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In this work, the Schmidt number of the two-photon state generated by parametric down-conversion (PDC) is

evaluated in the framework of a fully spatiotemporal model for PDC. A comparison with the results obtained in

either purely spatial or purely temporal models shows that the degree of entanglement of the PDC state cannot be

trivially reduced to the product of the Schmidt numbers obtained in models with lower dimensionality, unless the

detected bandwidth is very narrow. This result is a consequence of the nonfactorability of the state in the spatial

and temporal degrees of freedoms of twin photons. In the limit of a broad pump beam, we provide a geometrical

interpretation of the Schmidt number as the ratio between the volume of the phase-matching region and of a

correlation volume.

DOI: 10.1103/PhysRevA.86.053803 PACS number(s): 42.65.Lm, 42.50.Dv, 03.65.Ud

I. INTRODUCTION

The process of parametric down-conversion (PDC) occur-

ring in a nonlinear crystal is a widely employed source of

entangled photons, which are ubiquitous ingredients in modern

quantum technologies. An appealing aspect of this source is

the possibility of generating high-dimensional entanglement,

both in the sense that entanglement is generated in various

degrees of freedom of the photon pair (polarization, time-

energy, position-momentum) and because spatial and temporal

entanglement is realized in a high-dimensional Hilbert space,

due to the naturally ultrabroad bandwidths of the process.

High-dimensional entanglement is attracting more and more

attention because of its potential to increase the capacity and

the security of quantum communication channels, and the

precision of quantum metrological techniques [1].

In this context, an obvious question concerns the effective

dimensionality of the entanglement of the PDC state (or,

alternatively, the number of entangled modes generated by the

process), which is usually quantified by the so-called Schmidt

number [2,3]. Traditional approaches typically concentrate

on a single degree of freedom at a time, depending on the

application considered. For example, the dimensionality of

the temporal entanglement has been evaluated in various

configurations, including spontaneous PDC [4,5], quantum

frequency combs generated by a synchronously pumped

optical parametric oscillator [6,7], and waveguided PDC [8].

The degree of transverse spatial entanglement of PDC [9–13] is

of paramount importance for assessing both the dimensionality

of the orbital angular momentum entanglement (see, e.g.

Refs. [11,12,14–17]) and the resolution of quantum imaging

techniques [18]. In these studies, a net separation between the

spatial and temporal degrees of freedom was often justified by

the assumption of a narrow filtering in the neglected degree of

freedom.

However, as for many nonlinear optical processes, PDC is

ruled by phase matching, which imposes an angular dispersion

relation linking the frequencies and the angles of emission of

the generated photons in a nonfactorable way. This implies

a strong coupling between temporal and spatial degrees of

freedom, recently evidenced by the so-called X entanglement

[19–24], which is a feature shown, for example, by type-I

biphotons in conditions close to collinear phase matching,

whose temporal delays and transverse spatial displacements

at the crystal exit face are linked by a proportionality

relation (corresponding to an X shape of the spatiotemporal

correlation in any plane containing time and one transverse

coordinate). The space-time coupling is often regarded as

a negative feature because it affects, e.g., the purity of the

purely spatial entanglement when temporal degrees of freedom

are neglected [25]. However, it also represents a valuable

resource for engineering the quantum state of biphotons,

since the spatial degrees of freedom can be used to tailor

the temporal entanglement [19,20] in order to realize, e.g., an

ultrabroadband temporally entangled state [22].

In this work, we adopt a fully spatiotemporal model of PDC

in order to investigate the effect of the nonfactorability of the

state in space and time on the dimensionality of the biphoton

entanglement. We shall concentrate on the evaluation of the

spatiotemporal Schmidt number of PDC entanglement in the

ultralow gain regime of PDC.1 Based on a general formula

for the Schmidt number, which involves integrals in 12 and

six dimensions, we obtain both numerical evaluations and

analytical results, with the latter being valid when the profile

of the pump driving the process is broad enough. In the same

limit, we introduce a useful geometric interpretation of our

results, which shows that the Schmidt number quantifying

entanglement is basically the ratio between the volume of

the region where phase matching efficiently occurs and a

correlation volume, thus being proportional to the number of

spatiotemporal correlated modes.

1The Schmidt decomposition of the state in the full spatiotemporal

domain is very hard to achieve (even numerically) due to the

hyperbolic geometry of the phase-matching relations. However,

the Schmidt number can be computed even without performing the

decomposition.
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The same methods of analysis are used to calculate the

Schmidt number in a purely two-dimensional (2D) spatial

model and in a purely 1D temporal model of PDC. An

important result that will be demonstrated is that the Schmidt

dimensionality of the 3D model of PDC cannot be trivially

reduced to the product of the Schmidt numbers in the models

of lower dimensionality. As a matter of fact, the Schmidt

dimensionality of the full PDC state is by far larger than what

would be expected from an approach that considers space

and time as separable degrees of freedom, showing that an

enormous number of entangled modes is available for the

down-converted light. This result is again a consequence of the

intrinsic nonfactorability of the state in its spatial and temporal

degrees of freedom, and shows that using a full spatiotemporal

model for describing PDC is essential in order to correctly

quantify the degree of entanglement of the state.

The results presented in this work extend and complement

those presented in Ref. [26], where a 2D spatiotemporal model

(one temporal dimension + one spatial dimension) for PDC

has been investigated.

II. STARTING POINT

In Refs. [19,20,27], the spatiotemporal quantum properties

of the PDC light were described by studying the evolution

of the quantum field operators through the nonlinear crystal,

and deriving input-output relations linking the operators at the

crystal output face with those at the entrance face. Here we

consider the equivalent state formalism, in which the state

evolves from the input to the output face of the crystal.

