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We present an extension of the Gilbert-Pearson theory of subordinacy, which relates dimensiona
Hausdorff spectral properties of one-dimensional Schrödinger operators to the behavior of solutions o
the corresponding Schrödinger equation. We use this theory to analyze these properties for sever
examples having the singular-continuous spectrum, including sparse barrier potentials, the almo
Mathieu operator and the Fibonacci Hamiltonian.
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Singular continuous spectra have been extensively s
ied recently. Our interest here is in the classification a
decomposition of such spectra with respect to dimensio
Hausdorff measures. The measure-theoretical aspec
this point of view goes back to Rogers and Taylor [1
and it has been studied recently within spectral the
by Last [2] and by del Rioet al. [3] who have shown
that the singular-continuous spectrum which is produ
by localized rank-one perturbations of Anderson-mo
Hamiltonians in the localized regime [4] must be pure
zero dimensional—in the sense that the associated s
tral measures are supported on a set of zero Hausd
dimension.

The main purpose of this paper is to report a ge
eral method for spectral analysis of one-dimensio
Schrödinger operators from this point of view. It is
natural extension of the Gilbert-Pearson theory of s
ordinacy [5,6], and it allows us to analyze the dime
sional Hausdorff properties for a number of examples w
the singular-continuous spectrum. Below we describe
main ideas of our study and some of the main resu
Mathematically complete proofs of these results will
given elsewhere [7].

Most of our discussion will be restricted to on
dimensional discrete (tight-binding) Schrödinger ope
tors of the form

sHcd snd ­ csn 1 1d 1 csn 2 1d 1 V sndcsnd . (1)
0031-9007y96y76(11)y1765(5)$10.00
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We shall consider two kinds of such operators: “line
operators acting on,2sZd s2` , n , `d, and “half-line”
operators acting on,2sZ1d sn . 0d, which are considered
with a phase boundary condition of the form

cs0d cosu 1 cs1d sinu ­ 0 , (2)

where2py2 , u , py2.
Before formulating our main result, which would re

quire some definitions, we would like to describe som
of its applications. We stress at this point that the d
mensional Hausdorff properties which we study are tho
which are associated with the spectral measures of
corresponding operators. The spectra themselves, as
are closed sets, and their dimensions may be larger t
those which are associated with the spectral measures
description of the precise spectral-theoretic scheme wh
underlies our study is given below.

We start with a somewhat artificial example of half-lin
operators with sparse barrier potentials. More specifica
we consider potentials which vanish for alln’s outside a
sparse (fastly growing) sequence of pointshLnj`

n­1 where
jV sLndj ! ` as n ! `. Simon and Spencer [8] have
shown that the Schrödinger operators corresponding
such potentials have no absolutely continuous spectru
and Gordon [9] has shown that if thejV sLndj’s grow
sufficiently fast (compared to the growth of theLn ’s)
then for (Lebesgue) almost every (a.e.) boundary ph
© 1996 The American Physical Society 1765
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u the corresponding operators have a pure-point spect
with exponentially decaying eigenfunctions. It is ea
to see [10], however, that if theLn ’s grow sufficiently
fast [compared to the growth of thejV sLndj’s] then, for
every boundary phaseu, the spectrum ins22, 2d is purely
singular continuous, and Simon [11] has recently sho
that if the growth is even faster then the spectrum
s22, 2d is purely one dimensional, in the sense that
spectral measure does not give weight to sets of Hausd
dimension less than 1. By applying theorem 1 below,
have shown the following.

Theorem 2.—Let a [ s0, 1d. Let Ln ­ 2snnd and de-
fine a potentialV skd for k . 0 by V sLnd ­ L

s12adys2ad
n ;

V skd ­ 0 if k ” hLj`
n­1. Then the following hold:

(i) For every boundary phaseu, the spectrum of the corre
sponding half-line discrete Schrödinger operator cons
of the intervalf22, 2g (which is the essential spectrum
along with some discrete point spectrum outside t
interval. (ii) For everyu, the Hausdorff dimensionality o
the spectrum ins22, 2d is bounded between dimension
a andb ; 2ays1 1 ad, in the sense that the restrictio
of the spectral measure tos22, 2d is supported on a set o
Hausdorff dimensionb and does not give weight to se
of Hausdorff dimension less thana. (iii) For Lebesgue
a.e. u, the spectrum inf22, 2g is of exact dimensiona,
namely, the restriction of the spectral measure tof22, 2g
is supported on a set of Hausdorff dimensiona and
does not give weight to sets of Hausdorff dimension l
thana.

