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Abstract. The behaviour of artificial microswimmers consisting of droplets of a mesogenic oil immersed
in an aqueous surfactant solution depends qualitatively on the conditions of dimensional confinement;
ranging from only transient aggregates in Hele-Shaw geometries to hexagonally packed, convection-driven
clusters when sedimenting in an unconfined reservoir. We study the effects of varying the swimmer velocity,
the height of the reservoir, and the buoyancy of the droplet swimmers. Two simple adjustments of the
experimental setting lead to a suppression of clustering: either a decrease of the reservoir height below a
certain value, or a match of the densities of droplets and surrounding phase, showing that the convection
is the key mechanism for the clustering behaviour.

1 Introduction

Artificial self-propelled microswimmers have recently
gained attention as model systems for mimicking biolog-
ical equivalents, both for single swimmers or collective
ensembles. There is particular demand for extensive en-
sembles of simple uniform swimmers, for example in mod-
elling marine plankton, which forms a large part of our
ecosystem [1,2]. A well known problem in this field is the
“paradox of the plankton”, i.e., the apparent conflict be-
tween the rich biodiversity in marine phytoplankton and
standard predator-prey dynamics [3–5], which has been
approached in studies employing chaotic oscillations [6],
turbulent dynamics [7], and non-equilibrium environments
in general [8].

On a less global scale, suspensions of upswimming
organisms (e.g. Tetrahymena pyriformis) show collective
convection involving large numbers of individual swim-
mers [9,10]. The occurrence and wavelength of these pat-
terns depend on parameters like the reservoir height and
the number density of the swimmers.

To match the complexity of biological equivalents, we
need both artificial experimental and numerical systems
sensitive to the interplay between self-propulsion, buoy-
ancy, and advection. Numerical studies are highly chal-
lenging in this respect, due to the large numbers of swim-
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mers required and the resulting multi-particle dynam-
ics, varying boundary conditions and diverse geometries,
complexity of swimmer geometries and propulsion mech-
anisms, and the strong influence of hydrodynamic inter-
actions. Because hydrodynamic flow fields only decay al-
gebraically, with 1/r as the leading term both in rigid
spheres and droplets [11], a reliable cut-off criterion, by
which the range of mutual interactions can be limited, is
nearly impossible to choose. Accordingly, numerical and
analytical simulations report mostly on two-dimensional
(2D) systems: either rigorous 2D geometries [12–15], or
the change in rotational diffusion properties in pure Brow-
nian particles with varying degrees of freedom [16], or z-
confined quasi-2D disks or rods with coupled hydrody-
namic interactions [17–21,14], or swimmers confined to
two dimensions interacting by three-dimensional hydro-
dynamic fields [22]. In the case of full three-dimensional
(3D) systems, numerical simulations either exclude hydro-
dynamic interactions [23,24] or are restricted to small sys-
tem sizes [25].

In experimental studies, various artificial systems have
been reported on, each showing interesting individual fea-
tures. The systems can be categorized either as interface
bound surfers [26–29], micro-machines [30–32], Janus par-
ticles [33–37] or active emulsions [38–47].

However, when looking for a system with high sym-
metry, scalability, long lifetimes, and the option to tune
speed and dimensionality, most of these systems are not
applicable. Either the restriction to quasi-2D geometries
is inherent to the propulsion mechanism, as in the case
of surfers, or the high and non-uniform mass density of
the swimmers makes them ineligible for buoyancy match-
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ing, as in the case of Janus particles. For most of the
active emulsion systems, the active periods are short, the
chemical reactions involved are complex and the dynamics
of the reaction products affect the droplet propulsion in
an unpredictable manner [38–40,42–44]. Nevertheless, in
certain active emulsions [45,46] the propulsion mechanism
is based on a solubilisation process, where the kinetics of
the reaction products are diffusive and therefore analyt-
ically tractable. Due to this tractability and their high
spatial symmetry, solubilising droplet swimmers appear
to be well suited for three-dimensional collective studies
bridging numerical and biological equivalents, if the mass
density of the constituents can be buoyancy matched.

