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We present an extension of the Gilbert-Pearson theory of subordinacy, which relates dimensional
Hausdorff spectral properties of one-dimensional Schrédinger operators to the behavior of solutions of
the corresponding Schrédinger equation. We use this theory to analyze these properties for several
examples having the singular-continuous spectrum, including sparse barrier potentials, the almost
Mathieu operator and the Fibonacci Hamiltonian.
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Singular continuous spectra have been extensively studd/e shall consider two kinds of such operators: “line”
ied recently. Our interest here is in the classification andperators acting of*(Z) (—» < n < ), and “half-line”
decomposition of such spectra with respect to dimensionalperators acting of*(Z") (n > 0), which are considered
Hausdorff measures. The measure-theoretical aspect wfith a phase boundary condition of the form
this point of view goes back to Rogers and Taylor [1], .
and lljt has been s%udied recently vgithin spectrgl th<£,0]ry y(0)cod) + ¢(1)sing = 0, (2)
by Last [2] and by del Ricet al. [3] who have shown \where—#/2 < 6 < 7/2.

that the singular-continuous spectrum which is produced Before formulating our main result, which would re-
by localized rank-one perturbations of Anderson-modepuire some definitions, we would like to describe some
Hamiltonians in the localized regime [4] must be purelyof its applications. We stress at this point that the di-
zero dimensional—in the sense that the associated spegrensional Hausdorff properties which we study are those
tral measures are supported on a set of zero Hausdorjfhich are associated with the spectral measures of the
dimension. corresponding operators. The spectra themselves, as sets,
The main purpose of this paper is to report a gengre closed sets, and their dimensions may be larger than
eral method for spectral analysis of one-dimensionathose which are associated with the spectral measures. A
Schrodinger operators from this point of view. It is a description of the precise spectral-theoretic scheme which
natural extension of the Gilbert-Pearson theory of subynderlies our study is given below.
ordinacy [5,6], and it allows us to analyze the dimen- e start with a somewhat artificial example of half-line
sional Hausdorff properties for a number of examples withpperators with sparse barrier potentials. More specifically,
the singular-continuous spectrum. Below we describe th@e consider potentials which vanish for afls outside a
main ideas of our study and some of the main resultssparse (fastly growing) sequence of poifts},—; where
Mathematically complete proofs of these results will be|y(r,)] — « asn — ». Simon and Spencer [8] have
given elsewhere [7]. shown that the Schrodinger operators corresponding to
Most of our discussion will be restricted to one- such potentials have no absolutely continuous spectrum,
dimensional discrete (tight-binding) Schrodinger operaand Gordon [9] has shown that if th& (L,)|'s grow
tors of the form sufficiently fast (compared to the growth of thg,’s)
Hy)(n) =yn + 1)+ ¢y — 1) + V(n)g(n). (1) then for (Lebesgue) almost every (a.e.) boundary phase
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0 the corresponding operators have a pure-point spectrum Theorem 3—For |[A| > 2, every irrational 8, and
with exponentially decaying eigenfunctions. It is easyevery, Hg )4 has a purely zero-dimensional spectrum,
to see [10], however, that if th&,’s grow sufficiently in the sense that its spectral measures are all supported on
fast [compared to the growth of tH& (L, )|'s] then, for  a set of zero Hausdorff dimension.

every boundary phage the spectrum iri—2,2) is purely Remarks—(i) The spectrum ofHg,s, as a set,
singular continuous, and Simon [11] has recently showns known in this case |{] > 2) to have positive
that if the growth is even faster then the spectrum inLebesgue measure [17]. (i) The result extends to
(—2,2) is purely one dimensional, in the sense that thepotentials of the formV(n) = f2wBn + 6), where
spectral measure does not give weight to sets of Hausdorff(x) = Zf{vzl A, codkx), in which case we prove that the
dimension less than 1. By applying theorem 1 below, wespectrum is purely zero dimensional whenepegy| > 2.
have shown the following. Our second line example is the Fibonacci Hamil-

