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Abstract

Let Bα = {Bα(t), t ∈ RN} be an (N, d)-fractional Brownian motion with Hurst index
α ∈ (0, 1). By applying the strong local nondeterminism of Bα, we prove certain forms
of uniform Hausdorff dimension results for the images of Bα when N > αd. Our results
extend those of Kaufman [7] for one-dimensional Brownian motion.
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1 Introduction

Let Bα = {Bα(t), t ∈ RN} be an (N, d)-fractional Brownian motion (fBm) with Hurst index
α ∈ (0, 1) on a probability space (Ω,F ,P). That is, Bα is an N -parameter Gaussian random
field with values in Rd; its mean function is zero and its covariance function is given by the
following

E
(
Bα

j (s)Bα
k (t)

)
=

1
2
δjk

(
|s|2α + |t|2α − |s− t|2α

)
, s, t ∈ RN , (1.1)

where j, k = 1, . . . , d and δjk = 1 if j = k and 0 if j 6= k, and where | · | denotes the Euclidean
norm in RN . Note that the components of Bα are independent and identically distributed.

Fractional Brownian motion has been under extensive investigations in the last decade due
to its applications in various areas such as telecommunication networks, hydrology, finance,
and so on. Many authors have studied the sample path properties of fractional Brownian
motion. See Adler [1], Kahane [5], Monrad and Pitt [10], Pitt [11], Rosen [12], Talagrand [13],
Xiao [17] [18], just to mention a few.

It is well known [cf. Kahane ([5], Chapter 18)] that for every Borel set E ⊆ RN ,

dimHX(E) = min
{

d,
1
H

dimHE
}

a.s., (1.2)
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where dimH denotes the Hausdorff dimension. We refer to Falconer [3] or Kahane [5] for
definition and properties of Hausdorff dimension.

Note that in (1.2) the exceptional null probability event [on which (1.2) does not hold]
depends on E. It is natural to ask whether it is possible to find a single null probability event
Ω0 such that for every ω /∈ Ω0, (1.2) holds for all Borel sets E ⊂ RN . Such a result, if exists,
is called a uniform Hausdorff dimension result and is applicable even if E is a random set.

The first uniform dimension result was established by Kaufman [6] for the planar Brownian
motion. Since then, the problem of establishing uniform Hausdorff dimension results has been
studied by several authors for various classes of stochastic processes. See Xiao [19] for a survey
on the results for Markov processes and their applications. Monrad and Pitt [10] have proved
the following uniform Hausdorff dimension result for the images of Bα: If N ≤ αd, then almost
surely

dimHBα(E) =
1
α

dimHE for every Borel set E ⊆ RN . (1.3)

Of course, the above uniform dimension result can not be true if N > αd. This can be
easily seen by taking E = (Bα)−1(0) [the zero set of Bα]. Moreover, Monrad and Pitt [10]
have shown the following result: If N > αd, then almost surely

dimH

(
Bα

)−1(F ) = N − αd + αdimHF (1.4)

for every closed set F ⊆ Rd, where
(
Bα

)−1(F ) = {t ∈ RN : Bα(t) ∈ F} is the inverse image
of F .

In this paper, we will prove the following weaker forms of uniform dimension results for Bα

when N > αd. They are extensions of the results of Kaufman [7] for one-dimensional Brownian
motion.

Theorem 1.1 Suppose N > αd. Then with probability 1, for every Borel set E ⊆ [0, 1]N ,

dimHBα(E + t) = min
{

d,
1
α

dimHE
}

for almost all t ∈ [0, 1]N . (1.5)

Theorem 1.2 Suppose N > αd. Then with probability 1, for every Borel set E ⊆ [0, 1]N with
dimHE > αd, we have λd

(
Bα(E + t)

)
> 0 for almost all t ∈ [0, 1]N .

When N = d = 1 and α = 1/2, Bα is the ordinary Brownian motion in R. As we mentioned,
the above theorems are due to Kaufman [7]. His proofs rely heavily on the independent incre-
ment property of Brownian motion as well as the fact that the time-space is one-dimensional,
hence can not be carried over to the (N, d)-fractional Brownian motion directly.