We study artificial microswimmers consisting of meso-
genic oil (liquid crystal) droplets immersed in an aque-
ous surfactant solution [45]. The formulation is excep-
tionally simple (only three components — water, oil, and
surfactant — are needed) and large quantities of identi-
cal swimmers can be generated in microfluidic devices.
The droplets self-propel for up to one hour; the swim-
ming speed increases with the surfactant concentration.
The density of the aqueous phase can be adjusted to
give the swimmers positive, neutral or negative buoy-
ancy, and swimming dynamics can be observed in cus-
tomized microfluidic geometries. Therefore, the system
can be adapted to study microswimmer systems at var-
ious scales in conditions varying from single and multiple
swimmers in two-dimensional confinement to full collec-
tive dynamics in three dimensions. In the experiments on
high swimmer densities in variable microfluidic geometries
presented below, we observed a wide range of phenomena
caused by the interplay between dimensional confinement
and hydrodynamic interactions. In particular, we describe
a novel kind of self-assembling clustering driven by convec-
tion, which cannot be understood in a framework lacking
either hydrodynamics or a full 3D description.

2 Materials and methods

The swimmers used in our experiments consist of drop-
lets of the mesogenic compound 4-pentyl-4′-cyanobiphenyl
(5CB) immersed into an aqueous solution of the ionic sur-
factant tetradecyltrimethylammonium bromide (TTAB).
When the surfactant concentration cs exceeds the value of
the critical micelle concentration (CMC = 0.13wt%), the
droplets solubilise gradually into a homogeneous micellar
nanoemulsion [48]; in which case the droplet diameter de-
creases linearly with time. If cs exceeds a threshold value
of about 5wt%, the solubilisation is accompanied by a self-
propelled motion with velocities between 5 and 25µm/s,
depending on the value of cs [45]. This can be understood
in a simplified model of advection dynamics: Empty mi-
celles advect at the front of the droplet while it dissolves,
take up liquid crystal molecules and cause a gradient in
surfactant coverage between the leading and the trailing
end of the droplet. This corresponds to stresses leading
to a self-sustained Marangoni flow in the interface. The
moving interface couples to both adjacent media, causing
the droplet to move with respect to the continuous phase,

Fig. 1. Schematic of a self-propelling droplet. Blue arrows in-
dicate the Marangoni surface flow generating internal convec-
tion and self-propelled motion. The grey arrow indicates the
swimming direction. A and B are stagnation points.

Fig. 2. Schematic of an experimental chamber. Reservoirs of
different height are made by mold casting PDMS. The surfac-
tant solution mixed with droplets is filled into the reservoirs
and then closed by a cover slip, preventing evaporation. De-
pending on the H2O/D2O ratio, clusters will form at the lower
or upper cell boundary. The clustering is observed under bright
field microscopy.

as well as convection inside the droplet (fig. 1). A more
detailed description of the swimming mechanism can be
found in [45].

Both 5CB (Synthon Chemicals) and TTAB (Sigma
Aldrich) are used without further purifications. Droplets
are mass produced in a PDMS based microfluidic flow
focusing device using a surfactant solution with a con-
centration below the CMC, sufficiently high to stabilise
the emulsion against coalescence, but low enough to keep
the droplets from solubilising. The initial diameter of the
droplets in the experiments presented below is a = 45µm
with a polydispersity of less than 5%; other sizes are avail-
able. The droplets are stored in a glass vial at densities of
≈ 1000 droplets per µL. For experiments, we use circular
PDMS reservoirs with a diameter D of 6mm and heights
H varying between 0.3mm and 5mm (fig. 2). A small
amount of the stock solution is diluted with surfactant
solution at the desired concentration (between 7.5wt%
and 17.5wt%) and pipetted into the reservoir which is
then capped with a cover slip to prevent the sample from
evaporating and obscuring the field of view by forming a
meniscus. We observe the in-plane droplet motion with an
Olympus IX-73 bright field microscope at 2× magnifica-
tion, equipped with a Canon EOS 600d camera recording
data at 4 fps. For height measurements of clusters we use
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Fig. 3. The collective droplet behaviour is controlled by di-
mensional confinement, i.e., different ratios of reservoir height
H and droplet diameter a. In quasi-2D confinement (H ≈ a),
there are only transient aggregates, which develop and break
apart dynamically. For intermediate reservoir heights (H ≈

4a), hydrodynamically stabilized lines form perpendicular to
the swimming direction. For unconfined reservoirs (H > 10a),
stable clusters with the average distance Λ(H) assemble over
large length scales. The droplet size is a ≈ 45 µm in all three
images. The field of view is 500× 500 µm2 for left and middle,
and 2.5 × 2.5 mm2 for the right image.

the calibrated z-drive of the stage of an Olympus IX-83
microscope at 40× magnification. We use the same mi-
croscope and settings to map fluid motion in the aqueous
phase by particle tracking or particle image velocimetry
(PTV/PIV), using 2µm latex colloids as tracer particles.

