
Dimensional Synthesis of Parallel Robots with a Guaranteed
Given Accuracy over a Specific Workspace

J-P. Merlet
INRIA

BP 93, 06902 Sophia-Antipolis Cedex, France
Jean-Pierre.Merlet@sophia.inria.fr

D. Daney
INRIA

BP 93, 06902 Sophia-Antipolis Cedex, France
David.Daney@sophia.inria.fr

Abstract— We are considering a n d.o.f. parallel robot
that has to move within a given workspace and whose
geometry is defined by a set of parameters. The motion of
active joints of the manipulator are measured with sensors
with a known accuracy ±∆ρ. These errors together with
bounded manufacturing errors on the parameters describing
the geometry of the robot induces a positioning errors ∆X
of the platform. We present an algorithm that allows one
to determine geometries of the robot ensuring that these
positioning errors will lie within pre-specified limits for any
pose of the robot in its workspace even if the physical
realization of the robot differs from the theoretical model
while staying within the given manufacturing errors bounds.
A by-product variant of this algorithm allows one to compute
the maximal positioning errors of a given robot up to a pre-
defined accuracy.

I. INTRODUCTION

It is well known that the performances of parallel robots
are very sensitive to their geometry. In this paper we
will consider a Gough platform (but the approach may be
extended to any type of parallel robot as soon as its inverse
jacobian has an analytic form) and we intend to determine
the geometries of this type of robot such that the errors
in the positioning of the platform lie within prescribed
intervals.

Error analysis is a complex problem that has been
mostly addressed in term of finding the positioning errors
of a given robot at some specific location within the
workspace [1], [2], [4], [3], [7], [8], [12], [13], [15],
[16], [17], [18]. Our approach differs first because we will
consider not only specific poses but the whole workspace.
Then we will mostly consider the error synthesis problem
i.e. finding the geometries of the robot that lead to have
at least a required accuracy although error analysis will
be possible by using a variant of our algorithm. Finally
we will also take into account the differences between the
theoretical geometrical model of the robot and the real
values of this model so that any real robot manufactured
according to our design solutions will have the required
accuracy.

It is well known that the positioning errors ∆X of the
platform are related to the leg lengths measurement errors
∆ρ by:

∆ρ = J−1(P,X)∆X (1)

where J−1 is the inverse jacobian matrix of the robot,
that is pose dependent but also depends on the geometrical

parameters P that defines the geometry of the robot.
This geometry is defined by the location of the attach-

ment points Ai (Bi) of the legs on the base (platform).
We define a reference frame O,x,y, z and a mobile frame
C,xr,yr, zr. We will not assume that the Ai or the Bj

are coplanar but we will assume that the projection of the
Ai’s on a plane that is perpendicular to z are located on a
circle with radius R1 while the projection of the Bj’s on a
plane perpendicular to zr are located on a circle of radius
r1 (figure 1). We define the angle θi,αi in such way that

α2
B2B3

B5

B1

B4
B6

r1

yr

xr

zr

C

A1

A6

A2

A3

A4

A5

θ1

O y

x

z

base

platform

Fig. 1. The geometrical parameters of the robot

the coordinates of the Ai, Bj in the reference and mobile
frames are:

Ai = (R1 cos θi, R1 sin θi, zi)
Bj = (r1 cosαj , r1 sinαj , zbj)

Hence we have in P a total of 26 geometrical parameters:
R1, r1 and 6 quadruples θi, zi,αi, zbi. We will assume that
all these parameters are bounded i.e. we are looking only
for values of these parameters that lie within a given set
of ranges RP .

The pose X of the robot will be defined by the co-
ordinates xc, yc, zc of the center of the platform C in
the reference frame together with 3 angles φ1,φ2,φ3 that
allows one to calculate the rotation matrix R between the
mobile and reference frame.

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 942

We assume that the robot will have to move within
a given workspace W that is supposed to be defined as
intervals for the xc, yc, zc,φ1,φ2,φ3 parameters (but the
approach may be extended to more complex workspace
geometries as we will see later on, see section III-C).