We focus on type-I PDC in the regime of ultralow gain

where the probability of generating a photon pair in each

spatiotemporal mode is small (more precisely, the probability

of generating more than one photon pair in each mode is

negligible). The output biphoton quantum state can thus be

written as a generic superposition of the vacuum state |0〉
and of a state with two photons generated in all possible

spatiotemporal modes:

|ψPDC〉 = |0〉 +
∫

d �w1

∫

d �w2 C( �w1, �w2)A†( �w1)A†( �w2)|0〉,
(1)

where A is the quantum field operators for the down-converted

field, and �w indicates the full 3D spatiotemporal Fourier

coordinate with the shorthand notation

�w = (�q,�), (2)

where �q is the transverse component of the photonic wave

vector �q = (qx,qy) with respect to the mean propagation

direction z of the pump field, and � = ω − ωp/2 is the

temporal frequency shift from the central frequency of the PDC

emission. The coordinate in the direct transverse space-time

domain will be denoted by

�ξ = (�x,t), (3)

where �x = (x,y) is the spatial coordinate spanning the trans-

verse plane at the crystal exit face and t is time, with the

convention

�w · �ξ = �q · �ξ − �t. (4)

The term C( �w1, �w2) in Eq. (1) is the probability amplitude of

generating a photon pair in the spatiotemporal modes �w1 and

�w2, and can be determined by exploiting the equivalence with

the field formalism developed in Refs. [19,20,27]. In these

references, the biphoton amplitude was calculated in terms of

the field-field correlation at the crystal output face,

ψ( �w1, �w2) = 〈A( �w1,lc)A( �w2,lc)〉 (5)

= g

(2π )
3
2

Ãp( �w1 + �w2) sinc
�( �w1, �w2)

2
ei

�( �w1 , �w2)

2 ,

(6)

where A( �w,lc) is the output field operator, and the expectation

in Eq. (5) is taken on the input vacuum state; g is the

dimensionless gain parameter, proportional to the pump peak

amplitude, the crystal length, and the nonlinear susceptibility;

Ãp is the Fourier transform of the pump beam profile at the

crystal exit face,

Ãp( �w) :=
∫

d�ξ
(2π )3/2

Ap(�ξ )e−i�ξ · �w, (7)

where normalization is such that Ap(�ξ = 0) = 1; and � is the

phase-matching function, which accounts for the conservation

of longitudinal momentum in the microscopic PDC process,

�( �w1, �w2) = [ksz( �w1) + ksz( �w2) − kpz( �w1 + �w2)]lc, (8)

where ksz is the longitudinal component of the (ordinary)

signal wave vector, kpz is the analogous quantity for the

(extraordinary) pump, and lc is the crystal length.

We remark that the right-hand side of Eq. (6) is the first-

order term in the parameter g of a perturbative expansion of

the full solution of the propagation equation of field operators

in the nonlinear crystal, so that expression (6) is valid only

in the very low gain regime g ≪ 1. Similarly, as it is well

known, the right-hand side (r.h.s.) of Eq. (1) shows the zeroth-

and first-order terms in g of a perturbative expansion of the

full PDC state.

By using the equivalence between the two formalisms, and

by calculating the field correlation on the generic output state

(1), we also obtain

ψ( �w1, �w2) = 〈ψPDC|A( �w1,0)A( �w2,0)|ψPDC〉
= C( �w1, �w2) + C( �w2, �w1) = 2C( �w1, �w2), (9)

where we used the symmetry properties of the state. Thus, the

two-photon state has the well-known form

|ψPDC〉 = |0〉 + 1

2

∫

d �w1

∫

d �w2 ψ( �w1, �w2)A†( �w1)A†( �w2)|0〉,
(10)

with the biphoton amplitude ψ being given by Eq. (6).

Apart from the biphoton amplitude, the other quantity of

interest is the coherence function of the signal field, which

after long but simple calculations can be derived from Eq. (10)

as

G( �w, �w′) := 〈ψPDC|A†( �w)A( �w′)|ψPDC〉 (11)

=
∫

d �w2ψ
∗( �w, �w2)ψ( �w′, �w2). (12)
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From this equation, the total number of PDC photons is

obtained as

N =
∫

d �w1〈ψPDC|A†( �w1)A( �w1)|ψPDC〉

=
∫

d �w1

∫

d �w2 |ψ( �w1, �w2)|2 . (13)

In the ultralow gain regime where at most a single photon pair

at a time is detected, one can address the question of how much

the two photons of the pair are entangled. Contrary to type-

II PDC, where twin photons are generated with orthogonal

polarizations, in type I there is not such an obvious distinction

between a signal and an idler field. A general and formally

clean way of introducing a bipartition, which does not rely on

any modal selection, is considering the two output modes of a

symmetric beam splitter,

A1( �w) = 1√
2

[A( �w) + iav( �w)],

(14)

A2( �w) = 1√
2

[iA( �w) + av( �w)],

where av is a vacuum field operator. By substituting in the state

(10) the inverse of Eq. (14), one gets two terms that describe the

creation of two photons into each of the output modes 1 and 2 of

the beam splitter, and a term that creates one photon in mode 1

and one photon in mode 2. Following the literature treating the

degree of entanglement in PDC [4,5,9,10], we shall consider,

rather than the full PDC, the state vector conditioned to the

measurement of a photon pair (the vacuum and two-photon

terms are dropped). Assuming that detectors are placed at the

two output modes, and coincidences are detected, the state

conditioned to the appearance of a coincidence takes the form

(apart from global normalization factors)

|φ〉 =
∫

d �w1

∫

d �w2 ψ( �w1, �w2)A
†
1( �w1)A

†
2( �w2)|0〉1|0〉2.

(15)

The degree of entanglement of such a conditional state has been

investigated in previous literature in the purely temporal [4,5]

or purely spatial [9–11] domains.

Notice that in practical implementations, twin photons

could be sorted in various ways: for example, by their

propagation directions (positive or negative with respect to

any transverse axis) [23] or by their frequencies (smaller or

larger than the central frequency). These methods are based on

a modal selection and in practice would be efficient only for

broad pump waists or quasimonocromatic pumps (because in

these cases twin photons are created with symmetric transverse

wave vectors ±�q and frequency offsets ±�, respectively).