Theorem 2—Let « € (0,1). Let L, = 2" and de- tonian H,, which is the operator of the form (1) on
fine a potentialv/ (k) for k > 0 by V(L,) = LY /% . £2(Z) with potential V(n) = M[(n + Dw] — [nw]},
V(k)=0 if k &{L}°_,. Then the following hold: Where w = (v/5—1)/2 is the golden mean, and
(i) For every boundary phagk the spectrum of the corre- [x] = maXxm € Z|m = x}. H, is the most studied of
sponding half-line discrete Schrédinger operator consistall one-dimensional quasicrystal models. It is known [18]
of the interval[—2,2] (which is the essential spectrum) that for everyA # 0 it has a purely singular-continuous
along with some discrete point spectrum outside thi$pectrum, and, moreover, its spectrum (as a set) is a
interval. (ii) For everyd, the Hausdorff dimensionality of Cantor set of zero Lebesgue measure. We have shown
the spectrum in(—2,2) is bounded between dimensions the following.

« andB = 2a/(1 + ), in the sense that the restriction ~ Theorem 4—For everyA there exists anx > 0 such

of the spectral measure te-2,2) is supported on a set of thatH, has a purelyw-continuous spectrum, namely, its
Hausdorff dimensiorB and does not give weight to sets spectral measures do not give weight to sets of Hausdorff
of Hausdorff dimension less tham. (iii) For Lebesgue dimension less thaa.

a.e. 6, the spectrum if—2,2] is of exact dimension, Remark—There exists strong numerical evidence [19]
namely, the restriction of the spectral measurg-t@,2]  that the spectrum off, (as a set) has Hausdorff dimen-
is supported on a set of Hausdorff dimensienand sion strictly less than 1 (for every # 0), and this would
does not give weight to sets of Hausdorff dimension lesémply that its spectrum must also ki singular (see be-
thana. low) for someg < 1.

Remark—The result only requires thd.,’s to be Let us now describe the spectral-theoretic scheme in the
sufficiently sparse (namely, to grow sufficiently fast). context of which the above results should be understood.
L, = 20" is a particular choice for which the sufficient ~Consider a separable Hilbert spadd, and a self-
sparseness is easy to show. adjoint operatorH. Recall [20] that for each) € H,

Next we consider two examples of line operatorsthe spectral measurg, (also known to physicists as
with quasiperiodic potentials. The first is the almostthe local spectral density) is the unique Borel mea-
Mathieu (also called Harper) operatéfs o, which is  sure obeying (¢, f(H)y) = [ f(x)duy(x) for any
the operator of the form (1) o®%(Z) with potential ~measurable functiory. By Lebesgue’s decomposition
V(n) = Vgae(n) = Acog2mwBn + ), where A,6 are theorem, every Borel measupe decomposes uniquely
any real numbers, an@lis an irrational. Aubry and Andre @S 4 = fac + Msc T fpp. The absolutely continuous
[12] have conjectured thaiz , 4 has a purely absolutely Part, uac, gives zero weight to sets of zero Lebesgue
continuous spectrum wheneval < 2, and a purely point measure. The pure-point pagt,,, is a countable sum of
spectrum (with exponentially localized eigenfunctions)atomic (Dirac) measures. The singular-continuous part,
whenever |A| > 2.  While the |A| <2 part of this s, gives zero weight to countable sets and is supported
conjecture may be correct (so far, the existence of th@n some set of zero Lebesgue measure [we say that a
absolutely continuous spectrum [13] and the absencgeasureu is supported on a sef if w(R\ S) = 0].
of the point spectrum [14] have been established rigorLetting H,. = {i | u, is purely absolutely continuohs
ously), the|A| > 2 case turned out to be more delicate: Hs ={i | uy is purely singular continuoyisand,, =
The absolutely continuous spectrum is absent [15], but | 1y is purely pure poirji one obtains a decomposi-
both pure-point and singular-continuous spectra occutjon, H =Hy ® Hye ® Hyp. Hie, He, and H,,
depending on arithmetical properties of bothand ¢  are closed (in norm), mutually orthogonal subspaces,
[16]. It turns out, though, that if we concentrate onWhich are invariant undetl. The absolutely continuous
the dimensional Hausdorff properties of the spectrappectrum(a,.), singular-continuous spectrufe.), and
measures, rather than distinguishing between pure-poifiure-point spectrunio,,) are defined as the spectra of
and singular-continuous spectra, the situation becomd§e restrictions off to the corresponding subspaces, and
Simpler. Spec (H) =0 =03 U 05 U Opp-
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The above standard scheme of spectral theory can b%® detailed account of such relations has been given by
extended to further decompose the singular-continuoukast [2].
subspace by using Hausdorff measures. Recall that for any It should be pointed out that certain fractal and mul-
subsefS of Randa € [0, 1], thea-dimensional Hausdorff tifractal studies of some operators with the singular-