We have a desired vector of maximal positioning errors
∆Xd that is defined as a set of allowed ranges for the errors
on xc, yc, zc and for the angular errors. We will denote by
∆Xi

d the i-th component of this vector.
Equation (1) may be rewritten as:

∆X = J(P,X)∆ρ (2)

The element at i-th row and j-th column of J will be
denoted as Jij and we define the norm |Ji| of the i-th
row of the jacobian as

|Ji| =
k=6∑

k=1

|Jik|

Note that as (2) is a linear system we may choose ± 1 as
value for the sensor error and scale ∆Xd correspondingly.
Under this assumption the maximal absolute value of ∆Xi

is exactly |Ji|.
Our first goal is to find robot geometries for which we

can ensure that whatever is the pose of the robot within the
workspace the positioning error will be included in ∆Xd .
But our second goal is that this feature will still hold even if
the values of the geometrical parameters of the real robot
differ by a limited amount from their theoretical values.
Hence we are looking not for values for the geometrical
parameters but for ranges IPj for each of them such that
they satisfy the property:

∀ Pj ∈ IPj , j ∈ [1, 26] and ∀ X ∈ W
|Ji(X,P)| ∈ ∆Xi

d (3)

II. THEORETICAL ANALYSIS

A. Dealing with manufacturing tolerances
As mentioned previously we intend to find the solution

of the synthesis problem such that even with manufacturing
errors the property (3) will be satisfied. We may assume
that the manufacturing tolerances on the geometrical pa-
rameters are bounded and that their bounds are known.
If Pm

j is used as nominal value of a given geometrical
parameters Pj for the manufacturing process we may
assume that the real value of Pj will lie in the range
[Pm

j − εj , Pm
j + εj].

This implies that if we find a solution interval IPj =
[a, b] for the parameter Pj whose width is larger or equal
to 2εj , then we are able to guarantee that the real robot
will satisfy property (3) by choosing as theoretical manu-
facturing value a number in the range [a − εj , b − εj] as
this guarantee that the real value will be in IPj .

B. Dealing with the jacobian matrix
A main difficulty of this problem is that in general for

parallel robots the matrix J has an unknown analytical
form (or at least a very complex one, that is useless) while

its inverse J−1 is perfectly known. Indeed for the Gough
platform the i-th row of J−1 is:

J−1
i = ((

AiBi

||AiBi||
,

CBi × AiBi

||AiBi||
)) (4)

where ||AiBi|| is the Euclidean norm of the vector AiBi

or, in other words, the length ρi of leg i.
Consider now the linear system

J−1(P,X)∆X = ∆ρ (5)

The problem we intend to solve is to find interval values
for each parameters such that by choosing any value for
the parameters in these intervals the linear system will be
such that for all X in W and all values of ∆ρi in [-1,1]
all the solutions ∆X of the system lie in the range ∆Xd.

If all the geometry and pose parameters lie within given
ranges, then interval analysis allows to determine a range
for each element of J 1 that include all possible values
for the elements (even taking into numerical round-off
errors). The drawback of interval analysis is that these
ranges will usually be overestimated with a negative impact
on the efficiency as we will examine if all the systems
defined by the interval matrix have a solution included in
∆Xd. However we may limit this overestimation by using
classical methods of interval analysis, such as the use of
the derivatives of the elements with respect to the geometry
and pose parameters [5], [6].

The interval evaluation J−1
I of J−1 will be computed

using the procedure Compute Jacobian(PI ,XI) that
takes as input the ranges PI ,XI for the geometry and
pose parameters.

Note an interesting property of the system (5). Each
element J−1

ij of the i-th line of J−1 may be written in
the form Uij/ρi. Multiplying both sides of the system (5)
by the diagonal matrix Aρ whose diagonal elements are ρi

leads to the system:

J−1
m (P,X)∆X = Aρ∆ρ (6)

where J−1
m is the matrix ((Uij)). This system has hence the

same solutions than (5). This system is interesting for us
as the derivatives of Uij , ρi with respect to the unknowns
are relatively simple while the derivative of Uij/ρi may be
quite complex. Hence the interval evaluation of the matrix
J−1

m will suffer from a lower overestimation compared to
the interval evaluation of J−1.

C. Solving interval linear systems
Finding the solutions Y of a linear system:

AY = b (7)

where A is an interval matrix and B an interval vector is
a classical problem in interval analysis.

We want to determine the solution set defined by:

Σ∃,∃(A,b) = {y|,∃A ∈ A,∃b ∈ b, A.y = b}, (8)

To determine Σ∃,∃(A,b) or only the tightest enclosing
box is an NP-hard problem and hence expensive in high

943

dimension as its shape can be quite complicated. However,
it is possible to find a box enclosure of Σ∃,∃(A,b) by an
interval vector YS with limited overestimation, provided
that the intervals are narrow enough.