Our proofs of Theorems 1.1 and 1.2 are based on Kaufman’s arguments and the following
property of strong local nondeterminism of fBm which was discovered by Pitt [11]: Let Bα

0

be an (N, 1)-fractional Brownian motion with index α ∈ (0, 1). Then, there exists a constant
0 < c1,1 < ∞ such that for all integers n ≥ 1 and all u, t1, . . . , tn ∈ RN ,

Var
(
Bα

0 (u)
∣∣Bα

0 (t1), . . . , Bα
0 (tn)

)
≥ c1,1 min

0≤k≤n
|u− tk|2α, (1.6)

where Var
(
Bα

0 (u)
∣∣Bα

0 (t1), . . . , Bα
0 (tn)

)
denotes the conditional variance of Bα

0 (u) given Bα
0 (t1),

. . . , Bα
0 (tn). In the above and in the sequel, t0 ≡ 0.
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The strong local nondeterminism has played important rôles in studying various sample
path properties of fractional Brownian motion. See Xiao [20] [21] and the references therein
for further information. In this paper, we will make use of the following equivalent form of the
strong local nondeterminism of Bα.

Lemma 1.3 The strong local nondeterminism of fBm Bα is equivalent to the following: There
exists a constant 0 < c1,2 < ∞ such that for all integers n ≥ 1 and all u, v, t1, . . . , tn ∈ RN ,

Var
(
Bα

0 (u)−Bα
0 (v)

∣∣Bα
0 (t1), . . . , Bα

0 (tn)
)

≥ c1,2 min
(

min
0≤k≤n

|u− tk|2α + min
0≤k≤n

|v − tk|2α, |u− v|2α
)
.

(1.7)

Proof Letting v = 0 in (1.7), we get (1.6). Hence we only need to prove the implication of
(1.6) ⇒ (1.7).

We work in the Hilbert space setting and write the conditional variance in (1.7) as the
square of the L2(P)-distance between Bα

0 (u)−Bα
0 (v) and the subspace generated by the random

variables {Bα
0 (t1), . . . , Bα

0 (tn)}. Hence, by (1.6), there exists a constant c1,3 ∈ (0,∞) such that

Var
(
Bα

0 (u)−Bα
0 (v)

∣∣Bα
0 (t1), . . . , Bα

0 (tn)
)

= inf
a1,...,an∈R

E
[
Bα

0 (u)−Bα
0 (v)−

n∑

k=1

akB
α
0 (tk)

]2

≥ inf
a1,...,an,av∈R

E
[
Bα

0 (u)− avB
α
0 (v)−

n∑

k=1

akB
α
0 (tk)

]2

= Var
(
Bα

0 (u)
∣∣Bα

0 (v), Bα
0 (t1), . . . , Bα

0 (tn)
)

≥ c1,3 min
{

min
0≤k≤n

|u− tk|2α, |u− v|2α

}
.

(1.8)

By the same token as in the proof of (1.8), there exists a constant c1,4 ∈ (0,∞) such that

Var
(
Bα

0 (u)−Bα
0 (v)

∣∣Bα
0 (t1), . . . , Bα

0 (tn)
)

≥ c1,4 min
{

min
0≤k≤n

|v − tk|2α, |u− v|2α

}
.

(1.9)

Adding up (1.8) and (1.9) yields (1.7). This proves Lemma 1.3. ¤

The rest of the paper is organized as follows. We give the proofs of Theorem 1.1 and 1.2 in
Section 2 and Section 3, respectively. Since the properties of strong local nondeterminism have
been established for large classes of Gaussian processes and fields by Xiao [20], our theorems
can be further extended. In Section 4, we state some of these extensions and open questions.

Throughout this paper, we use 〈·, ·〉 and | · | to denote the ordinary scalar product and
the Euclidean norm in Rm respectively, no matter the value of the integer m. We denote
the m-dimensional Lebesgue measure by λm. Unspecified positive and finite constants will be
denoted by c which may have different values from line to line. Specific constants in Section j
will be denoted by cj,1 , cj,2 and so on.
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2 Proof of Theorem 1.1

As in Kaufman [7], we define the function H on Rd such that H(s) = 1 if |s| < 1 and H(s) = 0
otherwise. Define

I(x, y,R) =
∫

[0,1]N
H

(
RBα(x + t)−RBα(y + t)

)
dt (2.1)

provided R > 0, x, y ∈ [0, 1]N . Since for every s ∈ Rd, H(Rs) is non-increasing in R, we have
that for fixed x, y ∈ [0, 1]N , I(x, y, R) is non-increasing in R.

The following lemma is the key for the proof of Theorem 1.1. It will be clear that the
strong local nondeterminism of fBm plays an important rôle here.