There is only a small mass density difference be-
tween the liquid crystal (ρ5CB = 1.022 g/cm3) and water
(ρH2O = 0.998 g/cm3). We can change the density of the
surfactant solution by substituting water with heavy wa-
ter (ρD2O = 1.107 g/cm3) without affecting the chemical
composition of the system. Depending on the D2O frac-
tion the droplets either sediment, float to the top, or are
neutrally buoyant.

3 Experimental results

3.1 Qualitative observations

We studied dense systems of sedimenting swimmers with
initial area densities above 10% in circular reservoirs of
varying height (fig. 3). We chose the xy plane of observa-
tion to align with the reservoir bottom and the z axis to
point upwards against gravity (fig. 2).

When large numbers of droplets are confined to a
quasi-2D layer, clustering behaviour is qualitatively simi-
lar to the low density limit of MPCD simulations by Zöttl
et al. [19], showing only transient clusters (fig. 3 left).
The droplets are arrested after head-on collisions until ro-
tational diffusion enables them to leave such a transient
cluster (cf. also experiments from [35]). We were not able
to compare our experiments with simulations at higher
number densities, because the rapid depletion of the sur-
factant will stop droplet motion after less than 5 minutes.
Long range hydrodynamic attraction is screened by the
2D confinement, i.e., the short distance between swim-
mer and cell boundary also sets a cut-off length for the
inter-particle interaction [49]. Consequently, if the reser-
voir height is increased to a few droplet diameters, the

Fig. 4. Time lapse of one experiment over the course of 30min.
The height of the reservoir is 2 mm, the reservoir diameter is
6 mm, the initial particle diameter is 45 µm, and the surfactant
concentration cs is 10wt%. Top row from left to right: 0, 1 and
3 min. Bottom row from left to right: 5, 10 and 30min.

droplet behaviour changes (fig. 3 middle). Due to hydro-
dynamic attraction between the particles in the equato-
rial plane, droplets arrange in stable lines perpendicular
to the direction of motion [50,41,51] and continue collec-
tively. These line arrangements are stable until they col-
lide with single droplets or other lines. In a third geomet-
ric configuration extending the reservoir height to more
than 7-10 droplet diameters, we observe the formation
of large stable clusters of hexagonally packed monolayers
(fig. 3 right), or, at higher densities, an extension into sec-
ond layer packings. In the remainder of the present study,
we show that this cluster formation is driven by convec-
tion and investigate the effects of surfactant concentration,
reservoir height, and buoyancy adjustment.

First, we present a short summary of the life and death
of a clustering swimmer system. The time series in fig. 4
shows the dynamics of cluster assembly over the course
of 30min. A mixture of surfactant solution and individual
droplets at the desired number density is injected into the
reservoir. As the mass density of the swimmers exceeds
that of the surfactant solution by 2%, they sediment and
accumulate close to the bottom of the reservoir. When the
number density of the droplets near the bottom is suffi-
cient, they nucleate into flat hexagonally packed clusters.
These clusters are stable for most of the life time of the
droplets (neglecting smaller rearrangements at the cluster
edges) and coexist with a dilute gas-like phase of freely
swimming droplets around them. The clusters hover at a
finite height above the reservoir bottom and are rather
stationary compared to the single swimmers. The stable
regime ends when the diameter of the droplets shrinks be-
low a certain value during dissolution. Then clusters start
to disintegrate, sometimes buckling in the z direction,
accelerating in oblique directions and colliding with the
reservoir boundary, or disassembling radially. We will con-
fine our quantitative analysis to the stable regime, where
cluster mobility is low and rearrangements are infrequent.
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Fig. 5. Morphology of a stable cluster observed between
crossed polarisers. The cross-shaped pattern inside the droplet
marks the position of the defect, identifying droplets pointing
upwards in the centre and tilted alignment on the boundaries
with an angle to the z axis of α = 25 ± 6◦. The white double
arrows show the orientation of the polariser and analyser.