Remark.—The result only requires theLn ’s to be
sufficiently sparse (namely, to grow sufficiently fas
Ln ­ 2snnd is a particular choice for which the sufficien
sparseness is easy to show.

Next we consider two examples of line operato
with quasiperiodic potentials. The first is the almo
Mathieu (also called Harper) operatorHb,l,u , which is
the operator of the form (1) on,2sZd with potential
V snd ­ Vb,l,usnd ­ l coss2pbn 1 ud, where l, u are
any real numbers, andb is an irrational. Aubry and Andre
[12] have conjectured thatHb,l,u has a purely absolutely
continuous spectrum wheneverjlj , 2, and a purely point
spectrum (with exponentially localized eigenfunction
whenever jlj . 2. While the jlj , 2 part of this
conjecture may be correct (so far, the existence of
absolutely continuous spectrum [13] and the abse
of the point spectrum [14] have been established rig
ously), thejlj . 2 case turned out to be more delicat
The absolutely continuous spectrum is absent [15],
both pure-point and singular-continuous spectra occ
depending on arithmetical properties of bothb and u

[16]. It turns out, though, that if we concentrate o
the dimensional Hausdorff properties of the spec
measures, rather than distinguishing between pure-p
and singular-continuous spectra, the situation beco
simpler.
1766
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Theorem 3.—For jlj . 2, every irrational b, and
every u, Hb,l,u has a purely zero-dimensional spectrum
in the sense that its spectral measures are all supporte
a set of zero Hausdorff dimension.

Remarks.—(i) The spectrum of Hb,l,u , as a set,
is known in this case (jlj . 2) to have positive
Lebesgue measure [17]. (ii) The result extends
potentials of the formV snd ­ fs2pbn 1 ud, where
fsxd ;

PN
k­1 lk cosskxd, in which case we prove that the

spectrum is purely zero dimensional wheneverjlN j . 2.
Our second line example is the Fibonacci Ham

tonian Hl, which is the operator of the form (1) on
,2sZd with potential V snd ­ lhfsn 1 1dvg 2 fnvgj,
where v ­ s

p
5 2 1dy2 is the golden mean, and

fxg ; maxhm [ Z j m # xj. Hl is the most studied of
all one-dimensional quasicrystal models. It is known [1
that for everyl fi 0 it has a purely singular-continuous
spectrum, and, moreover, its spectrum (as a set) is
Cantor set of zero Lebesgue measure. We have sho
the following.

Theorem 4.—For everyl there exists ana . 0 such
that Hl has a purelya-continuous spectrum, namely, it
spectral measures do not give weight to sets of Hausd
dimension less thana.

Remark.—There exists strong numerical evidence [1
that the spectrum ofHl (as a set) has Hausdorff dimen
sion strictly less than 1 (for everyl fi 0), and this would
imply that its spectrum must also beb singular (see be-
low) for someb , 1.

Let us now describe the spectral-theoretic scheme in
context of which the above results should be understoo

Consider a separable Hilbert spaceH , and a self-
adjoint operatorH. Recall [20] that for eachc [ H ,
the spectral measuremc (also known to physicists as
the local spectral density) is the unique Borel me
sure obeying kc, fsHdcl ­

R
fsxd dmc sxd for any

measurable functionf. By Lebesgue’s decomposition
theorem, every Borel measurem decomposes uniquely
as m ­ mac 1 msc 1 mpp . The absolutely continuous
part, mac, gives zero weight to sets of zero Lebesgu
measure. The pure-point part,mpp , is a countable sum of
atomic (Dirac) measures. The singular-continuous pa
msc, gives zero weight to countable sets and is suppor
on some set of zero Lebesgue measure [we say tha
measurem is supported on a setS if msR n Sd ­ 0].
Letting Hac ; hc j mc is purely absolutely continuousj,
Hsc ; hc j mc is purely singular continuousj, andHpp ;
hc j mc is purely pure pointj, one obtains a decomposi
tion, H ­ Hac © Hsc © Hpp. Hac, Hsc, and Hpp
are closed (in norm), mutually orthogonal subspac
which are invariant underH. The absolutely continuous
spectrumssacd, singular-continuous spectrumssscd, and
pure-point spectrumssppd are defined as the spectra o
the restrictions ofH to the corresponding subspaces, an
Spec sHd ; s ­ sac < ssc < spp .
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The above standard scheme of spectral theory can
extended to further decompose the singular-continu
subspace by using Hausdorff measures. Recall that for
subsetS of R anda [ f0, 1g, thea-dimensional Hausdorff
measure,ha , is given by