Lemma 2.1 For all x, y ∈ [0, 1]N , R > 1 and integers p = 1, 2, . . . ,

E
[
(I(x, y,R))p

] ≤ cp
2,1

(p!)R−dp |y − x|−αdp. (2.2)

Proof Since Bα
1 , . . . , Bα

d are independent copies of Bα
0 , the pth moment of I(x, y, R) can be

bounded by the following multiple integral:

E
[
(I(x, y, R))p

]

=
∫
· · ·

∫

[0,1]Np

P
{ ∣∣Bα(x + tj)−Bα(y + tj)

∣∣ < R−1, 1 ≤ j ≤ p
}

dt1 · · · dtp

≤
∫
· · ·

∫

[0,1]Np

P
{ ∣∣Bα

` (x + tj)−Bα
` (y + tj)

∣∣ < R−1, 1 ≤ j ≤ p, 1 ≤ ` ≤ d
}

dt1 · · · dtp

=
∫
· · ·

∫

[0,1]Np

[
P
{ ∣∣Bα

0 (x + tj)−Bα
0 (y + tj)

∣∣ < R−1, 1 ≤ j ≤ p
}]d

dt1 · · · dtp.

(2.3)

Note that
λNp

{
(t1, . . . , tp) ∈ [0, 1]Np : t1, . . . , tp are distinct

}
= 1,

without loss of generality, we will assume that all the points t1, . . . , tp in (2.3) are distinct. We
will estimate the above integral by integrating in the order dtp, dtp−1, . . . , dt1.

First let t1, . . . , tp−1 ∈ [0, 1]N be fixed and distinct points. We consider the following
conditional probability:

P(tp) ≡ P
{
|Bα

0 (x + tp)−Bα
0 (y + tp)| < R−1

∣∣
∣∣Bα

0 (x + tj)−Bα
0 (y + tj)

∣∣ < R−1, 1 ≤ j ≤ p− 1
}

.
(2.4)

Since the condition distribution in Gaussian processes are still Gaussian, the above probability
can be estimated if the conditional variance of Bα

0 (x + tp) − Bα
0 (y + tp), given Bα

0 (x + tj) −
Bα

0 (y + tj) (1 ≤ j ≤ p− 1), is bounded from below.
In order to get the desired lower bound for the conditional variance, recall that if F and F′

are linear subspaces of L2(P), then for every Gaussian random variable G ∈ L2(P),

F ⊂ F′ =⇒ Var(G |F) ≥ Var(G |F′). (2.5)
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Moreover, both conditional variances are non-random.
It follows from (2.5) and (1.7) that

Var
(
Bα

0 (x + tp)−Bα
0 (y + tp)

∣∣Bα
0 (x + tj)−Bα

0 (y + tj), 1 ≤ j ≤ p− 1
)

≥ Var
(
Bα

0 (x + tp)−Bα
0 (y + tp)

∣∣Bα
0 (x + tj), Bα

0 (y + tj), 1 ≤ j ≤ p− 1
)

≥ c2,2 min
{

min
0≤j≤p−1

(|tp − tj |2α, |x + tp − y − tj |2α
)

+ min
0≤j≤p−1

(|tp − tj |2α, |y + tp − x− tj |2α
)
, |x− y|2α

}
.

≥ c2,3 min
{

min
0≤j≤p−1

|tp − tj − z|2α, |x− y|2α
}

,

(2.6)

where z = 0, x− y or y − x.
Combining (2.4), (2.6) and Anderson’s inequality (see [2]), we derive

P(tp) ≤ c2,4 R−1

[
min

{
min

0≤j≤p−1
|tp − tj − z|, |x− y|

}]−α

. (2.7)

Let Γp =
{
tp ∈ [0, 1]N : min0≤j≤p−1 |tp − tj − z| ≤ |x− y| for z = 0, x− y or y − x

}
. Note

that Γp is contained in the union of 3p balls B(tj + z, |x− y|) of radius |x− y|. Hence we have
∫

[0,1]N

(
P(tp)

)d
dtp =

[ ∫

Γp

+
∫

[0,1]N\Γp

](
P(tp)

)d
dtp

≤ c2,5 R−d

[∑
z

p−1∑

j=0

∫

B(tj+z, |x−y|)
|tp − tj − z|−αd dtp + |x− y|−αd

]

≤ c2,6 pR−d|x− y|−αd,

(2.8)

where c2,6 is a finite positive constant. In deriving the last inequality, we have used the fact
that N > αd to estimate the integral.

Combining (2.3) and (2.8), we have

E
[
(I(x, y,R))p

] ≤ c2,6 pR−d|x− y|−αd

×
∫
· · ·

∫

[0,1]N(p−1)

[
P
{ ∣∣Bα

0 (x + tj)−Bα
0 (y + tj)

∣∣ < R−1, 1 ≤ j ≤ p− 1
})d

dt1 · · · dtp−1.