However, provided that one considers the state conditioned to

the detection of a pair and that the pump is a quasi-plane-wave

one, we expect, for these examples, results similar to those

derived for the beam-splitter case.

III. THE SCHMIDT NUMBER OF PDC ENTANGLEMENT:

INTEGRAL FORMULA

A good quantifier of the degree of entanglement for

continuous variable pure states is the so-called Schmidt

number, defined as the inverse of the purity of the state of

each separate subsystem,

K = 1

Tr
{

ρ2
1

} , (16)

where ρ1 is the reduced density matrix of the subsystem 1.

In connection with the Schmidt decomposition of the PDC

conditional state, the Schmidt number is recognized to give

an estimate of the number of Schmidt modes participating in

the entanglement, i.e., of the effective dimensionality of the

entanglement [10].

We will derive an integral formula for the Schmidt number

in the case of the conditional state (15), similar to what was

obtained in Refs. [5,11]. First of all, the state (15) is not

normalized,

〈φ|φ〉 =
∫

d �w1

∫

d �w2 |ψ( �w1, �w2)|2 = N. (17)

From the system conditional density matrix

ρ = |φ〉〈φ|
〈φ|φ〉 , (18)

the reduced density matrix of the subsystem 1 can be calculated

(Appendix A) as

ρ1 = Tr2{ρ}

= 1

N

∫

d �w1

∫

d �w′
1G( �w′

1, �w1)A
†
1( �w1) |0〉1 1〈0| A1( �w′

1) .

(19)

Notice that in the limit where the coherence function becomes

a Dirac δ function, i.e., in the limit of a monochromatic plane-

wave pump, the reduced density matrix becomes a sum of

projectors onto one-photon states.

Next, we calculate the purity of such a reduced state:

Tr1

{

ρ2
1

}

= 1

N2

[∫

d �w1

∫

d �w′
1

∣

∣G( �w1, �w′
1)

∣

∣

2

]

. (20)

An integral formula for the Schmidt number can therefore be

written as

K = N2

B
, (21)

where

B =
∫

d �w1

∫

d �w′
1|G( �w1, �w′

1)|2 (22)

=
∫

d �w1

∫

d �w2

∫

d �w′
1

∫

d �w′
2[ψ( �w1, �w2)ψ( �w′

1, �w′
2)

×ψ∗( �w1, �w′
2)ψ∗( �w′

1, �w2)], (23)

and N is given by Eq. (17).

IV. THE NEARLY-PLANE-WAVE PUMP APPROXIMATION

In order to evaluate the Schmidt number of the two-photon

state from formula (21), we face the problem of calculating

the six-dimensional and 12-dimensional integrals involved in

the calculation of N and B, respectively. These integrations

can be numerically performed, but in the following we will

provide more transparent results based on the approximation

of a broad-enough pump profile.

053803-3



A. GATTI, T. CORTI, E. BRAMBILLA, AND D. B. HOROSHKO PHYSICAL REVIEW A 86, 053803 (2012)

Let us come back to the expression (6) for the biphoton

amplitude, which we rewrite as

ψ ′( �w1, �w2) = Ãp( �w1 + �w2)V ( �w1, �w2), (24)

V ( �w1, �w2) = sinc
�( �w1, �w2)

2
ei

�( �w1 , �w2)

2 , (25)

where � is the phase-matching function defined in Eq. (8), and

we got rid of the constant g/(2π )3/2 that factors out in the ratio

K = N2/B. We now introduce the pump spectral coordinates

�wp = �w1 + �w2 := (�qp,�p). Provided that σp is the transverse

waist of the pump beam at the output crystal face, and τp is

its duration, the pump Fourier transform Ãp dies out on the

scales δqp = 2/σp, δ�p = 2/τp. This claim is exactly true for

a Gaussian pump profile,

Ap(�x,t) = e−x2/σ 2
p e−t2/τ 2

p , (26)

Ãp(�qp,�p) =
σ 2

pτp

23/2
e−q2

pσ 2/4e−�2
pτ 2

p/4. (27)

The function V is strongly peaked along the curve where phase

matching takes place. As elaborated in detail in the Appendix

B of Ref. [20], for a broad-enough pump, the variation of this

function with respect to the pump spectral coordinates can

be neglected. In other words, V ( �w1,− �w1 + �wp) does not vary

significantly with �wp on the scale over which the pump Fourier

profile dies out:

Ãp( �wp)V ( �w1,− �w1 + �wp) ≈ Ãp( �wp)V ( �w1,− �w1)

:= Ãp( �wp)V ( �w1). (28)

We call this approximation the nearly-plane-wave pump

approximation (NPWPA). It is based on making a Taylor

expansion of V in a power series of the pump variables �wp, and

on finding the conditions under which the first-order terms of

the expansion can be neglected with respect to the zeroth-order

term [20]. These conditions can be summarized as

τp ≫ τGVM =
∣

∣

∣

∣

lc

vgs

− lc

vgp

∣

∣

∣

∣

, (29)

σp ≫ lwalk-off =
∣

∣

∣

∣

lc
∂kp

∂qx

∣

∣

∣

∣

. (30)

Here, τGVM is the maximum delay time between the signal

and the pump wave in crossing the nonlinear crystal due to the

mismatch between the group velocities vgs,vgp of the ordinary

signal and extraordinary pump. lwalk-off is the maximum lateral

walk-off between the two waves, associated with the tilt of the

Poynting vectors. In the example of a 4 mm beta barium borate

(BBO) crystal, pumped at a wavelength λp = 527 nm, we

have τGVM ≈ 500 fs, lwalk-off ≈ 250 μm, so that the NPWPA

is within reach of the practical experimental generation of PDC

photon pairs.

The use of this limit remarkably simplifies the expression

(21) of the Schmidt number. As reported in detail in Appendix

B, the integral formula (21) takes the form

K = N2

B
→

[ ∫

d�ξp|Ap(�ξp)|2
]2

∫

d�ξp|Ap(�ξp)|4

[ ∫

d �w|V ( �w)|2
]2

(2π )3
∫

d �w|V ( �w)|4 .

