the thickness.

The obtained measurements were validated by comparing them with Vernier Calliper measurements.

processed using the 3DXpert™ 

 

𝑦 = 𝑏0 + ∑ 𝑏𝑖𝑥𝑖 + ∑ 𝑏𝑖𝑖𝑥𝑖𝑖2 + ∑ 𝑏𝑖𝑗𝑥𝑖𝑥𝑗

Figure 3. Printed part that underwent image processing, where green lines indicate the detected edges

that were used for measurement.

3. Results and Discussion

3.1. Data Processing and Analysis

Data processing and statistical analysis were conducted using MATLAB (R2019a) (MathWorks,

Natick, USA). A regression equation was developed to describe the relationship between the different

process parameters and the dimensional error percentage. A number of regression formulas were
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created and tested, with the quadratic regression equation being the optimal one. A quadratic regression

method was used to fit the second-order polynomial in Equation (1) to the measured data:

y = b0 +

∑

bixi +

∑

biix
2
ii +

∑

bi jxix j, (1)

Where y is the output variable which, in our case, is the dimensional error %; b0,bi, bii, and bjj are

the regression coefficients or predictors; and xi is the value of the ith factor.

The developed equation resulting from the quadratic regression formulation with a robust fit

presented 21 terms for the five process parameters that were studied in this work and the values

obtained for each coefficient are presented in Equation (2), where x1 is the laser power, x2 is the scan

speed, x3 is the scan spacing, x4 is the scan pattern, x5 is the layer thickness, and y is the dimensional

error %.

y = 6.3668+ 6.7157x1 − 5.6775x2 − 0.69749x3 + 0.12742x4 − 2.6591x5

−4.4385x1x2 − 0.73969x1x3 − 0.2506x1x4 + 0.055401x1x5

−0.55883x2x3 − 0.62242x2x4 + 1.1935x2x5 − 0.0036447x3x4

+0.07324x3x5 − 1.3799x4x5 + 1.0649x2
1
+ 2.2655xx

2
+ 3.2372x2

3

+0.92257x2
4

(2)

This equation was then used to generate the interaction plots, as seen in Figures 4 and 5.

The interaction effects depicted below show the estimated effects on the response from changing each

variable value while averaging the effects of the other process parameters. Based on the interaction

effects, some of the insights gained are as follows:

• As seen in Figure 4a, increasing the scan speed tends to decrease the dimensional error at all

laser powers; however, to different degrees. This can be explained as the meltpool and thus the

associated heat-affected zone caused by high speeds is expected to be smaller than that caused by

lower speeds. A smaller meltpool and heat-affected zone would reduce the seepage of molten

material into the powder bed, which would mean that the dross formation and the associated

dimensional inaccuracy would be reduced;

• As seen in Figure 4c, increasing laser powers at any scan spacing value increases the dimensional

error. This can be explained as increasing the laser power causes more energy to be absorbed by

the powder, causing greater overheating of loose powder and larger dross formations due to the

larger melt pools, and thus a larger associated heat-affected zone;

• As seen in Figure 4f, increasing the scan speed at any scan spacing value decreases the dimensional

error up to a certain point of around 80 µm, after which it begins to increase once again;

• Figure 4d, e show that with an increasing laser power, the dimensional error increases and

decreases with an increase in scan speed. The reasons for this have already been discussed in the

previous points. However, it can also be noted that the scan spacing of 75 µm always displayed

a better dimensional accuracy than 50 µm and 100 µm;

• The variation in the effect of the different scan strategies is small, as the graphs in Figure 4a–c show

that all three lines of ‘Stripes’, ‘Rectangular Cell’, and ‘Hexagonal Cell’ are quite close together

and always follow the same trend. This can be explained due to the small size of the down-facing

area. Therefore, it can be concluded that the choice of scanning strategy plays a minimal role

within the down-facing area;

• Looking at the trends in Figure 5a–c, it can be seen that the dimensional error for all scan patterns

decreases with an increase in the scan speed and increases with an increase in the laser power,

which is consistent with the trends that were seen in Figure 4;

• While looking at the effect of layer thickness in Figure 5d, it is clear that the dimensional error

% increased with an increase in laser power, while it decreased while increasing the scan speed.

However, with regards to the scan spacing in Figure 5f, the dimensional error % decreases at
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first, but at a level of around 80 µm, it increases once again. Figure 5e shows that at both layer

thicknesses, the dimensional error % decreases while increasing the scan speed.