(2.9)

Continue integrating dtp−1, . . . , dt1 in the same way as we did for dtp, we finally get (2.2) as
desired. ¤

Remark 2.2 For later use in the proof of Theorem 1.2, we remark that the method of the
proof of Lemma 2.1 can also be used to prove that

∫
· · ·

∫

[0,1]2Np

[
P
{ ∣∣Bα

0 (x + tj)−Bα
0 (y + tj)

∣∣ < 2−(1−ε)n, 1 ≤ j ≤ 2p
}]N

α

dt1 · · · dt2p

≤ c2p
2,7

(2p)!
(
2−

2(1−ε)nNp
α n2p + 2−

2(1−ε)nNp
α |x− y|−2Np

)
,

(2.10)
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where ε > 0 is a small positive number whose value will be specified later.
In fact, by taking R = 2(1−ε)n in (2.7), we obtain

P(t2p) ≤ c2,82
−(1−ε)n

[
min

{
min

0≤j≤2p−1
|t2p − tj − z|, |x− y|

}]−α

. (2.11)

Based on (2.11) and the argument in the proof of Lemma 2.1, we follow through (2.8) to get
(2.10).

Now, we are ready to prove our Theorem 1.1.

Proof of Theorem 1.1 Since Bα is uniformly Hölder continuous on [0, 1]N of any order
smaller than α, we have almost surely

dimHBα(E + t) ≤ min
{

d,
1
α

dimHE
}

for all Borel sets E and all t ∈ [0, 1]N .

Thus, we only need to prove the lower bound in (1.5).
We first show that there exist a constant c2,9 and an a.s.-finite random variable n0 = n0(ω)

such that almost surely for all n > n0(ω),

I(x, y, 2n) ≤ c2,9 n 2−nd |x− y|−αd, ∀x, y ∈ [0, 1]N . (2.12)

Let θ be an integer such that θ > 21/α and consider the set Qn ⊆ [0, 1]N defined by

Qn ≡
{

θ−nk : kj = 1, 2, . . . , θn, ∀j = 1, . . . , N
}

. (2.13)

The number of pairs x, y ∈ Qn is at most θ2Nn. Hence for u > 1, Lemma 2.1 implies that

P
{

I(x, y, 2n) > un 2−nd|x− y|−αd for some x, y ∈ Qn ∩ [0, 1]N
}

≤ θ2Nn cp
2,1

(p!) (un)−p.
(2.14)

By choosing p = n, u = c2,1 θ2N , and by Stirling’s formula, we know that the probabilities
in (2.14) are summable. Therefore, the Borel-Cantelli lemma implies that a.s. for all n large
enough,

I(x, y, 2n) ≤ c2,10 n 2−nd|x− y|−αd, ∀x, y ∈ Qn ∩ [0, 1]N . (2.15)

Now we are ready to prove (2.12). Note that (2.12) is trivial unless n 2−nd < |x − y|αd, and
we only need to consider this case. For x, y ∈ [0, 1]N , we can find x̄ and ȳ ∈ Qn−1 ∩ [0, 1]N

so that |x − x̄| ≤ √
N θ−n and |y − ȳ| ≤ √

N θ−n, respectively. By the modulus of continuity
of Bα on [0, 1]N (see, e.g., Kahane [5]), we see that I(x, y, 2n) ≤ I(x̄, ȳ, 2n−1) for all n large
enough. On the other hand, by (2.15) and the assumption n 2−nd < |x− y|αd, we have

I(x̄, ȳ, 2n−1) ≤ c2,10 (n− 1) 2(1−n)d |x̄− ȳ|−αd ≤ c2,9 n2−nd |x− y|−αd, (2.16)

which proves (2.12).
To prove the the lower bound in (1.5), we fix an ω ∈ Ω such that (2.12) holds. For any

Borel set E ⊆ [0, 1]N and all γ ∈ (0, dimHE), we choose η ∈ (0, d ∧ γ
α). Then E carries a

probability measure µ such that

µ(S) ≤ c2,11 (diamS)γ for all measurable sets S ⊂ [0, 1]N . (2.17)
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Let νt be the image measure of µ under the mapping x 7→ Bα(x + t) (x, t ∈ [0, 1]N ). In
order to prove dimHBα(E + t) ≥ η, by Frostman’s Theorem, we only need to show

∫

R2d

νt(du)νt(dv)
|u− v|η < ∞. (2.18)

Now we follow Kaufman [7], and note that the left-hand side in (2.18) is equal to
∫ ∫

µ(dx)µ(dy)∣∣Bα(x + t)−Bα(y + t)
∣∣η

= η

∫ ∞

0

∫ ∫
H

(
RBα(x + t)−RBα(y + t)

)
Rη−1 µ(dx)µ(dy)dR

≤ 1 +
∫ ∞

1

∫ ∫
H

(
RBα(x + t)−RBα(y + t)

)
Rη−1 µ(dx)µ(dy)dR.