3.2 Morphology of a single cluster

To investigate the morphology of individual clusters we
make use of the optical anisotropy of the mesogenic
droplet swimmers. The compound 5CB is nematic at room
temperature, i.e. birefringent, and characteristic topolog-
ical features can be observed between crossed polarisers.
The coverage of the droplets with surfactant molecules
leads to a perpendicular anchoring of the nematic direc-
tor on the droplet surface, causing a topological point de-
fect in the director field. While in a resting droplet the
point defect is located at the centre, the internal convec-
tion in a self-propelling droplet moves the defect towards
the leading edge near the flow stagnation point marked by
B in fig. 1. Because the deformation of the director field
near the point defect results in a typical pattern under a
polarizing microscope, we can determine the position of
the defect and the orientation of the symmetry axis of
the swimming droplet. Figure 5 shows the top view on a
cluster between crossed polarisers: the cross-shaped pat-
tern inside the droplet marks the position of the defect and
thus of the leading edge of the droplet. In the centre of the
cluster droplets point upwards in z, while droplets on the
boundary tilt inwards with an average angle α of 25 ± 6◦

with respect to the z axis. As the droplets are oriented
upwards, they pump liquid downwards, thereby generat-
ing a stagnation pressure that equilibrates the cluster at
a finite height h above the reservoir bottom at z = 0.
This mechanism is confirmed by the observation that h
increases linearly with the typical swimming velocity of a
droplet swimming freely in a surfactant solution of compa-
rable concentration (see fig. 11), i.e., h increases with the
pumping power of the cluster. Outflow from below the
cluster and influx from above suggest a closed toroidal
convection roll as sketched in fig. 6.

For a qualitative measurement of the structure of the
convection roll, we mixed the surfactant solution with
2µm latex tracer particles at a density below the sin-
gle scattering limit and analysed their motion using PTV.

Fig. 6. Schematic of a stable cluster consisting of a single
discoidal droplet layer with radius R and hovering height h.
The droplet diameter is a and the stripe pattern symbolises
the defect position and orientation. The volume flowing inward
Qin equals the outward flowing volume Qout, feeding a toroidal
convection roll.

In cylindrical coordinates, we consider the centre of a clus-
ter of radius R to be located at r = 0 and z = h. We de-
termined the radial component of the flow velocity, vr, in
three sectors at different distances from the cluster edge
by recording the trajectories of the tracer particles. This
measurement was repeated in several focal planes in the
range between z = 0 and z ≈ 3h. The complete data set
maps the three-dimensional profile for vr (fig. 7). Below
the cluster, vr is directed along +r, increasing in magni-
tude from the reservoir bottom to a height in the mid-
dle between bottom and cluster (z ≈ 1

2
h) and decreasing

again until the height of the cluster is reached (z = h). On
top of the cluster the aqueous phase is pumped inwards.
The flow is directed along −r, with the speed increasing
again up to a height z ≈ 2h, above which it decreases.
Below the cluster, the average vr is larger than above the
cluster. We were not able to quantitatively map tracer mo-
tion in z, but a flux in the direction of +z for r > R and
−z for r < R exceeding the sedimentation speed of the
colloids could be observed qualitatively, watching tracers
move through the focal plane directly above the cluster it-
self, passing through the interstices between the droplets.
This completes the picture of a toroidal convection roll as
sketched in fig. 6.

We can now derive a correlation between the cluster
radius R and the hovering height h using the simple argu-
ment that the total inward flux, which enters the cluster
from above, has to equal the outgoing flux, which leaves
the region below the cluster in the outward direction. We
consider a single-layered discoidal cluster, the centre of
which is located at r = 0 and z = h. Inside a clus-
ter, droplets with radius a

2
arrange hexagonally with their

leading edge pointing upwards. If a freely floating droplet
moves at a speed vin, each droplet arrested in the clus-
ter will displace fluid at a speed vin times its cross sec-
tion π(a

2
)2. Summation over the entire cluster, i.e., the

cross section of all droplets, gives for the cluster area

Acl = π
2

2
√

3
R2 and the total inward flux Qin = vinAcl.
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Fig. 7. Flow field around a stable cluster traced with 2 µm la-
tex particles. The grey circles show a cross section of the clus-
ter. The radial flow velocity vr is determined at three different
distances to the cluster edge and in various planes possessing
different heights z above the bottom of the reservoir (z = 0): vr

shows a Poisseuille-like profile, directed along +r (away from
the cluster centre) below the cluster and along −r (towards
the cluster centre) above.