(31)

FIG. 1. (Color online) Geometrical interpretation of the Schmidt

number. (a) The phase-matching region in the (qx,�) plane, here

defined by |V (�q,�)|2 > 0.1 (the full 3D volume has a biconical

shape). (b) The correlation volumes, which in the 3D picture would be

Gaussian bullets of size determined by the spectral extension δq2
pδ�p

of the pump. The case of a 4 mm type-I BBO crystal, pumped at

λ0 = 527 nm for collinear phase matching.

The integrals involving the pump coordinates can now be

readily performed. By assuming a Gaussian pump profile as

in Eq. (26), we easily obtain

K =
∫

d �w|V ( �w)|2
∫

d �w|V ( �w)|4

∫

d �w sinc2 �( �w)

2

π
3
2

4
σ 2

p

2
τp

. (32)

As we shall see in the following, under rather general

conditions,2 the first term on the r.h.s. of Eq. (32) is a purely

numerical factor, namely,
∫

d �w |V ( �w)|2
∫

d �w |V ( �w)|4 ≈ 3

2
. (33)

Thanks to this circumstance, the result of Eq. (32) has

a transparent geometrical interpretation. On the one hand,

the term
∫

d �w sinc2 �( �w)

2
can be interpreted as the volume

of the region in the (�q,�) 3D space where phase matching

occurs, since the sinc2 function has a sharp maximum where

�(�q,�) = 0 (see Fig. 1). This corresponds to the portion of the

(�q,�) space where the probability of photon-pair production

is not negligible. On the other hand, the quantity 4
σ 2

p

2
τp

at the

denominator of Eq. (32) represents the spectral volume of the

pump δq2
pδ�p = 4

σ 2
p

2
τp

. This quantity defines the correlation

volume, i.e., the size the of the correlated modes, because the

expression (24) tells us that in the NPWPA, the width of the

biphoton correlation as a function of �w1 + �w2 is determined

by the pump Fourier profile. Thus, δq2
pδ�p represents the

2This condition amounts to requiring that phase matching occurs

within the spectral region considered, with a counterexample being

provided in Sec. VII.
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uncertainty in the determination of the transverse wave vector

�q2 and frequency �2 of a photon, once the transverse wave

vector �q1 and frequency �1 of its twin have been determined.

Therefore, K is on the order of the ratio

K ∝ volume of the phase-matching region

correlation volume
, (34)

and can be interpreted as the number of correlated modes

participating to the state. The formula (34) gives us a simple

geometric interpretation of the Schmidt number, which will be

very useful in understanding some results.

V. SCHMIDT NUMBER OF 3D X-ENTANGLED

BIPHOTONS

We can proceed further and find an analytical approxima-

tion of the Schmidt-number result of Eq. (32) in the NPWPA.

To this end, we need to calculate integrals over the phase-

matching curves of the form
∫

d �w|V ( �w)|2,
∫

d �w|V ( �w)|4. Our

calculations are based on the use of two further approximations

(in additions to the NPWPA):

(i) The first approximation consists of a quadratic expansion

of the phase-mismatch function with respect to q and �, which

is equivalent to adopting the paraxial and quadratic dispersion

approximations:

�(q,�) = �0lc − q2

q2
0

+ �2

�2
0

, (35)

where �0 = 2ks − kp is the collinear phase mismatch at

degeneracy, and

q0 =
√

ks

lc
, (36)

�0 =
√

1

k′′
s lc

, (37)

with ks = ks(0), k′′
s = d2ks/d�2|0. This expansion is strictly

valid only for small � (close to degeneracy) and small q.

For the remainder of this section, we assume conditions of

collinear phase matching, �0lc ≈ 0, where the phase-matching

curve in the plane (q,�) has the characteristic hyperbolic

geometry shown in Fig. 1. The parameters q0, associated

with spatial diffraction, and �0, associated with the group

velocity dispersion (GVD), define the typical variation scale

of |V ( �w)|2 along q and �, respectively. In the example of

the 4 mm BBO crystal, their values are q0 ≈ 5 × 10−2 μm−1,

�0 ≈ 0.76 × 1014 Hz.

(ii) The second approximation consists of substituting the

sinc2[�( �w)

2
] with a box function, with the same value of the

indefinite integral,

sinc2

[

�( �w)

2

]

→ χα

[

�( �w)

2

]

=
{

π
α
, �( �w)

2
∈ (−α

2
; α

2
)

0, elsewhere,
(38)

which satisfies
∫

sinc2(x)dx =
∫

χα(x)dx = π . Here the

parameter α can be used, in principle, as a fitting parameter.

Approximation (38) seems very rough, but it turned out

surprisingly accurate: the rationale behind this result is that

the sinc2 has a sharp peak where �( �w) = 0, and in order to

evaluate its integral in the 3D space, it is more important to

FIG. 2. (Color online) (a) Box function approximation (38) of

the sinc2 function. (b) Comparison between the true phase-matching

function |V (�q,�)|2 and its box function approximation (boundaries

of the box function are shown by dashed lines). Collinear phase-

matching case (�0lc = 0, θp = 22.934◦), lc = 4 mm.

take into account the geometrical shape of the curve where

its maximum lies rather than the detailed shape of the peak.

Figure 2 compares the box function approximation to the true

phase-matching function in the example of the BBO crystal.

Here, substantial deviations appear at large values of � and q

because of the failure of the quadratic approximation for phase

matching.

Notice that if we also assume that |V ( �w)|4 can be approx-

imated by the box function χ2
α( �w), with the request that, this

time,

∫

dxχ2
α (x) = π2

α
=

∫

dx sinc4(x) = 2

3
π, (39)

then we find the correct value of α = 3
2
π. This also shows that

within these approximations, the ratio

∫

d �w|V ( �w)|2
∫

d �w|V ( �w)|4 ≈
∫

d �wχα( �w)
∫

d �wχ2
α ( �w)

= α

π
= 3

2
. (40)

The box function approximation allow us to evaluate easily

the integrals over the phase-matching curves inside Eq. (32).