(2.19)

To prove that the last integral is finite for almost all t ∈ [0, 1]N , we integrate the above over
[0, 1]N and show ∫ ∫ ∫ ∞

1
I(x, y,R) Rη−1 dR µ(dx)µ(dy) < ∞. (2.20)

We split the above integral over D =
{
(x, y) : |x − y| ≤ R−1/α

}
and its complement, and

denote them by J1 and J2, respectively. Since (µ × µ)(D) ≤ c2,11 R− γ
α and I(x, y, R) ≤ 1, we

have
J1 ≤ c2,11

∫ ∞

1
R− γ

α
+η−1 dR < ∞. (2.21)

On the other hand, for all (x, y) ∈ Dc, we have |x − y|−α < R. By (2.12) and the fact that
I(x, y, R) is monotone in R, we have I(x, y, R) < c(ω) R−d log R |x− y|−αd. It follows that

J2 ≤ c2,12(ω)
∫ ∫

1
|x− y|αd

µ(dx)µ(dy)
∫ ∞

|x−y|−α

Rη−d−1 log R dR

< c2,13(ω)
∫ ∫

1
|x− y|αη

log(|x− y|−α)µ(dx)µ(dy) < ∞,

(2.22)

where the last inequality follows from (2.17) and the assumption that αη < γ. Combining
(2.21) and (2.22) gives (2.20). This completes the proof of Theorem 1.1. ¤

3 Proof of Theorem 1.2

Since dimHE > αd, there exists a Borel probability measure µ on E such that
∫

E

∫

E

µ(ds)µ(dt)
|s− t|αd

< ∞. (3.1)

Let νt be the image measure of µ as in the proof of Theorem 1.1. It is sufficient to show
that ∫

[0,1]N

∫

Rd

|ν̂t(u)|2 du dt < ∞, a.s. (3.2)
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where
ν̂t(u) =

∫

RN

ei〈u, Bα(x+t)〉µ(dx)

is the Fourier transform of νt and exception null probability event does not depend on µ.
We choose and fix a smooth function ψ ≥ 0 on Rd such that ψ(u) = 1 when 1 ≤ |u| ≤ 2

and ψ(u) = 0 outside 1/2 < |u| < 5/2, and satisfying ψ(b1u1, . . . , bdud) = ψ(u), where b` =
±1, ∀` = 1, . . . , d and u = (u1, . . . , ud). Then

∫

|u|>1
|ν̂t(u)|2 du ≤

∞∑

n=0

∫

Rd

ψ(2−nu) |ν̂t(u)|2 du

=
∞∑

n=0

2n

∫

RN

∫

RN

ψ̂
(
2nBα(x + t)− 2nBα(y + t)

)
µ(dx)µ(dy).

(3.3)

In the above, ψ̂ is the Fourier transform of ψ and the last inequality follows from Fubini’s
theorem.

Consequently, it suffices to show
∞∑

n=0

2n

∫

[0,1]N

∫

RN

∫

RN

ψ̂
(
2nBα(x + t)− 2nBα(y + t)

)
µ(dx)µ(dy) dt < ∞. (3.4)

To this end, we define

J(x, y, n) =
∫

[0,1]N
ψ̂

(
2nBα(x + t)− 2nBα(y + t)

)
dt.

It is clear that J(x, y, n) is bounded in (x, y, n). The following lemma provides a better estimate
when |x− y| is relatively large.

Lemma 3.1 There exist positive and finite constants c3,1 and β such that, with probability 1,
for all n ≥ n(ω) and |x− y| ≥ c3,1 2−n/αn1/α,

∣∣J(x, y, n)
∣∣ ≤ (2 + β)−n

∣∣x− y
∣∣−αd

. (3.5)

Proof It suffices to prove that there are positive constants c3,2 , c3,3 and β such that for all
integers n ≥ 1 and |x− y| ≥ c3,1 2−n/αn1/α,

E
[
J(x, y, n)2n

] ≤ c2n
3,2

nc3,3n (2 + β)−2n2 |x− y|−2nαd. (3.6)

Then (3.5) will follows from a Borel-Cantelli argument as in the proof of Theorem 1.1.
Note that the moment in (3.6) can be written as

E
∫

[0,1]2Nn

2n∏

j=1

ψ̂
(
2nBα(x + tj)− 2nBα(y + tj)

)
dt1 · · · dt2n

= E
∫

Sn

2n∏

j=1

ψ̂
(
2nBα(x + tj)− 2nBα(y + tj)

)
dt

+ E
∫

[0,1]2Nn\Sn

2n∏

j=1

ψ̂
(
2nBα(x + tj)− 2nBα(y + tj)