measureh?, is given by continuous spectrum (including some of the examples we
_ _ * discussed above) have been carried out by several authors
h*(S) = lim inf > |b,|%, (3)  [19,21]. While such studies are related to the above de-

6—0 &—covers

v=1 composition theory, the relations are generally far from

where ad-cover is a cover of by a countable collection trivial, and we believe that they are only partial. One

of intervals,S C U,_, b,, such that for eaclr the length  should exercise extreme care when attempting to interpret
of b, is at mosts. k' coincides with Lebesgue measure, the results of such studies within the framework of the

and 1° is the counting measure (assigning to each sescheme discussed above.

the number of points in it). Given angJ # S C R, From here on we shall restrict our discussion to

there exists a unique(S) € [0, 1] such thath*(S) = 0  one-dimensional tight-binding Schrodinger operators of
for any a@ > «a(S), and h%(S) = « for any a < «(S). the form (1). While we discuss discrete operators, the
This uniquea/(S) is called the Hausdorff dimension 6f  subordinacy results we describe are equally valid for

A rich theory of decomposing measures with respect teontinuous Schrodinger operators of the fornfe; + V.
Hausdorff measures has been developed by Rogers andConsider first half-line operators, defined with a phase
Taylor [1]. Below we discuss only a small part of it. A poundary condition of the form (2). For such operators, it
much more detailed description has been given by Last well known that the spectral measures for lattice-point
[2]. vectorss,, wheres, (m) = 8,,,, are all mutually equiva-
Givena € [0, 1], a measureu is calleda continuous  |ent (namely, they have the same sets of zero measure).
if u(S) = 0 for every setS with 2%(S) = 0. Itis called Thus, the spectral problem reduces to analyzing a sin-
a singular if it is supported on some setwith 2(S) =  gle spectral measure, which we choose tobe= ws,.
0. We say thaju is one dimensional if it igr continuous  The Gilbert-Pearson theory of subordinacy [5] relates the
for every « < 1. We say that it is zero dimensional pointwise behavior of the spectral measur@t some en-

if it is « singular for everya > 0. u is said to have ergy E to the behavior of solutions of the corresponding
exact dimension if, for everye > 0, itis both(e — €)  Schrodinger equation

continuous anda + €) singular.
Given a (positive, finite) measuge anda € [0, 1], we
define

p(n + 1) + ¢p(n — 1) + V()p(n) = E¢(n). (5)

(x —e,x+ ¢

Di(x) = lim sup’u - (4)  Given a solution of (5), we lefji/||, denote the norm of
€0 (2¢) the solutiony over lengthL. It is useful to consider the
and T. = {x|D&(x) = »}. The restriction u(T. N length L as a continuous variable (allowed to take any
) = fas is a singular, andu((R \ 7».) N ) = uac is  Positive real value), and so we define
a continuous. Thus, each measure decomposes uniquely
into an a-continuous part and am-singular part,