This has to be balanced by an outward flux Qout which
has to cross an area Afl = 2πRh, i.e., the boundary of
a cylindrical volume with radius R and height h between
the cluster and the bottom of the reservoir. With vout de-
noting the mean velocity of the outward flow, we have
Qout = voutAfl. We require that

Qin = vinAcl
!
= voutAfl = Qout. (1)

If we calculate Qout by integrating the velocity data shown
in fig. 7, we find for vin indeed a value that corresponds
approximately to the velocity of a single unconfined swim-
mer.

The swimmers located at the edge of the cluster have
to withstand any flow directed along +r. Since these swim-
mers are tilted by an angle α, we can assign to them a
radial velocity component vr = −vin sin α. Assuming that
these swimmers experience a flow of the surrounding fluid
along +r with a mean velocity vout, a simple stability cri-
terion for the cluster is vout ≤ vin sin α. If vout is larger
than this threshold, the swimmers at the cluster bound-
ary would detach from the cluster. Replacing in eq. (1)
vout by vin sin α and solving for R results in

R =
4
√

3

π
h sin α ≈ 2.2h sin α. (2)

Fig. 8. Cluster radius R vs. hovering height h. The dashed
line describes the simple argument for R(h) (eq. (2)) with an
angle α of 27◦. Chosen surfactant concentrations lay between
10 and 16 wt%, resulting in speeds between 19 and 23 µm/s.

Fig. 9. Minimal droplet number for clustering, Nmin (black
circles), and droplet velocity v (open diamonds) as a function
of surfactant concentration cs. The increase of velocity and
decrease of reorientation time results in an increase of Nmin at
larger cs values.

As shown in fig. 8, we find experimentally a linear rela-
tion R ≈ h corresponding to α = 27◦. This is consis-
tent with observations from polarizing microscopy (fig. 5),
which suggest α = 25± 6◦. An increasing droplet velocity
leads to an increase of h and accordingly to an increase of
R (see fig. 8).

The dependence of cluster formation on velocity and
reorientation time in unconfined geometries can further
be described by the minimum number of droplets Nmin

necessary to form a cluster (see fig. 9). For low surfac-
tant concentrations Nmin will be smaller than for higher
ones since the nucleation of a cluster depends on the speed
and especially on the reorientation time of a swimmer, the
first of which increases, the second decreases with surfac-
tant concentration. For surfactants concentration as low
as 7.5wt%, seven droplets are already enough to form
a stable cluster, while for a surfactant concentration of
17.5wt% more than 100 droplets are necessary to ensure
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sufficient arresting. The sharp increase of Nmin between
15 and 17.5wt% suggests a threshold concentration be-
yond which either the pumping action of the droplets will
always exceed gravity or they reorient too fast to nucleate
clusters and initiate convection. Accordingly we observe
no clustering when a surfactant concentration of 20wt%
is exceeded.

We have described how a cluster forms and which
mechanism drives the observed convection roll. We will
now discuss two factors influencing the large scale cluster
formation, which demonstrate that the interplay between
the negative buoyancy of the droplets and the hydrody-
namic flow field generated by the droplets is at the heart
of the mechanism for this self-assembling behaviour: first,
the effect of confining the convection roll by decreasing
the height of the reservoir (sect. 3.3) and second, the clus-
tering behaviour of droplets in various buoyancy settings
(sect. 3.4).

3.3 Effect of confining the convection roll on the
clustering behaviour

As described in sect. 3.1, a certain minimum height Hmin

of the reservoir is required in order to observe the for-
mation of the convection-stabilized clusters. The value of
Hmin depends on the droplet velocity v: it varies from
Hmin ≈ 0.25mm for v = 19µm/s to Hmin ≈ 1.5mm for
v = 24µm/s. Since the swimmer velocity determines the
flow velocity in the convection roll, and thus the spatial
extent of the convection roll, the observed dependence of
Hmin on v is a first indication of the importance of con-
vection for the formation of the clusters: for H < Hmin,
clusters do not form because there is no space for the con-
vection roll to develop.