)
dt,

(3.7)
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where t = (t1, . . . , t2n), Sn is the set

Sn =
2n⋃

k=1

{
t ∈ [0, 1]2Nn : |tk − tj | > rn and |x + tk − tj − y| > rn,∀j 6= k, 0 ≤ j ≤ 2n

}

and rn = c3,1 2−n/α(n + 1)1/α. The value of c3,1 will be determined later.
We consider the above integral over Sn first. By Fubini’s theorem, the first term in the

right-hand side of (3.7) can be rewritten as

E
∫

Sn

∫

R2nd

2n∏

j=1

ei〈ξj , 2nBα(x+tj)−2nBα(y+tj)〉ψ(ξj) dξdt

=
∫

Sn

∫

R2nd

e−
1
2

Pd
`=1 Var(

P2n
j=1 ξj

` [2nBα
0 (x+tj)−2nBα

0 (y+tj)])
2n∏

j=1

ψ(ξj) dξdt,

(3.8)

where ξ = (ξ1, . . . , ξ2n) ∈ R2nd. Since ψ is supported on the annulus
{
ξ ∈ Rd : |ξ| ∈ [12 , 5

2 ]
}
,

the last integral in dξ is taken over
{
ξ ∈ Rd : |ξ| ∈ [12 , 5

2 ]
}2n.

Note that for every t ∈ Sn, there is a k ∈ {1, . . . , 2n} such that |tk − tj | > rn for all j 6= k
and |x + tk − tj − y| > rn for all 0 ≤ j ≤ 2n. Since |ξk| ∈ [12 , 5

2 ], there exists `0 ∈ {1, . . . , d}
such that |ξk

`0
| ≥ (2

√
d)−1. By the same reasoning as we used in proving Lemma 1.3, we derive

that

Var
( 2n∑

j=1

ξj
`0

[
2nBα

0 (x + tj)− 2nBα
0 (y + tj)

])

≥ Var
(
ξk
`0

[
2nBα

0 (x + tk)− 2nBα
0 (y + tk)

]∣∣Bα
0 (x + tj), Bα

0 (y + tj), j 6= k
)

≥ 1
4d

22n Var
(
Bα

0 (x + tk)
∣∣Bα

0 (x + tj), ∀j 6= k; Bα
0 (y + tj), ∀j

)

≥ c3,4 22n min
0≤j≤2n

{|tk − tj |2α, j 6= k; |x + tk − y − tj |2α
}

≥ c3,4 22n r2α
n = c3,4 c2α

3,1
(n + 1)2.

(3.9)

Combining (3.8) and (3.9), we obtain

E
∫

Sn

∫

R2nd

2n∏

j=1

ei〈ξj , 2nBα
0 (x+tj)−2nBα

0 (y+tj)〉ψ(ξj) dξdt ≤ e−c3,5 n2

. (3.10)

Note that we can choose the value of c3,1 such that c3,5 is sufficiently large.
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Now, we consider the second integral in (3.7). Let Tn = [0, 1]2Np\Sn and we write it as

Tn =
{
t ∈ [0, 1]2Nn : ∀k ∈ {1, . . . , 2n},

∃j1 6= k, j1 ∈ {0, 1, . . . , 2n} s.t.
∣∣tk − tj1

∣∣ ≤ rn

or ∃j2 6= k, j2 ∈ {0, 1, . . . , 2n} s.t.
∣∣x + tk − y − tj2

∣∣ ≤ rn

}

=
2n⋂

k=1

({
t ∈ [0, 1]2Nn : ∃j1 6= k s.t. min

j1 6=k, 0≤j1≤2n

∣∣tk − tj1
∣∣ ≤ rn

}

⋃ {
t ∈ [0, 1]2Nn : ∃j2 6= k, s.t. min

j2 6=k, 0≤j2≤2n

∣∣x + tk − y − tj2
∣∣ ≤ rn

})
.

(3.11)

From (3.11), we can see that Tn is a union of at most (4n)2n sets of the form:

Aj =
{
t ∈ [0, 1]2Nn :

∣∣z + tk − tjk
∣∣ ≤ rn, ∀ k ∈ {1, . . . , 2n}

}
, (3.12)

where z = 0 or x − y and where j = (jk ∈ {0, 1, . . . , 2n} : 1 ≤ k ≤ 2n) has the property that
jk 6= k.

The following lemma is a direct extension of Lemma 3.8 in Khoshnevisan, Wu and Xiao
[8], thus its proof will be omitted. We will use it to estimate the Lebesgue measure of Tn.