𝑦 = 6.3668 + 6.7157𝑥1 − 5.6775𝑥2 − 0.69749𝑥3 + 0.12742𝑥4 − 2.6591𝑥5− 4.4385𝑥1𝑥2 − 0.73969𝑥1𝑥3 − 0.2506𝑥1𝑥4 + 0.055401𝑥1𝑥5− 0.55883𝑥2𝑥3 − 0.62242𝑥2𝑥4 + 1.1935𝑥2𝑥5 − 0.0036447𝑥3𝑥4+ 0.07324𝑥3𝑥5 − 1.3799𝑥4𝑥5 + 1.0649𝑥12 + 2.2655𝑥2𝑥 + 3.2372𝑥32+ 0.92257𝑥42







Figure 4. Plots depicting the interaction effects of the laser power, scan speed, and scan spacing.
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‘ ’ ‘ ’ ‘ ’
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Figure 5. Plots depicting the interaction effects of the scan strategy and layer thickness with the laser

power, scan speed, and scan spacing.

These observations can help us understand the effect of individual process parameters on the

dimensional error and indicate the trend that is produced while varying the process parameters.

ANOVA analysis was also conducted in order to get a deeper understanding of the significance

of the process parameters on the dimensional accuracy, as it also considers the interaction effects.

The results indicate that the laser power (P-Value= 0.00088723) is the most significant process parameter,
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followed by the layer thickness (P-Value = 0.0032135) and scan speed (P-Value = 0.0048101). The next

highest significance is given to the interaction effect of the laser power and scan speed (P-Value =

0.30819). These were the four most significant effects. It is also important to note that the scan strategy

was determined to be one of the most insignificant parameters, with a P-Value of 0.94519.

The information obtained from the ANOVA analysis and the effect plots seen in Figures 4 and 5 can

help to determine the best process parameters that must be chosen for conducting further validation

experiments and for actual optimization of the process itself.

The regression equation was then used to generate the empirical prediction slice plots, as shown

in Figure 6. The prediction slice plot shows the main effect of each process parameter and displays

the estimated dimensional error percentage. The prediction slice plot can be used to determine the

predicted dimensional error in a part at various process parameters, as well as scanning strategies and

layer thicknesses. The plot was tested against the initial experimental results and its predictions were

found to be a maximum of 5% away from the measured value. In the case of Figure 4, the equation

predicted an error percentage of 4.8%, while the actual measured error percentage for this parameter

combination was 2.02%.

 
Figure 6. Prediction slice plots created using the developed regression equation.

3.2. Testing of Prediction Slice Plot

The empirical prediction slice plot that was created based on the regression equation was then

tested by the printing of new samples using various process parameters. For these test prints, a strip

scanning strategy was chosen and the new samples were printed with a layer thickness of 60 µm.

The results can be seen below in Table 3.

These results indicate a high level of prediction accuracy in samples which have a lower

dimensional error and as the inherent dimensional error of the sample increases, the predicted error

percentage also increases, as seen in Table 1. In sample 1, the predicted error was 4.45% and the

measured error % was 4.08%, while in sample 5, the predicted error % was 26.04% and the measured

error % was 29.74%. The reason for this needs to be further explored, and full-scale validation will be

conducted in the next step of the research.

However, the prediction accuracy of this regression equation at this stage is considered to be good,

as the accuracy is quite high at lower dimensional deviations. This is required since the prediction

accuracy only decreases as the dimensional deviations increase and in our tests that is when the
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dross formation leads to a dimensional error % of around 20%, which realistically, would never be

an acceptable printing window anyway.

Table 3. Test results.

Laser Power
(W)

Scan Speed
(mm/s)

Scan
Spacing

(µm)

Measured
Error %

Prediction Made
by the Regression

Equation (%)

Difference in
Prediction %

Error of the
Equation

(%)

150 1500 75 4.08 4.45 0.37 8.47
140 1000 75 6.43 6.53 0.09 1.49
200 500 90 20.93 18.03 2.90 16.10
175 390 60 17.44 18.05 0.60 3.32
250 370 90 29.74 26.04 3.70 14.20

Figure 7 depicts the average measured error % of the samples with a 60 µm layer thickness and

various scanning patterns. The measured points depict an average of five measurements and it can be

seen that for most of the trials, even the average measurements display significant overlap or are close

to each other. For trial 15, which includes the repeated center point samples, it can be seen that there is

significant overlap among the different scanning patterns and the variation of the other trial points

also established the stability of the process and thus the analysis process.
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Figure 7. Average measurements of dimensional error % amongst three scan strategies for a 60 µm

layer thickness.