In a certain range of reservoir heights H above Hmin

we still observe a pronounced effect of H on the clustering
behaviour. For H just above Hmin, a convection roll
develops, but has to be smaller than in the unconfined
case H ≫ Hmin, as it is compressed between bottom and
ceiling of the reservoir. A direct measure of the lateral
size of the convection rolls is the average distance Λ
between neighbouring clusters (see right panel of fig. 3).
If we assume a roughly circular cross section of the
convection torus, we can expect an asymptotic limit of
Λ = 2H for shallow reservoirs, independent of swimmer
speed. The relation is asymptotical because we cannot
exclude compression due to the finite lateral confinement.
We measured Λ(H), varying H stepwise by changing
reservoirs, for two swimmer systems with roughly equal
swimmer numbers (3500 droplets) and different free
swimming speeds set by the TTAB concentration. The
first system uses a cs of 11.5wt%, corresponding to a free
swimming speed of 19.5 µm/s and a minimum Hmin for
clustering of ≈ 0.45mm. The corresponding values for
the second system are 9wt%, 15.5 µm/s and 0.35mm.
We have plotted the dependence of Λ on H in fig. 10. For
shallow reservoirs, Hmin < H < 3Hmin, Λ = 2H is indeed
a reasonable asymptote for both data sets. For higher
reservoirs, H exceeds the natural extent of the convection
roll and Λ(H) approaches a constant value that increases

Fig. 10. Average cluster distance Λ for different reservoir
heights H. For shallow reservoirs, we observe a linear asymp-
tote Λ = 2H (dotted line), beyond which clustering is entirely
suppressed (shaded area), for the transition to containers un-
confined in z, a plateauing value. The two systems consisted
of ≈ 3500 droplets (diameter 45 µm) with surfactant concen-
tration cs = 9 wt% and droplet velocity v = 15.5 µm/s (open
circles), and cs = 11.5 wt% and v = 19.5 (black diamonds).

Fig. 11. Hovering height h as a function of the swimmer veloc-
ity v. Symbols correspond to different reservoir heights H. The
dashed line marks a linear fit for h(v) for unconfined reservoirs
(H = 5mm).

with the swimming speed, i.e. the pumping power driving
the convection roll.

The reservoir height H has also a subtle influence on
the relation between hovering height h and droplet ve-
locity v. As described in sect. 3.2, the clusters hover at
a certain distance h above the reservoir bottom as a re-
sult of the stagnation pressure generated by the arrested
droplets pumping fluid towards the bottom. Accordingly,
h increases linearly with the droplet velocity v which de-
termines the pumping power of the cluster. If the con-
vection is distorted by decreasing H, we expect additional
pressure contributions from the ceiling of the reservoir and
thus a decrease of h. Figure 11 shows h as a function of v
for three different reservoir heights H. The linear depen-
dence of h on v is obviously not affected by H. However,
for a fixed value of v we observe a small decrease of h when
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Fig. 12. Buoyancy adjustment and cluster formation in a sam-
ple with cs = 10wt%. At a critical density difference ∆ρ+ the
formation of clusters ceases and appears again for negative
density differences at a threshold ∆ρ−. The reservoir height
is 2mm and the initial droplet diameter is 45 µm. Images are
taken 20min after injecting the droplets.

H is decreased from 5mm to 0.7mm, indicating again the
confinement of the convection roll by the reservoir geom-
etry.

3.4 Effect of varying the buoyancy on the clustering
behaviour

Finally, we report on the effect of varying the buoyancy of
the droplet swimmers on their clustering behaviour. The
density of 5CB, ρ5CB, is slightly larger than the density
of the aqueous TTAB solution, ρaq, and the droplets sedi-
ment at the bottom of the reservoir. We can continuously
adjust the density difference ρ5CB − ρaq without changing
the chemical properties of our system by preparing TTAB
solutions with variable H2O/D2O ratio and constant sur-
factant concentration cs. If we approach buoyancy match-
ing while the swimmer velocity is kept constant, swimmers
can easily escape a region where a cluster starts form-
ing and the cluster-stabilizing convection cannot develop.
Clustering is suppressed when the stagnation pressure be-
low the cluster exceeds gravity.

We added a fixed quantity of 2000-2500 droplets to the
aqueous phase and checked for cluster formation during a
time interval of 20min. Figure 12 shows a sequence of
images, recorded 20min after the start of the experiment,
for cs = 10wt% and decreasing values of

∆ρ =
ρ5CB − ρaq

(ρ5CB + ρaq)/2
. (3)

No clustering is observed for ∆ρ � 1.42%, while clus-
ters reappear for ∆ρ � −1.43%. As the swimmers float
in this case, the clusters for ∆ρ < 0 form at the ceiling
of the reservoir. Figure 13 summarises the two threshold
values for cluster suppression, ∆ρ+ for sedimenting and
∆ρ− for floating droplets, for the different values of cs.
The absolute values of ∆ρ+ and ∆ρ− are roughly equal
for a given surfactant concentration or droplet velocity,
indicating that clusters consisting of floating droplets are
based on the same convection based mechanism as the
clusters of sedimenting droplets. The slight differences in
slope between the two cases (see fig. 13) could be due to
the different materials forming the ceiling (glass) or bot-
tom (PDMS) of the reservoir.