The numerical conditioning of the system (7) is essential
for an efficient solving. This quality may be improved if
the matrix A is diagonally dominant (see [11]) i.e. roughly
if this matrix is close to the identity matrix. That is possible
by preconditioning the system i.e. by multiplying both
terms of equation (7) by a conditioning scalar matrix M.
Indeed the system becomes MAY

′
= Mb (Σ∃,∃(A,b) ⊂

Σ∃,∃(M.A,M.b) but often Y ⊂ Y
′

– see [5]). Usually the
best conditioning matrix is the matrix obtained by taking
the middle point of all the interval elements of A then by
inverting it : M = [Mid(A)]−1.

The basic method to provide the solution of (7) is an
interval adaptation of the Gauss-elimination method which
computes Y without the need of an initial estimation of
Y. However if such initial estimation is available, it is
possible to apply an iterative fixed point algorithm such as
the Interval Gauss-Seidel scheme given by

Yk+1 ← Yk ∩ C−1(b − D.Yk)

with C = Diag(A) and D = A − C.
Another iterative method, the Krawczyk iterative scheme

may be used. It is defined as

Yk+1 ← Yk ∩ b + (I − A).Yk

but numerous other methods may also be applied [6].
For the application at hand we will use an interesting

propriety of those iterative algorithms: if Yk+1 ⊂ Yk

then all the solutions of all the linear systems are included
in Yk+1, [11]. By applying these methods on the system
(5), we are able to calculate an interval evaluation of the
solutions ∆X and if this evaluation is included in ∆Xd ,
then property (3) is satisfied for any geometry and pose
parameters within their respective range. We are thus able
to design a procedure Linear Solve(J−1

I , PI ,XI) that
will return 1 if all the solutions of (5) are included in
∆Xd whatever are the values of Pi,Xi in their range
PI ,XI . Otherwise, the procedure will return 0.

Note that all the methods that are used to find the
solutions set of a linear system are very sensitive to the
width of the interval of the elements of the A matrix. Hence
it is interesting to use in Linear Solve the matrix J−1

m

of the system (6) instead of the matrix J−1 of (5). Another
reason to use J−1

m instead of J−1 is that most of the
methods used to determine the solution of a linear system
involve at some point the calculation of the ratio Aij/Aii.
In our case Aij , Aii are written as Uij/ρi, Uii/ρi and
clearly the interval evaluation of Uij/Uii will be always
less overestimated than (Uij/ρi)/(Uii/ρi). See section III-
B for further details.

III. THE ALGORITHM

A. Algorithm principle
We present here an outline of the algorithm. As usual

for an interval analysis based method we define a box B

as a set of ranges, one for each of the geometry and pose
parameters. The algorithm will create and discard boxes
that are stored in a list L. Initially this list has only one
element {RP ,W} and the i-th box in the list will be
denoted Bi while the total number of boxes in L will be
n. A box Bj may be bisected using the Bisection(Bj)
procedure. In this procedure we consider the variable Pk

that has the largest interval. Its interval Ik = [ak, bk]
is bisected at its middle point in order to create 2 new
intervals Ik

1 = [ak, (ak + bk)/2], Ik
2 = [(ak + bk)/2, bk].

The bisection process on Bj results in 2 new boxes that
have the same ranges than Bj except for the variable k,
one of the box having for this variable the range Ik

1 while
the other has Ik

2 .
The algorithm will process the boxes in L in sequence,

l being the number of the box that is currently processed
and the algorithm starts with l = 1.

The algorithm proceeds along the following steps:
1) if l > n then EXIT
2) Jl=Compute Jacobian(Bl)
3) if Linear Solve(Jl,Bl)=1, then Bl is solution

a) store Bl in the result file, l = l + 1, go to 1
4) if the widths of all the ranges in Bl are lower than

2εj then l = l + 1, go to 1
5) Bisection(Bl): the 2 new boxes created by this

procedure are stored in L at position n+1 and n+2.
n = n + 2, l = l + 1, go to 1

This algorithm is straightforward:
• solution are determined at step 3
• boxes that may contain solution but which are too

small to ensure that a physical instantiation will be
enclosed in the solution are eliminated at step 4

• the algorithm will stop when reaching step 1 when all
boxes in the list have been processed

Note that we may take into account constraints on the
geometry parameters during the computation by introduc-
ing a filtering procedure before step 2. For example we
may want that the attachment points on the platform and
on the base are at a minimal distance from each other to
avoid interference problems. Accordingly we may design
a procedure that calculate an interval evaluation of the
distances between each pair of attachment points. If the
upper bound of the evaluation is lower than the distance
threshold the box will be discarded. If the upper bound is
greater than the threshold, then the box will be bisected.