In this evaluation, we assume that our model describes a

measurement performed over a large but limited spectral

bandwidth � ∈ (−�max,�max). For simplicity, here we do not

pose limits to the spatial bandwidth (which will be instead

done in the following section). After some calculations, we

obtain the following two different results depending on the

detected bandwidth, �max = �max

�0
:

(i) small bandwidth result (�max <
√

α),

K = α

4

√

α

π
q2

0�0σ
2
pτp

[

�max√
α

+ 1

3

(

�max√
α

)3]

; (41)
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(ii) large bandwidth result (�max >
√

α),

K = α

2

√

α

π
q2

0�0σ
2
pτp

(

�max√
α

− 1

3

)

. (42)

First of all, we observe that the condition on the bandwidth

can be roughly reformulated as �max being smaller or bigger

than the characteristic GVD bandwidth �0 (since α is on the

order of unity). The small-bandwidth case corresponds to the

situation where the portion of PDC emission intercepted by

the measurement lies within the central region of the phase-

matching curve (see Fig. 1), where the phase matching has no

hyperbolic structure. Equations (41) and (42) tell us that in

both cases, the Schmidt number is proportional to the number

of modes contained in a unit volume of the phase-matching

region:

K ∝
πq2

0�0σ
2
pτp

8
= πq2

0�0

δ�q2
p δ�p

. (43)

However, as the detected bandwidth increases beyond the

GVD bandwidth �0, the hyperbolic geometry of phase

matching enters into play, and the Schmidt-number result of

Eq. (42) shows a linear increase with the bandwidth.

We remind the reader that the analytical expressions (41)

and (42) estimate the Schmidt number within the NPWPA

and the quadratic approximation, expressed by the condition

(28) and (35), respectively. In order to verify its validity,

and at the same time provide a numerical estimation of K
in regions of the parameter space where the NPWPA does

not hold, we performed a numerical evaluation of the general

expression of K given by Eqs. (13), (21), and (24). As it

involves a six-dimensional integral for the evaluation of N and

a 12-dimensional integral for the evaluation of B, the use of a

Monte Carlo integration is mandatory. We used the well-known

method of importance sampling [28] with the aim of improving

the efficiency of the Monte Carlo algorithm by increasing the

density of the sampled points where the functions under

the integrals are larger. A natural choice has been to sample

some of the Fourier variables [namely, the “pump” variables

in Eq. (B5)] according to Gaussian distributions coincident

with the Gaussian pump spectral amplitude (27), which in

the NPWPA represents the narrowest factor of the biphoton

amplitude in Eq. (24). The implemented algorithm, which is

very efficient for narrow spectral pump profiles, allows the

evaluation of B and N even in the region where the NPWP

approximation fails. No other substantial approximations are

introduced, as the phase-matching function is here evaluated

by means of the empirical Sellmeier formulas [29].

Figure 3 compares the analytic result of Eqs. (41) and

(42) with the Monte Carlo numerics, performed both without

approximation (squares) and with the quadratic approximation

for phase matching (triangles). Figure 3(a) is plotted for

parameters of the pump within the NPWP approximation

(although very reasonable for an experimental realization)

and shows excellent agreement between the analytical curve

and the numerics, in the range of validity of the quadratic

approximation. Indeed, the analytic result follows a Monte

Carlo simulation performed with the quadratic approximation

very well, showing that the box function approximation cap-

tures the basic geometrical properties of the phase-matching

FIG. 3. (Color online) Schmidt-number results. Comparison be-

tween the analytic formulas (41) and (42) (solid red line) and the

Monte Carlo simulations, without any approximation (squares) and

with quadratic approximation (triangles). (a) Pump parameters are

within the NPWPA. (b) Focused pump, beyond the NPWPA. Collinear

phase matching (�0lc = 0, θp = 22.934◦), lc = 4 mm.

function. In Fig. 3(b), the pump beam is more focused and, as

expected, the analytic result deviates from numerics because

of the failure of the NPWP approximation.

Monte Carlo calculations permit one to obtain results also

in the region of parameters beyond the NPWP approximation.

Figure 4 plots the Schmidt number as a function of the

parameter β = δq2
pδ�p/q2

0�0. The NPWP approximation is

valid only for β ≪ 1, i.e., when the widths δ�p, δqp of the

pump Fourier profile are much smaller than the characteristic

FIG. 4. (Color online) Schmidt number as a function of β =
δq2

pδ�p/q2
0 �0. The blue squares plot the result of a Monte Carlo

calculation, without any approximation, and show that K after

reaching a minimum increases again almost linearly with β. The

red solid line is the analytic result, decreasing as 1/β [see Eq. (42)],

valid only within the NPWPA (small β). Collinear phase matching

(�0lc = 0, θp = 22.934◦), lc = 4 mm.
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scales of variation of phase matching �0, q0, respectively.3 The

Monte Carlo result shows a decrease of the Schmidt number

as 1/β for β ≪ 1, as predicted by the analytic result (42)

in the NPWPA (red solid line in the figure). However, after

reaching a minimum, the Schmidt number increases again

almost linearly with β. This behavior is very similar to that

predicted in a purely spatial model of PDC in Ref. [9] and can

be understood as follows: for a broad pump, when the NPWPA

is valid, the width of the correlation is determined by the

pump Fourier profile, and the number of spatiotemporal modes

can be estimated as in formula (34) as being proportional to

the volume of phase matching divided by the pump spectral

volume, K ∝ q2
0�0/δq

2
pδ�p = 1

β
. For a very focused pump,

instead, the phase-matching function in the �q direction has

a smaller scale of variation than the pump Fourier spatial

profile, so that the width of correlation is rather determined

by the characteristic width �q0 of phase matching, and we can

suppose that the number of modes is now K ∝ δq2
p/q2

0 ∝ β.

VI. FACTORABILITY OF THE SCHMIDT NUMBER IN ITS

TEMPORAL AND SPATIAL COMPONENTS

In the literature, the Schmidt dimensionality of twin

photons is often calculated within models of PDC restricted

to the spatial or the temporal domain (see Refs. [4,5,9,10]).