hasSd ; lim
d!0

inf
d2covers

X̀
n­1

jbnja , (3)

where ad-cover is a cover ofS by a countable collection
of intervals,S ,

S`
n­1 bn, such that for eachn the length

of bn is at mostd. h1 coincides with Lebesgue measur
and h0 is the counting measure (assigning to each
the number of points in it). Given any[ fi S # R,
there exists a uniqueasSd [ f0, 1g such thathasSd ­ 0
for any a . asSd, and hasSd ­ ` for any a , asSd.
This uniqueasSd is called the Hausdorff dimension ofS.
A rich theory of decomposing measures with respect
Hausdorff measures has been developed by Rogers
Taylor [1]. Below we discuss only a small part of it. A
much more detailed description has been given by L
[2].

Given a [ f0, 1g, a measurem is calleda continuous
if msSd ­ 0 for every setS with hasSd ­ 0. It is called
a singular if it is supported on some setS with hasSd ­
0. We say thatm is one dimensional if it isa continuous
for every a , 1. We say that it is zero dimensiona
if it is a singular for everya . 0. m is said to have
exact dimensiona if, for every e . 0, it is bothsa 2 ed
continuous andsa 1 ed singular.

Given a (positive, finite) measurem anda [ f0, 1g, we
define

Da
msxd ; lim sup

e!0

msx 2 e, x 1 ed
s2eda

(4)

and T` ; hx j Da
msxd ­ `j. The restriction msT` >

? d ; mas is a singular, andmssssR n T`d > ? ddd ; mac is
a continuous. Thus, each measure decomposes uniq
into an a-continuous part and ana-singular part,
m ­ mac 1 mas. Moreover, an a-singular measure
must haveDa

msxd ­ ` a.e. (with respect to it) and an
a-continuous measure must haveDa

msxd , ` a.e. It is
important to note thatDa

msxd is defined with a lim sup.
The corresponding limit need not exist.

We let Hac ; hc j mc is a continuous} andHas ;
hc j mc is a singular}. Hac and Has are mutually
orthogonal closed subspaces which are invariant un
H, and H decomposes asH ­ Hac © Has. The
a-continuous spectrumssacd and a-singular spectrum
ssasd are defined as the spectra of the restrictions
H to the corresponding subspaces, ands ­ sac < sas.
Note, in particular, that when we classify spectra as be
a-singular, zero dimensional, of exact dimensiona, etc.,
we always relate to the corresponding properties of
spectral measures.

The above scheme for spectral classification can be
lated to the dynamics of the underlying quantum syste
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A detailed account of such relations has been given
Last [2].

It should be pointed out that certain fractal and mu
tifractal studies of some operators with the singula
continuous spectrum (including some of the examples
discussed above) have been carried out by several aut
[19,21]. While such studies are related to the above d
composition theory, the relations are generally far fro
trivial, and we believe that they are only partial. On
should exercise extreme care when attempting to interp
the results of such studies within the framework of th
scheme discussed above.

From here on we shall restrict our discussion
one-dimensional tight-binding Schrödinger operators
the form (1). While we discuss discrete operators, t
subordinacy results we describe are equally valid f
continuous Schrödinger operators of the form2

d2

dx2 1 V .
Consider first half-line operators, defined with a pha

boundary condition of the form (2). For such operators,
is well known that the spectral measures for lattice-po
vectorsdn, wherednsmd ­ dnm, are all mutually equiva-
lent (namely, they have the same sets of zero measu
Thus, the spectral problem reduces to analyzing a s
gle spectral measure, which we choose to bem ­ md1.
The Gilbert-Pearson theory of subordinacy [5] relates t
pointwise behavior of the spectral measurem at some en-
ergy E to the behavior of solutions of the correspondin
Schrödinger equation

csn 1 1d 1 csn 2 1d 1 V sndcsnd ­ Ecsnd . (5)