The described algorithm returns as result an approxima-
tion of the set of all possible solutions of the synthesis
problem. It must be noted that, as all interval analysis
based method, it may be implemented using a distributed
approach i.e. using a set of computers: a master program
will manage the list L and send a box to process to a free
slave computer S. This slave computer program execute a
few steps of the algorithm with its own boxes list LS until
either LS is exhausted or that the number of boxes in LS
has reached a given threshold. Then the slave computer will
return to the master program the list LS (possible empty)

944

that has to be processed together with another set (also
possibly empty) of synthesis solutions. The master program
will include LS in L and will send another box to process
to S.

Failure of the algorithm may occur if the components of
the inverse jacobian matrix have a very complex form. In-
deed interval analysis will usually overestimate the ranges
for these components and the size of this overestimation
increase with the complexity of the analytical form of the
components. A consequence of this overestimation is that
the Linear Solve procedure may fail to determine if all
solutions of the linear systems are included in ∆Xd even
if the size of the ranges for the geometry and workspace
parameters is small.

Another possible cause of failure is that we do not
take into account the dependency of the components of
the inverse jacobian matrix. Indeed the interval matrix A
that will be considered by Linear Solve.describes a
larger set of linear systems than the one that we will get
by calculating the matrix for all values of the parameters
in their range. But taking into account the dependency
between the elements of A, b is difficult.

In the following sections we present possible improve-
ments of the method.

B. Improvement of the Gauss elimination scheme

Let us assume that we have an n × n interval linear
system:

A(X).Y = b(X)

where the A, b elements are function of the unknowns X.
When the unknowns lie in given ranges we may compute
an interval evaluation A(0) of A and an interval evaluation
b(0) of b (possibly using the derivatives of the components
of A, b to improve these interval evaluations). The Gauss
elimination scheme may be written as [10]

A(j)
ik = A(j−1)

ik − A(j−1)
ij A(j−1)

jk /A(j−1)
jj ∀ i, j > k (9)

b(j)
i = b(j−1)

i − A(j−1)
ij b(j−1)

j /A(j−1)
jj (10)

The enclosure of the variable Yj can then be obtained from
Yj+1, . . . , Yn by

Yj = (b(j−1)
j −

∑

k>j

A(j−1)
jk Yk)/A(j−1)

jj (11)

The important point is that in the above equations appear
the product and ratio of elements that are not independent
in our problem. Hence the enclosure solution we get does
not take into account this dependency.

Note that by using classical derivation rules an interval
evaluation of the derivatives of the elements at iteration
j i.e. A(j)

ik , b(j)
i , Yj may be calculated as soon as the

derivatives of the elements having the superscript (j−1) are
available. As the derivatives at iteration (0) are simply the
derivatives of the components of A, b that are available we
may therefore compute the derivatives of all the elements
at iteration (j) and use these derivatives to improve their
interval evaluations. Our experiments has shown that the

use of derivatives may reduce the size of the solution
enclosure by a 5 to 90 %.

C. Improvement based on workspace bisection
The above algorithm may fail if the considered

workspace is large. Indeed in that case the ranges for the
components of the inverse jacobian matrix may be quite
large even for small ranges for the geometry parameters,
hence leading to a failure of the Linear Solve proce-
dure. To avoid this problem we may consider bisecting also
the workspace parameters as soon as the ranges for the
geometry parameters are small enough. We will have a list
of boxes (to avoid any ambiguity we will use the notation
workspace box in that case) that will be submitted to
the Linear Solve procedure. All workspace boxes that
satisfy property (3) are eliminated from the list, the other
one being bisected. Only a limited number of bisection
is allowed: if this number is reached we come back to
the main algorithm dealing with the geometry parameters.
Hence we design a workspace procedure returns 1 if for
all the boxes in the list property (3) has been verified and
0 otherwise. This procedure may be used either before
or after step 4 of the above algorithm. It is relatively
computer intensive and hence should be carefully used: in
our implementation we use it only when a given number
of geometry parameter ranges have a width such that they
will be no more bisected.