(L] 1/2
M= Mae + mas. Moreover, an a-singular measure gl = [Z lpmP? + (L — [LDIp(L] + l)lﬂ )
must haveDy(x) = « a.e. (with respect to it) and an n=l

a-continuous measure must haﬂ){j(x) <o ae. ltis _ . _(6)
important to note thaD<(x) is defined with a limsup. Where[L] denotes the integer part @f. A (nontrivial)
The corresponding limit need not exist. solutiony of (5) is called a subordinate solution if for any
We let H,. = {y| Wy IS @ continuous} andH,, = other solutione of (5), which is not a constant multiple
{¥ |y is a singular}. H,. and H,, are mutually of ¢, IimL_,oo”;% = (. Note that a subordinate solution

orthogonal closed subspaces which are invariant undenust be unique (up to constant multiples). The Gilbert-
H, and H decomposes asH = H,. ® H,,. The Pearson theory relates the decomposition of the spectral
a-continuous spectrunio,.) and a-singular spectrum measureu to subordinacy of solutions as follows: The
(os) are defined as the spectra of the restrictions ofbsolutely continuous part @f is supported on the set of
H to the corresponding subspaces, aneé- o, U 04s.  energies for which (5) has no subordinate solutions. (In
Note, in particular, that when we classify spectra as beindact, this set of energies is, up to a set of both Lebesgue
a-singular, zero dimensional, of exact dimensionetc., and spectral measure zero, the set wherbas a finite
we always relate to the corresponding properties of th@onvanishing derivative.) The singular part @f is
spectral measures. supported on the set of energies for which the solutions
The above scheme for spectral classification can be rewvhich obey the appropriate boundary condition (2) are
lated to the dynamics of the underlying quantum systemssubordinate.
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Let us now denote byy; the solution of (5) which of view in a natural way, and allows one to answer the
obeys the boundary condition (2) and has normalizatiomelevant spectral questions whenever the nature of the so-
[41(0)> + |1(1)]> = 1. Let us denote by, the so- lutions of the corresponding Schrodinger equation is suf-
lution of (5) which obeys the orthogonal boundary con-ficiently well understood. We note, in particular, that
dition to (2), namely,(0) sind — (1) co® = 0, and  the singular-continuous spectrum which occurs in “close
has normalizatiomy,(0)|> + |¢#-(1)]> = 1. Our mainre- neighborhood” to Anderson localization (as in the case

sult is the following. of the strongly coupled almost Mathieu operator or the
Theorem 1—For anya € (0,1) and everyE € R, rank-one perturbed Anderson model) tends to be purely
Dj(E) = «if and only if zero dimensional; while the singular-continuous spectrum
ol of the Fibonacci Hamiltonian, which has been identified
liminf Wl 0, as having “critical states” in physics literature [19],ds
L= lyllf continuous for some positive.

where = a/2 — a). We would like to thank J. Avron and B. Simon for

Remark—Theorem 1 is proven with the same ideasuserI disqussions. This research was sup'por'ted in'part
used by Gilbert and Pearson, but it requires some optit-)y the Inst|_tute for Mathem_ancs an(_j Its Appllcatlo_ns with
mization of their analysis As’ a by-product, we also ge funds provided by the National Science Foundation, and
L S X tby the Erwin Schrodinger Institute (Vienna) where part of
a simplified proof of their original results. A key obser- this work was done. The work of S.J. was supported in
vation is to assign to each > 0 a lengthL(e) via the part by NSF Grants'DMS-9208029 a.nd DMS-9501265
equality [l¢1 [l ll#2llLe) = 1/(2€), for which we prove Note added—As we were completing this paper we

the explicit inequality learned of a preprint by Remling [23] which obtains a

5— 24 B 11l e) - 5+ V24 restricted version of theorem 1.
Im(E + ie)l lepall ey Im(E + ie)|’

wherem(z) is the Weyl-Titchmarsh function [22].
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