The nonfactorable character of the spatiotemporal correlation

demonstrated in Refs. [19,20] suggests to us that the full

3D spatiotemporal Schmidt number is not trivially given by

the product of the spatial 2D and the temporal 1D Schmidt

numbers. In this section, we would like to understand this

point.

To this end, we consider models for PDC in lower

dimensionalities, and follow the same procedure outlined in

the previous sections to calculate the Schmidt number. The

purely spatial 2D model is obtained by neglecting the temporal

coordinate and setting � = 0. Similarly, the purely temporal

1D model neglects the spatial coordinates and sets �q = 0. The

starting point of the analysis is, in both cases, the general

integral formula for the Schmidt number (21), where we have

now to interpret the Fourier coordinates as

�w =

⎧

⎪

⎨

⎪

⎩

� ∈ R in 1D

�q ∈ R2 in 2D

�q, � ∈ R3 in 3D.

(44)

Similarly, in the expression involving the coordinates in the

direct space,

�ξ =

⎧

⎪

⎨

⎪

⎩

t ∈ R in 1D

�x ∈ R2 in 2D

�x, t ∈ R3 in 3D.

(45)

For example, by introducing the NPWP approximation in

the various models (clearly NPWPA in the spatial model

3Actually, the limits of validity of the NPWPA expressed by

(29) and (30) are typically much more restrictive than β ≪ 1. For

example, for the BBO crystal considered here, δqp < q0 implies

roughly σp > 2ldiff = 2/q0 ≈ 40 μm, while δ�p < �0 implies τp >

2τGVD = 2/�0 ≈ 26 fs.

means that the pump has a broad waist, while the temporal

model assumes a long-enough pulse duration), we obtain the

NPWPA expression for the Schmidt number in an arbitrary

D-dimensional model:

K =
[ ∫

d�ξp|Ap(�ξp)|2
]2

∫

d�ξp|Ap(�ξp)|4

[ ∫

d �w|V ( �w)|2
]2

(2π )D
∫

d �w|V ( �w)|4 . (46)

A. Spatial Schmidt number K2D

By performing calculations similar to those reported for the

3D model, we derive an expression for the Schmidt number

in the purely spatial case, valid within the NPWPA and the

quadratic approximation for phase matching. The latter one

corresponds to approximating the phase-matching function as

�2D(�q) = ks(�q) + ks(−�q) − kp ≈ q2

q2
0

. (47)

In the 2D case, the result depends on the spatial bandwidth

qmax = qmax/q0 intercepted by the measurement

K2D = 3
8
πσ 2

pq2
0

q2
max

α
, qmax <

√
α (48)

K2D = 3
8
πσ 2

pq2
0 , qmax >

√
α, (49)

where we remind the reader that α ≈ 1.5π .

In Fig. 5, this curve is compared with an exact Monte Carlo

calculation performed in the 2D model. Beyond noticing that

the two results agree qualitatively, we remark that differently

from the 3D case, the 2D Schmidt number saturates to

the maximum value, K2Dmax = 3
8
πσ 2

pq2
0 = 3

2
πq2

0/δq2
p. This

behavior can be explained with the help of the geometrical

interpretation (34), valid in the NPWPA, which evaluates

the Schmidt number as the ratio between the volume of the

phase-matching region and the correlation volume. In the 2D

case, phase matching is described by Eq. (47), so that in the

(qx,qy) plane, phase matching occurs within a circle of area

≈π �q2
0 . For increasing qmax, the PDC photons are detected in

increasingly large circular regions, so that the Schmidt number

increases quadratically with qmax until the border of the phase

matching region, qmax = q0

√
α, is reached.

FIG. 5. (Color online) 2D spatial Schmidt number K2D as a

function of the collected spatial bandwidth qmax. The solid red line is

the analytic result of Eqs. (48) and (49); the squares plot the Monte

Carlo numeric result. The waist of the pump beam is σp = 600 μm.
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FIG. 6. (Color online) 1D temporal Schmidt number K1D as

a function of the maximum temporal frequency �max. The solid

line shows the analytic result (within the NPWPA and quadratic

approximation); the squares plot the numeric exact result. Pump time

duration τp = 1 ps.

B. Temporal Schmidt number K1D

We now consider the purely temporal model of PDC by

setting �q = 0. We perform again the analytic calculation in the

NPWPA and the quadratic approximation for phase matching,

which in the 1D case reads

�1D(�) = ks(�) + ks(−�) − kp ≈ �2

�2
0

. (50)

The analytic expression for K1D in these limits, obtained

by using the box function approximation, depends on the

collected temporal bandwidth, �max = �max/�0:

K1D =
√

α

π
τp�0

�max√
α

, �max <
√

α (51)

K1D =
√

α

π
τp�0, �max >

√
α. (52)

Figure 6 plots this analytical result together with the exact

Monte Carlo 1D calculation. Also in this case, similarly to

the 2D case, the Schmidt number saturates to the maximum

value, K1Dmax ≈ τp�0, because phase matching occurs only

inside an interval of size ≈�0, so that by increasing �max

beyond the critical value
√

α�0, we begin to consider regions

where there is no phase matching, which do not contribute to

the integral.

C. Comparison

We can now compare the results obtained in the models

of various dimensionalities. To this end, we have to slightly

reformulate the 3D problem. In Sec. V, we calculated K as

a function of the collected temporal bandwidth by assuming

that no selection on the spatial bandwidth was performed, i.e.,

qmax = ∞. This is a possible correct choice to present results,

but in order to have a clean comparison with the 2D and 1D

models, we also need to limit the detected spatial bandwidth.

The simplest possibility is to set qmax = �max. This choice

is justified by the fact that in the quadratic approximation,

phase matching is realized along the lines
q

q0
= ± �

�0
so that by

increasing simultaneously the spatial and temporal bandwidth,
qmax

q0
= �max

�0
, one follows the phase-matching curve.