Note that the workspace algorithm allows one to deal
with more complex workspace than the hyper-cube we have
been considering up to now as soon as we are able to design
a test that allows one to determine if a box is either fully
inside the workspace or fully outside the workspace. In the
later case the workspace box will be rejected from the list
while in the former case the accuracy within the box will
be considered.

Assume for example that the workspace for C is a sphere
centered at S1(x1, y1, z1) with radius l1 and that the ranges
for xc, yc, zc in the workspace box are Xc, Yc, Zc. We
compute the interval evaluation of Xc−x1, Yc−y1, Zc−z1

and denote by X, X the lower and upper bound of the
interval X . Then the interval evaluation of the square of
the distance between a point in the workspace box and S1

is (Xc − x1)2 + (Yc − y1)2 + (Zc − z1)2 and:
• if (Xc − x1)2+ (Yc − y1)2+ (Zc − z1)2 is lower than

l21, then the workspace box is fully inside the sphere
• if (Xc − x1)2+ (Yc − y1)2+ (Zc − z1)2 is greater than

l21, then the workspace box is fully outside the sphere
If none of these two conditions are satisfied, then a part of
the workspace box is inside the sphere while its comple-
mentary is outside the sphere (indeed in that case as there
is only one occurrence of the unknown xc, yc, zc in the
squared distance expression, the interval evaluation of the
squared distance is exact: there are points in the workspace
box whose squared distance to S1 is exactly either the lower
or upper bound of the interval evaluation). In that case we
will just use the Linear Solve procedure to check if the
workspace box satisfy the property (3). If this is the case
we discard the workspace box otherwise it will be bisected.

945

D. Improvement based on Oettli theorem
We present here an approach that may allow to de-

termine larger solution boxes than with Linear Solve.
Assume that at the middle point of a box (i.e. for a given
robot geometry) and at the center of the workspace the
robot accuracies are included in ∆Xd while for some
other geometries within the box and some points of the
workspace at least one of the accuracies that is not included
in ∆Xi

d. As the solutions of (5) are continuous functions
of the geometry and workspace parameters there must exist
points within the box where at least one of the extremal
accuracy is exactly the upper bound of ∆Xi

d while the
other accuracies lie in ∆Xj

d. If it is possible to prove that
no such point exists, then the box is a solution box. For
this proof we will rely on Oettli theorem [14]: let

Ax = b (12)

be a set of linear systems with A an interval matrix and
b an interval vector. Let Ac be the matrix obtained by
taking the mid-point of the range of the components of A
and bc be the mid-vector of b. We define ∆ as the matrix
whose components are the half diameter of the ranges of
the components of A and similarly δ as the vector whose
components are half the diameter of the range of b. Oettli
theorem states that there are systems Ax = b with A in A,
x in X and b in b that have solutions if and only if:

|Acx − bc| ≤ ∆|x| + δ (13)

We will use this theorem on (5) to determine if there is a
system that admit a solution with one of its component xi

being fixed to ∆Xi
d while the others may have any value

in ∆Xj
d. As for b it may be any of the 64 vectors that have

+1 or -1 as entries. If we show that (13) is never satisfied
whatever is x and for all i in [1,6], then we have proven that
we have a solution box. The computation amounts to verify
384 inequalities of type (13) (64 inequalities corresponding
to the different combination for b, this for each of the 6
components of x that are fixed to their extremal value).
Verifying (13) is a complex issue but may be done using a
bisection approach as the 5 unknowns in x (the components
of x that are not the i-th component) have bounded values.
As we will see in the example this computation is intensive
but allows one to obtain larger solution boxes.

IV. IMPLEMENTATION AND RESULTS

The previous algorithms have been implemented us-
ing the BIAS/Profil interval arithmetics package (that
implement basic operations of interval arithmetics) and
the C++ library ALIAS that implement high-level interval
analysis procedures such as the bisection, the linear system
solver or the interval evaluation using the derivatives. A
Maple interface to ALIAS allows one to produce auto-
matically the C++ code that is necessary for the interval
evaluation of the Uij , ρi quantities, together with their
derivatives.