Lemma 3.2 For any positive even number m, for any sequence {`1, . . . , `m} ⊂ {0, . . . , m}
satisfying `j 6= j, z1, . . . , zm ∈ RN , and for any r > 0, we have

λm

{
s ∈ [0, 1]mN : max

k∈{1,...,m}

∣∣zk + sk − s`k
∣∣ ≤ r

}
≤ (c3,6r)

mN/2, (3.13)

where c3,6 > 0 is a finite constant depending on N only.

We now continue with the proof of Lemma 3.1. It follows from (3.11), (3.12) and Lemma
3.2 that

λ2Nn(Tn) ≤ cNn
3,6

(4n)2n rNn
n . (3.14)

We proceed to estimate the integral in (3.7) over Tn. It is bounded above by

∫

Tn

E
[ 2n∏

j=1

∣∣ψ̂(2nBα(x + tj)− 2nBα(y + tj))
∣∣
]
dt

=
∫

Tn

E
[ 2n∏

j=1

∣∣ψ̂(2nBα(x + tj)− 2nBα(y + tj))
∣∣1Dn

]
dt

+
∫

Tn

E
[ 2n∏

j=1

∣∣ψ̂(2nBα(x + tj)− 2nBα(y + tj))
∣∣1Dc

n

]
dt

≡ I1 + I2,

(3.15)

where
Dn =

{
∃j ∈ {1, . . . , 2n} s.t.

∣∣Bα(x + tj)−Bα(y + tj)
∣∣ > 2−(1−ε)n

}
.
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Since ψ̂ is a rapidly decreasing function, we derive from (3.14) that

I1 ≤ λ2Nn(Tn) ψ̂(2εn)P(Dn)

≤ cNn
3,6

(4n)2n rNn
n e−c3,7 n

= cn
3,8

nn
(
2+N

α

)
2−

Nn2

α e−c3,7 n.

(3.16)

Moreover, we can choose c3,7 > 0 arbitrarily large, thus I1 is very small. On the other hand,
by the Hölder inequality, I2 is at most
∫

Tn

P
{
|Bα(x + tj)−Bα(y + tj)| ≤ 2−(1−ε)n, ∀j = 1, . . . , 2n

}
dt

≤
∫

[0,1]2Nn

1Tn(t)
(
P
{
|Bα

0 (x + tj)−Bα
0 (y + tj)| ≤ 2−(1−ε)n,∀j = 1, . . . , 2n

})d

dt

≤
(
λ2Nn

(
Tn

))(N−αd)/N
{ ∫

[0,1]2Nn

(
P
{
|Bα

0 (x + tj)−Bα
0 (y + tj)| ≤ 2−(1−ε)n, ∀ j

})N/α

dt
}αd/N

≤ cn
3,9

nc3,10n 2−n2
(

N
α

+(1−2ε)d
)
|x− y|−2αnd,

(3.17)

where the last inequality follows from (3.14) and (2.10) in Remark 2.2 with p = n and where
c3,10 > 0 is a constant depending on α, d and N only.

Combining (3.7), (3.10) with c3,5 large, (3.15), (3.16) and (3.17), we obtain

E
[
J(x, y, n)2n

] ≤ cn
3,11

nc3,12n 2−n2
(

N
α

+(1−2ε)d
)
|x− y|−2αnd. (3.18)

We choose and fix 0 < ε < N+αd−2α
2αd . This guarantees that 2−

n
2

(
N
α

+(1−2ε)d
)

= (2 + β)−n for
some constant β > 0. Therefore, (3.6) follows from (3.18). This proves Lemma 3.1. ¤

Finally, we are ready to finish the proof of Theorem 1.2. Thanks to Lemma 3.1, we have

2n

∫

RN

∫

RN

∣∣J(x, y, n)
∣∣µ(dx)µ(dy)

≤ 2n(2 + β)−n

∫

RN

∫

RN

1
|x− y|αd

µ(dx)µ(dy)

≤ c3,13

(
2

2 + β

)n

,

(3.19)

which implies (3.4). This finishes the proof of Theorem 1.2.

4 Remarks and Open Questions

The properties of local nondeterminism and/or strong local nondeterminism have been estab-
lished for large classes of Gaussian processes and fields and they have played important rôles
in studying sample path properties of Gaussian processes. We refer to Xiao [20] [21] for further
information on various definitions of local nondeterminism and their applications.
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We can show that the results similar to Theorems 1.1 and 1.2 hold for a large class of
Gaussian random fields considered in Xiao [20]. We leave it to the interested reader to fill in
the details.