FIG. 7. (Color online) Comparison between the Schmidt number

K calculated in the full spatiotemporal model and the product of the

Schmidt numbers, K1D × K2D, calculated in the purely 1D temporal

and 2D spatial models. The abscissa is the collected temporal

bandwidth, set equal to the spatial bandwidth in normalized units.

Lines plot analytic results; symbols provide the Monte Carlo results.

With this in mind, analytical calculations in the NPWPA,

the quadratic approximation for phase matching, and the

box function approximation can be performed. The result

for the 3D Schmidt number is plotted in Fig. 7 (dashed

line) together with the Monte Carlo exact result (triangles).

In the same figure, we compare these 3D results with the

product of the Schmidt numbers obtained in the models with

lower dimensionalities, i.e., K2D × K1D. From these plots, it

clearly emerges that the factorizability holds only when the

detected bandwidth is small, i.e., when both qmax and �max lie

within the phase-matching bandwidths q0, �0, respectively.

However, as the detected bandwidth gets larger, the result in

the fully 3D spatiotemporal model grows linearly with the

detected bandwidth and diverges clearly from the product

K2D × K1D, which saturates to a fixed value ∝ q2
0�0. This

result can be easily understood with the help of the geometrical

interpretation of the Schmidt number as the number of

entangled modes contained in the phase-matching region:

close to the degeneracy and to the collinear emission, the

phase-matching region can be seen as a spherical region, which

obviously factorizes in the spatial and temporal components,

so that the number of spatiotemporal modes is trivially the

product of the numbers of spatial and temporal mode times.

Conversely, if the collected bandwidth is large enough, then the

biconical, nonfactorizable geometry of phase matching comes

into play, so that a full 3D model has to be used to correctly

compute the number of spatiotemporal modes.

VII. ENTANGLEMENT WITHOUT PHASE MATCHING

Until now, we considered the case of collinear phase

matching (�0lc = 0), characterized by the fact that exact

phase matching �( �w) = 0 can be realized for any value

of the transverse wave vector of the photon pair, such that

q/q0 = ±�/�0. However, if the crystal is tuned away from

the collinear conditions (�0lc �= 0), then there exist regions of

the (�q,�) space where phase matching does not occur at all.

In these regions, the probability of emission of photon pairs is

low, although not zero.
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FIG. 8. (Color online) Color map of |V (�q,�)|2 in the noncollinear

phase-matching case, �0lc > 0 (�0lc = 23.38). The dashed lines are

the boundaries of the box function, where �(�q,�) = ±α.

In particular, we focus on the case of noncollinear phase

matching (�0lc > 0). Figure 8 shows the typical behavior

of the phase-matching function sinc2[�( �w)/2]. From the

quadratic expansion of the phase mismatch,

�(q,�) ≈ �0lc − q2

q2
0

+ �2

�2
0

, (53)

we immediately realize that phase matching does not occur

for modes close to collinear emission, namely, having |�q| <√
�0lc
We have calculated the 3D spatiotemporal Schmidt number

in these conditions: Fig. 9 plots the result as a function of

the collected spatial bandwidth qmax. We find that for small

bandwidths, such that the collected photons are not phase

matched, the degree of entanglement is very high, and is

actually larger than in the region where phase matching is

realized. This result is apparently paradoxical because, in the

absence of phase matching, the probability of emission of a

photon pair is very low and one could infer that the state should

be very close to the separable vacuum state.

For comparison, Fig. 10 displays the corresponding mean

number of photons, which, as expected, is indeed very low

where there is no phase matching.

However, in order to understand the results of Fig. 9, we

have to remind the reader that we are studying the degree of

FIG. 9. (Color online) Schmidt number K in the noncollinear

phase-matching case, as a function of the collected spatial bandwidth

qmax, normalized to the diffraction bandwidth q0. Parameters are σp =
600 μm, τp = 1 ps.

FIG. 10. (Color online) Number of photons N in the noncollinear

case as a function of qmax. Parameters are σp = 600 μm, τp = 1 ps,

g = 0.001.

entanglement of the state (15), conditioned to the detection

of a photon pair. This means that our calculation of the

Schmidt number has lost track of the presence of a large

vacuum contribution to the original PDC state, and the result

has to be interpreted as photon pairs are emitted with very

low probability; however, when a pair is detected, it is highly

entangled.

The point to understand, therefore, is why the nonphase-

matched photon pairs are more entangled than the phase-

matched ones. The Schmidt number K = 1/
∑

j λj
2 provides

an estimate of the number of significant eigenvalues of

the Schmidt decomposition, i.e., the number of entangled

eigenmodes that participate to the modal decomposition. In the

region where no phase matching occurs (for qmax <
√

�0lc),

K can be, in practice, very large, since there is no mechanism

for modal selection and all of the modes in the collected

bandwidth participate equally to the PDC process even though

with a very low occupation probability. By contrast, when

increasing qmax towards
√

�0lc and entering the phase-

matching region, a strongly reduced number of phase-matched

spatiotemporal modes contribute to the Schmidt decomposi-

tion, i.e., the few which are close to satisfy the phase-matching

condition q = √
�0lc, � = 0. The number of significant

eigenmodes is therefore reduced because phase matching op-

erates a selection of the spatiotemporal modes that efficiently

participate to the entanglement of the state. In other terms,

the phase-matching mechanism favors only a small number of

modes, thereby drastically reducing the dimensionality of the

entangled state. By increasing qmax above
√

�0lc, the Schmidt

numberK again starts to increase, according to the geometrical

interpretation of the Schmidt number, as being proportional

again to the phase-matching volume.