Fig. 13. Values of the clustering thresholds ∆ρ+ (circles)
and ∆ρ− (diamonds) for different surfactant concentrations
cs. Corresponding droplet velocities v are marked by crosses.

4 Conclusions and outlook

We have demonstrated that a full treatment of dimen-
sionality, geometry, and hydrodynamics is necessary to
understand the collective dynamics of active swimmers,
as we have observed convective patterns strongly influ-
enced by the geometry of the system. In the case of
pure geometrical frustration in active Brownian swim-
mers [16,13,35], clustering should be suppressed by in-
creasing dimensional degrees of freedom, which, in con-
trast, stresses the importance of hydrodynamic interac-
tions in our system of more persistent swimmers. De-
spite the complexity of clustering features in our exper-
iments, all these can be well explained by considering and
adjusting buoyancy, geometry and hydrodynamics, with-
out having to account for system specific parameters like
swimmer morphology or chemistry. This is highly rele-
vant to studies comparing to biological systems, as many
systems in nature either create bioconvective patterns
by themselves (e.g. Tetrahymena pyriformis) or exhibit
traits possibly caused by interaction with external flows,
e.g. the species diversity problem stated in the plankton
paradox. We propose our system as a well suited can-
didate for comparison with complex biological systems,
especially as the swimmers are perfect spheres and ex-
ternal forces like gravity can be tuned, which facilitates
hydrodynamic modelling. The swimmers are highly scal-
able in numbers and sizes and both swimmer dynamics
and flow fields can be easily observed and tracked by op-
tical microscopy at all length scales relevant to the sys-
tem.

Furthermore, we have employed the findings presented
in the main body of this paper in a number of demonstra-
tion experiments. To show that the swimmers “sense” the
geometry of the space available to them, even without lat-
eral confinement, we investigated a geometry where swim-
mers float in a high D2O fraction, ∆ρ = −4.35%, at the
ceiling of a z-confined cell (H = 300µm), the bottom of
which contains circular reservoirs with depth varying be-
tween 0.5 and 5mm (see drawing in fig. 14). The droplet
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Fig. 14. Surface patterning by dimensionality in a two-layer
reservoir geometry. The top layer is 300 µm high, below the
clustering limit. The second layer embeds reservoirs of depth
between 0.5 and 5 mm and 6mm in diameter. The surfactant
solution has a concentration of 15 wt% and, via D2O admix-
ture, a negative density difference ∆ρ = −4.35%, such that
droplets float at the ceiling. The droplet diameter is 45 µm.
Top: schematic of the experimental setup. Bottom: cluster for-
mation after 20 min.

Fig. 15. Still images of a counterclockwise rotating cluster
assembled out of nematic droplet swimmers containing a chiral
dopant. The elapsed time between the two images is 30 s.

swimmers were free to move across the entire area but
formed clusters only above the wells at the cell bottom
(lower panel of fig. 14), with cluster spacing and sizes in-
creasing with the well depth.

We observed a second interesting feature when adding
a small amount of a chiral dopant (Merck, R811/S811) to
our nematic droplets. In a chiral nematic phase, the direc-
tor field forms a helical superstructure. We find that ne-
matic droplets containing a chiral dopant not only trans-
late while moving but also rotate. In a cluster formed by
chiral droplets, the rotation of the droplets adds a tangen-
tial velocity to the cluster, resulting in a rotation of the
whole cluster, similar as observed for aggregates of the
bacterium Thiovulum majus [52]. Figure 15 shows a mi-
crograph of a rotating cluster consisting of chiral nematic
droplet swimmers. The rotation period is in the range of
160–300 s. The rotation of the cluster due to molecular
chirality is easily confirmed by adding either R or S enan-
tiomers of the chiral dopant: while for one enantiomer
a clockwise rotation of the clusters is observed, clusters
containing the enantiomer with the opposite handedness
rotate counterclockwise. Non-doped clusters do not ro-
tate. In this respect, our system differs from simulations
of dumbbell aggregates [53,54] and studies of bacterial
micro-rotors [55], where rotation is caused by the random
addition of individual torques and there is no global chi-
rality in the system.
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