Another extension of our results is to fractional Brownian sheets. For a given vector
H = (H1, . . . , HN ) (0 < Hj < 1 for j = 1, . . . , N), an (N, d)-dimensional fractional Brownian
sheet WH = {WH(t), t ∈ RN

+} with Hurst index H is an N -parameter centered Gaussian
random field in Rd with covariance function given by

E
[
WH

j (s)WH
k (t)

]
= δjk

N∏

j=1

1
2

(
|sj |2Hj + |tj |2Hj − |sj − tj |2Hj

)
, s, t ∈ RN

+ , (4.1)

where j, k = 1, . . . , d and δjk = 1 if j = k and 0 if j 6= k. When N > 1 and H = 〈12〉 ≡
(1
2 , . . . , 1

2), W 〈 1
2
〉 is the (N, d)-Brownian sheet.

It has been long known that fBm is locally nondeterministic, whereas the Brownian sheet
and therefore fractional Brownian sheets are not. Hence the arguments in Sections 2 and 3 can
not be carried over to WH or even the Brownian sheet directly. Nevertheless, Khoshnevisan,
Wu and Xiao [8] have proved the corresponding weaker forms of uniform dimensional results
for the (N, 1)-Brownian sheet by using the sectorial local nondeterminism of the Brownian
sheet proved by Khoshnevisan and Xiao [9].

Thanks to the sectorial local nondeterminism of fractional Brownian sheets established by
Wu and Xiao [15], we can modify the methods of Khoshnevisan, Wu and Xiao [8] to extend
Theorems 1.1 and 1.2 to a class of fractional Brownian sheets and prove the following theorems:

Theorem 4.1 Let W 〈α〉 be an (N, d)-fractional Brownian sheet with Hurst index H = 〈α〉.
Suppose αd < 1, then with probability 1, for every Borel set E ⊆ (0, 1]N ,

dimHW 〈α〉(E + t) = min
{

d,
1
α

dimHE
}

for almost all t ∈ [0, 1]N . (4.2)

Theorem 4.2 Let αd < 1, then almost surely for every Borel set E ⊆ (0, 1]N with dimHE >
αd, we have λd

(
W 〈α〉(E + t)

)
> 0 for almost all t ∈ [0, 1]N .

Remark 4.3 Theorems 3.3 and 3.6 of Khoshnevisan Wu and Xiao [8] are special cases of
our Theorems 4.1 and 4.2, respectively, by taking τ = 1

2 . However, contrast to the fractional
Brownian motion case, it is an open question whether Theorems 4.1 and 4.2 still hold for W 〈α〉

when 1 ≤ αd < N .

We end this section with two more open questions. Question 4.4 was raised by Kaufman
[7] for Borwnian motion in R. It is still open, and we have reformulated it for the fractional
Brownian motion.

It is known (cf. Pitt [11] or Kanahe [5]) that for every Borel set E ⊆ RN with dimHE > αd
[this implies N > αd], the image set Bα(E) has interior points almost surely. The following
question is about a type of uniform version of the above result:
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Question 4.4 Suppose N > αd. Is it true that, with probability 1, Bα(E + t) has interior
points for some t ∈ [0, 1]N for every Borel set E ⊆ RN with dimHE > αd?

Xiao [16] proved the following uniform packing dimension analogue of (1.3) for an (N, d)-
fractional Brownian motion Bα: If N ≤ αd, then almost surely

dimPBα(E) =
1
α

dimPE for every Borel set E ⊆ RN , (4.3)

where dimP denotes packing dimension, see Falconer [3]. On the other hand, Talagrand and
Xiao [14] have shown that when N > αd, dimPE alone is not enough to determine dimPBα(E).
Xiao [18] has proved that if N > αd, then for every Borel set E ⊆ RN ,

dimPBα(E) =
1
α

DimαdE a.s., (4.4)

where Dimαd denotes the (αd)-dimensional “packing dimension profile” of E defined by Fal-
coner and Howroyd [4].

In light of (4.4) and Theorem 1.1, we may ask the following natural question:

Question 4.5 Let Bα be the (N, d)-fractional Brownian motion with N > αd. Is it true that,
a.s. for every Borel set E ⊆ RN ,

dimPBα(E + t) =
1
α

DimαdE for almost all t ∈ [0, 1]N? (4.5)

Recently Wu and Xiao [15] have extended the aforementioned result of Pitt [11] on interior
points of the image to the fractional Brownian sheet W 〈α〉 [the result of Wu and Xiao [15] is
for general WH ]. Moreover, by using the arguments in Xiao [18] and Wu and Xiao [15], we can
easily show that the results (4.3) and (4.4) also hold for the (N, d)-fractional Brownian sheet
W 〈α〉. Therefore, both Questions 4.4 and 4.5 can also be asked for the fractional Brownian
sheet W 〈α〉.

Acknowledgments. We thank referee for his/her thoughtful comments of our paper that
have led to several improvements of the manuscript.
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