As the result of the algorithm is a list of possible ranges
for the 26 geometry parameters it is impossible to represent

graphically the full result. Hence we will just present a
simple example in which the θ,α angles are supposed to
have a manufacturing tolerances of 0.001 rad while their
ranges have exactly 2 times this tolerance (thereby these
parameters will not be touched by the bisection process)
and the attachment points A,B are supposed to be perfectly
coplanar.

The parameters R1, r1 have a tolerance of 0.001 and
their initial range is [193,195] and [9,10]. The workspace
is small with a range of [-1,1] for xc, yc and [199,201]
for zc while the pitch, yaw, roll angles have a range
of [-0.005,0.005] rad. The desired accuracy is ± 10 for
∆xc, yc, zc and ± 1 for the angular errors. The smaller the
radius of the platform is, the closer we are to a singular
configuration. Hence the amplification factor between the
leg lengths measurements and the platform positioning
error will be high if the platform radius is small.

If we do not use the improved Gauss elimination scheme
described in section III-B the result is a list of 819 solution
boxes for a total volume of 2.0235e-33. The computation
time for establishing this result is about 34mn on a DELL
D400, 1.7 Ghz. With the improved Gauss elimination
scheme we get 677 solution boxes for a total volume of
7.663e-33 in a computation time of 1 hour and 7 mn. Both
results are presented on figure 2.

Fig. 2. In grey the allowed region for R1, r1: for all these base and
platform radius the desired accuracy is reached (the darker area is the
result obtained without the improved Gauss elimination scheme).

The computation time is relatively large but it must be
understood that the result presents guaranteed solutions to
the synthesis problem. It may be decreased by using a
distributed implementation although we believe that im-
provements of the algorithm are still possible. Solutions are
obtained almost immediately and most of the computation
is spent in the workspace procedure when trying to deter-
mine if a box is solution of the synthesis problem. Hence
we cannot claim to obtain all the synthesis solution unless
we allow for a computer intensive use of the workspace
procedure.

946

A large number of boxes may be produced (simply
because there may be a large number of possible design
solutions), but file storage is not a problem. Furthermore
we may reduce this number by using the output of the
algorithm as an input for another algorithm that will deal
with another performance index (for example the reachable
workspace [9]) and that will eliminate some of the boxes.

V. ERROR ANALYSIS

Assume now that we have determined a geometry for the
robot, that satisfies property (3). We want now to proceed
to an error analysis of this robot i.e. we want to determine
what are the extremal positioning errors ∆Xr over the pre-
specified workspace (indeed at this stage we only know that
∆Xr is included in ∆Xd). But the objective is also to
take into account the manufacturing errors i.e. we want to
determine the extremal positioning errors whatever are the
geometric parameters of the real robot.

A simple variant of the previous algorithm allows one to
determine this extremal positioning errors up to an arbitrary
accuracy µ. The main idea is to compute the positioning
error for the middle point of the box. Using this calculation
we are able to update a set of current values ∆XM for
the extremal positioning errors. Then Linear Solve is
used with ∆XM ±µ as enclosure for the solutions. If this
procedure returns 1, then there is no value of ∆X greater
in absolute value than |∆XM + µ| in the current box: this
box can thus be discarded. Note that this is the only case
for which a box is discarded as step 4 of the algorithm is no
more used. After running this algorithm ∆Xr is guaranteed
to be included in [∆XM − µ,∆XM + µ] .

As an example the first box of the previous result has
been examined with R1 = 194.9375, r1 = 9.8125 using
µ = [0.5, 0.5, 0.5, 0.05, 0.05, 0.05]. We have found out that
the maximal positioning errors were ± [7.67256 ,3.5064
,2.3123 ,0.306632, 0.815007 ,0.460367] in about 45 sec-
onds. If we change µ to µ = [0.2, 0.2, 0.2, 0.02, 0.02, 0.02]
we get the same result in 1846s.

VI. CONCLUSION

Synthesis of parallel manipulator with respect to ac-
curacy requirements is a difficult problem. The interval
analysis-based approach we have proposed allows one
to solve this problem with the additional advantages of
providing not only one solution but a continuous set that
allows one to take into account manufacturing errors. Note
that this approach may be used for other mechanisms than
parallel robot as soon as there exists a mean to calculate an
interval evaluation of the elements of the Jacobian matrix.