This can be explained as the effective area where the parameters are varied is relatively small,

since the down-facing area only extends for approximately 200 µm into the part and the three different

scanning strategies that were tested were not different enough to have a significant effect. The reason

for this is that the cells in the rectangular and hexagonal cell scanning strategies are normally much

larger than the entire down-facing area and the effective scanning strategy that was employed was thus

similar to the stripe scanning strategy, regardless of the chosen strategy. Therefore, in further studies,

the scanning strategy will not be considered as a parameter for optimization within the down-facing

area. It is important to stress that the scanning strategy does play a significant role when varied within

the bulk of the part and this has been the focus of other studies.
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Therefore, one can recommend that while choosing a scanning pattern, specifically one for within

the down-facing area, the focus can be placed on choosing the best pattern that contributes the most

towards productivity or a decreased build time. Alternatively, simply the scanning pattern that is

employed within the bulk of the part can be confidently chosen for the down-facing area. The layer

thickness plays a significant role in the productivity of the process [35] and should therefore be chosen

depending on the required build times and quality. The quadratic regression equation can be used to

make this decision as this paper also shows the effect of the layer thickness on the dimensional error of

the L-PBF part.

4. Conclusions

This paper has presented the first results of a statistical analysis of the dimensional error in L-PBF

parts. The process parameters under investigation were the laser power, scan speed, scan spacing,

scan strategy, and the layer thickness. An image processing technique was developed to measure the

thickness of printed samples. A statistical study was conducted and a quadratic regression equation

was developed. The interaction effects of the process parameters were plotted and clear trends can be

seen in their effects on the dimensional error, which have been summarized.

The ANOVA analysis showed that the laser power was the most significant process parameter in

terms of the dimensional error, which is in accordance with previous research and results. In terms of

the significance, the laser power was the most significant, followed by the layer thickness, scan speed,

and the interaction effect of the laser power and scan speed. In the context of an optimization problem,

it is also important to realize the process parameters that are insignificant for the purposes of parameter

optimization within the down-facing area of an L-PBF printed part, namely the scanning pattern.

In particular, the effects of the three different scanning strategies were similar and almost identical

at certain points. The ANOVA analysis explained this, as the expected significance of the scanning

pattern was inherently low. Therefore, any variation in the scanning pattern is only going to have

a minimal effect on the overall dimensional error % of the test piece.

This study establishes a starting point which can encourage further work in the area of the process

modeling of the L-PBF process and characterization of dross formation in unsupported down-facing

surfaces. The main inferences can be summarized as follows:

• At this stage, the experimental trial conducted under the parameters of laser power of 90 w,

scan speed of 1235, and scan spacing of 60 µm; laser power of 90 w, scan speed of 1235, and scan

spacing of 90 µm; and laser power of 150 w, scan speed of 1599, and scan spacing of 75 µm,

gave the lowest dimensional error percentages;

• The regression equation establishes a first step and when tested with new prints, gives promising

results, and validation through further data collection is required in order to improve the prediction;

• The effect of different scanning patterns within down-facing areas is negligible and any one can

be chosen based on the designers’ preference;

• This model must also consider other quality aspects of down-facing surfaces, such as the surface

topography and curvature in the surface, and is the focus of parallel current work. In this work,

the bulk area was first printed and the down-facing area (with down-facing parameters) was then

printed. There is room for incorporation of the gradual changing of process parameters between

bulk and down-facing areas such that they are scanned simultaneously. The current work can act

as a starting point for such research;

• The data-driven process analysis methodology has shown potential to provide acceptable

predictions of the dimensional performance of the L-PBF process and further work will be

done to characterize dross formation in an effective and productive manner. The authors conclude

on a positive note given the promising result obtained by modeling the L-PBF process, as this is

often plagued by a low process repeatability, especially within the down-facing area, where the

complex dross formation phenomenon further decreases the process’s stability.
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Although understanding the effect of individual process parameters will help to improve the

overall process knowledge, using the individual process parameters as such for drawing inferences

can be difficult. Therefore, it is the opinion of the authors that all proceeding work must consider

the inclusion of combined process parameters for characterizing the process. This includes the use

of parameters such as the line energy density and popular volumetric energy density. This might

be even more useful for the purposes of this study as dross formation is caused by the creation of

an overheated zone. The overheated zone results in the formation of a large meltpool, which, due to its

higher wettability property, is able to seep deeper into the powder bed, where, upon solidification,

dross is manifested. Therefore, a correlation between the energy density and dross formation can

potentially be drawn and this will be further qualitatively and quantitatively explored in a future study.
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