Given a solution of (5), we letkckL denote the norm of
the solutionc over lengthL. It is useful to consider the
length L as a continuous variable (allowed to take an
positive real value), and so we define

kckL ­

"
fLgX

n­1

jcsndj2 1 sL 2 fLgdjcsfLg 1 1dj2
#1y2

,

(6)
where fLg denotes the integer part ofL. A (nontrivial)
solutionc of (5) is called a subordinate solution if for an
other solutionw of (5), which is not a constant multiple
of c , limL°!`

kckL

kwkL
­ 0. Note that a subordinate solution

must be unique (up to constant multiples). The Gilbe
Pearson theory relates the decomposition of the spec
measurem to subordinacy of solutions as follows: Th
absolutely continuous part ofm is supported on the set o
energies for which (5) has no subordinate solutions.
fact, this set of energies is, up to a set of both Lebesg
and spectral measure zero, the set wherem has a finite
nonvanishing derivative.) The singular part ofm is
supported on the set of energies for which the solutio
which obey the appropriate boundary condition (2) a
subordinate.
1767
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Let us now denote byc1 the solution of (5) which
obeys the boundary condition (2) and has normalizat
jc1s0dj2 1 jc1s1dj2 ­ 1. Let us denote byc2 the so-
lution of (5) which obeys the orthogonal boundary co
dition to (2), namely,c2s0d sinu 2 c2s1d cosu ­ 0, and
has normalizationjc2s0dj2 1 jc2s1dj2 ­ 1. Our main re-
sult is the following.

Theorem 1.—For any a [ s0, 1d and everyE [ R,
Da

msEd ­ ` if and only if

lim inf
L!`

kc1kL

kc2k
b
L

­ 0 ,

whereb ­ ays2 2 ad.
Remark.—Theorem 1 is proven with the same ide

used by Gilbert and Pearson, but it requires some o
mization of their analysis. As a by-product, we also g
a simplified proof of their original results. A key obse
vation is to assign to eache . 0 a lengthLsed via the
equalitykc1kLsedkc2kLsed ­ 1ys2ed, for which we prove
the explicit inequality

5 2
p

24
jmsE 1 iedj

,
kc1kLsed

kc2kLsed
,

5 1
p

24
jmsE 1 iedj

,

wheremszd is the Weyl-Titchmarsh function [22].
For spectral analysis, theorem 1 can be combin

with the existence of generalized eigenfunctions [2
from which one can show that for a.e.E with respect
to the spectral measurem, the solutionc1 must obey
lim supL!`

kc1kL

L1y2 lnL , ` and lim infL!`
kc1kL

L1y2 , `. An-
other useful fact is the constancy of the Wronski
c1sn 1 1dc2snd 2 c2sn 1 1dc1snd, which implies
kc1kLkc2kL $ sL 2 1dy2.

We now discuss briefly line operators. The spect
measures of a line operator can be constructed fr
those of corresponding two half-line operators (a l
and a right), and while the relations are not complet
trivial, they do allow an extension of the subordina
theory to this case. Gilbert [6] has shown that t
absolutely continuous part of the spectral measures
a line operator is supported on the set of energies
which at least one of the half-line problems has
subordinate solution. The singular part is supported
the set of energies for which (5) has a solution which
subordinate both to the right and to the left. The probi
of dimensional Hausdorff properties is somewhat mo
delicate in this case since it involves a lim inf rather than
limit. Nevertheless, in concrete settings, such as the o
discussed in theorems 3 and 4, the required control ca
obtained.

In conclusion we would like to remark the following
The classification of spectra with respect to dimensio
Hausdorff measures extends the usual spectral classi
tion in a natural way, and provides a useful way of dist
guishing between different kinds of singular-continuo
spectra. The subordinacy theory extends to this po
1768
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of view in a natural way, and allows one to answer t
relevant spectral questions whenever the nature of the
lutions of the corresponding Schrödinger equation is s
ficiently well understood. We note, in particular, tha
the singular-continuous spectrum which occurs in “clo
neighborhood” to Anderson localization (as in the ca
of the strongly coupled almost Mathieu operator or t
rank-one perturbed Anderson model) tends to be pur
zero dimensional; while the singular-continuous spectr
of the Fibonacci Hamiltonian, which has been identifie
as having “critical states” in physics literature [19], isa

continuous for some positivea.
We would like to thank J. Avron and B. Simon fo
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Note added.—As we were completing this paper w
learned of a preprint by Remling [23] which obtains
restricted version of theorem 1.
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