Like most algorithms using interval analysis although
it principle is fairly simple its implementation requires a
lot of expertise to be efficient. For that purpose we have
reported the use of the derivatives in the Gauss elimination
scheme (this use is presented here for the first time to the
best of our knowledge) that allows one to obtain larger
solution boxes. The main reason for the large computation
time is that we have a procedure to test if a box is a solution
but the only criteria to determine if a box is not a solution

is based on its overall size. The lack of such negative test
prohibits us to use various methods of interval analysis that
allows to filter boxes.

Our prospective are to develop:
• algorithms that will allow to determine that a whole

box is not a solution
• algorithms that take more into account the dependency

between the components of the J−1 matrix
• algorithms to improve the speed of the error analysis.

A possibility is to use a fast local optimization pro-
cedure as soon as it has been determined that some
elements of the accuracy at the middle point of a box
are larger than the current maximal value

REFERENCES

[1] Brisan C., Franitza D., and Hiller M. Modelling and analysis of
errors for parallel robots. In 1st Int. Colloquium, Collaborative
Research Centre 562, pages 83–96, Braunschweig, May, 29-30,
2002.

[2] Di Gregorio R. and Parenti-Castelli V. Geometric error effects on
the performances of a parallel wrist. In 3rd Chemnitzer Parallelkine-
matik Seminar, pages 1011–1024, Chemnitz, April, 23-25, 2002.

[3] Han C. and others . Kinematic sensitivity analysis of the 3-UPU
parallel manipulator. Mechanism and Machine Theory, 37:787–798,
2002.

[4] Han C-S., Hudgens J.C., Tesar D., and Traver A.E. Modeling,
synthesis, analysis and design of high resolution micromanipulator
to enhance robot accuracy. In IEEE Int. Workshop on Intelligent
Robot and Systems (IROS), pages 1153–1162, Osaka, November,
3-5, 1991.

[5] Hansen E. Global optimization using interval analysis. Marcel
Dekker, 1992.

[6] Jaulin L., Kieffer M., Didrit O., and Walter E. Applied Interval
Analysis. Springer-Verlag, 2001.

[7] Kim H.S. and Choi Y.J. The kinematic error bound analysis of the
Stewart platform. J. of Robotic Systems, 17(1):63–73, 2000.

[8] Masory O., Wang J., and Zhuang H. On the accuracy of a Stewart
platform-part II: Kinematic calibration and compensation. In IEEE
Int. Conf. on Robotics and Automation, pages 725–731, Atlanta,
May, 2-6, 1993.

[9] Merlet J-P. Designing a parallel manipulator for a specific
workspace. Int. J. of Robotics Research, 16(4):545–556, August
1997.

[10] Neumaier A. Interval methods for systems of equations. Cambridge
University Press, 1990.

[11] Neumaier A. Introduction to Numerical Analysis. Cambridge Univ.
Press, 2001.

[12] Parenti-Castelli V. and Di Gregorio R. Influence of manufacturing
errors on the kinematic performance of the 3-UPU parallel mecha-
nism. In 2nd Chemnitzer Parallelkinematik Seminar, pages 85–99,
Chemnitz, April, 12-13, 2000.

[13] Patel A.J. and Ehmann K.F. Volumetric error analysis of a Stewart
platform based machine tool. Annals of the CIRP, 46/1/1997:287–
290, 1997.

[14] Rohn J. Systems of interval linear equations and inequalities
(rectangular case). Research Report 875, Institute of Computer
Science, Academy of Sciences of the Czech Republic, September
2002.

[15] Ropponen T. and Arai T. Accuracy analysis of a modified Stewart
platform manipulator. In IEEE Int. Conf. on Robotics and Automa-
tion, pages 521–525, Nagoya, May, 25-27, 1995.

[16] Ryu J. and Cha J. Volumetric error analysis and architecture
optimization for accuracy of HexaSlide type parallel manipulators.
Mechanism and Machine Theory, 38:227–240, 2003.

[17] Tischler C.R. and Samuel A.E. Predicting the slop of in-
series/parallel manipulators caused by joint clearances. In ARK,
pages 227–236, Strobl, June 29- July 4, 1998.

[18] Wang J. and Masory O. On the accuracy of a Stewart platform-
part I: The effect of manufacturing tolerances. In IEEE Int. Conf.
on Robotics and Automation, pages 114–120, Atlanta, May, 2-6,
1993.

947