VIII. CONCLUSIONS

In this work, we have calculated the Schmidt dimensionality

of the two-photon state generated by PDC in the ultralow gain

regime. Results have been produced with different degrees

of approximation: Monte Carlo results have been obtained

without relevant approximations, while in the limit of a

broad pump (NPWPA), we could demonstrate a transparent

geometrical interpretation of the Schmidt number, which can

be seen as the number of entangled modes contained in the

region where phase matching occurs.
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The same calculations have been performed in models

restricted to the purely spatial or temporal degrees of freedom

of biphotons. A remarkable result demonstrated is that when

the collected spatiotemporal bandwidth is large enough, the

Schmidt dimensionality of the full spatiotemporal state cannot

be trivially reduced to the product of the Schmidt numbers

characterizing the entanglement in lower dimensions. There-

fore, obtaining the Schmidt number in the full 3D model is not a

mere exercise of calculus: in order to correctly characterize the

entanglement of twin photons, it is necessary to consider simul-

taneously their spatial and temporal degrees of freedom. This

result is a clear consequence of the nonfactorability of the state

in space and time, and mirrors the findings described in Refs.

[19,20], where the spatiotemporal correlation of the biphoton

state was shown to have a nonfactorable X-shaped geometry.

The nonfactorability has been demonstrated in this work

only in the NPWPA. The question is still open as to whether in

the opposite limit, that is, for a very focused and short pump

pulse, the Schmidt number keeps the nonfactorable character,

and it is obviously linked to the more general question of

whether the state appears to be factorable in space and time

in these conditions. We remark, however, that reaching this

limit is, in practice, very demanding because it requires that

the pump Fourier profile at the exit face of the crystal be much

broader than the width of the phase-matching function. For a

few millimeter crystal, this implies a pump waist on the order

of tens of microns, and a pulse duration as short as few tens of

femtoseconds. While the first condition could be achieved, in

principle, by strongly focusing at the end face of the crystal,

the second is more demanding because of dispersion occurring

inside the nonlinear material.

An intriguing finding is that in the absence of phase

matching, where the probability of emission of photon

pair is very low, the Schmidt dimensionality of the state

is huge, and is actually larger than in the regions where

phase matching occurs. This counterintuitive finding has been

explained through the mode-selection mechanism performed

by phase matching, which reduces the available number of

spatiotemporal modes. However, in evaluating this result and

its usefulness for applications, one has to remember that the

Schmidt number analyzed here does not refer to the full PDC

state, but to the state conditioned to the detection of a photon

pair.
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APPENDIX A: PARTIAL DENSITY MATRIX

In order to calculate the partial trace of the density matrix

(18), it is enough to consider the vacuum state |0〉2 of the

“idler” subsystem 2, plus the continuous set of one-photon

states,

{A†
2( �w2) |0〉2}. (A1)

It is convenient to write the density matrix (18) as

ρ = 1

N
M† |0〉 〈0| M, (A2)

where M is the operator that annihilates a photon pair in any

spatiotemporal mode (weighted by ψ),

M =
∫

d �w1

∫

d �w2ψ
∗( �w1, �w2)A1( �w1)A2( �w2). (A3)

We then have

ρ1 = Tr2{ρ} = 1

N

{

2〈0| M† |0〉2 |0〉1 1〈0| 2〈0| M |0〉2 +
∫

d �w3 2〈0| A2( �w3)M† |0〉2 |0〉1 1〈0| 2〈0| MA
†
2( �w3) |0〉2

}

(A4)

= 1

N

{ ∫

d �w3

∫

d �w1

∫

d �w2

∫

d �w′
1

∫

d �w′
2ψ( �w1, �w2)ψ∗( �w′

1, �w′
2)

× 2〈0| A2( �w3)A
†
2( �w2) |0〉2 A

†
1( �w1) |0〉1 1〈0| A1( �w′

1) 2〈0| A2( �w2)A
†
2( �w3) |0〉2

}

(A5)

= 1

N

{∫

d �w1

∫

d �w2

∫

d �w′
1ψ( �w1, �w2)ψ∗( �w′

1, �w2)A
†
1( �w1) |0〉1 1〈0| A1( �w′

1)

}

(A6)

= 1

N

{∫

d �w1

∫

d �w′
1G( �w′

1, �w1)A
†
1( �w1) |0〉1 1〈0| A1( �w′

1)

}

, (A7)

where, in passing from Eq. (A5) to Eq. (A6), we used the relation

2〈0| A2( �w2)A
†
2( �w′

2) |0〉2 = δ( �w2 − �w′
2), (A8)

which comes directly from the commutation rules of bosonic operators.
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APPENDIX B: DERIVATION OF FORMULA (31)

We wish here to simplify the general formula (21) by exploiting the NPWPA introduced in Sec. IV [see Eq. (28)]. We rewrite

formula (21) as

K = N ′2

B ′ (B1)

with

B ′ =
∫

d �w1

∫

d �w2

∫

d �w′
1

∫

d �w′
2Ãp( �w1 + �w2)Ãp( �w′

1 + �w′
2)Ãp

∗
( �w′

1 + �w2)

×Ãp
∗
( �w′

1 + �w2)Ãp
∗
( �w1 + �w′

2)V ( �w1, �w2)V ( �w′
1, �w′

2)V ∗( �w′
1, �w2)V ∗( �w1, �w′

2) , (B2)

N ′ =
∫

d �w1 d �w2|Ãp( �w1 + �w2)|2|V ( �w1, �w2)|2, (B3)

where we inserted the explicit expression (24) for the biphoton amplitude (without a constant coefficient). Here the function V

depends on phase matching and is given by Eq. (25), while Ãp is the Fourier profile of the pump. We start by simplifying the

integral B ′ in Eq. (B2) by introducing the change of variables,

( �w1, �w′
1 �w2, �w′

2) → ( �w1,�δ = �w1 − �w′
1, �wp = �w1 + �w2, �w′

p = �w′
1 + �w′

2). (B4)

With this change, B ′ becomes

B ′ =
∫

d �wp d �w′
p d�δ d �w1 Ãp( �wp)Ãp( �w′

p)Ãp
∗
( �wp − �δ)Ãp

∗
( �w′

p + �δ)V ( �w1,− �w1 + �wp)

×V ( �w1 − �δ,− �w1 + �δ + �w′
p)V ∗( �w1 − �δ,− �w1 + �wp)V ∗( �w1,− �w1 + �δ + �w′

p). (B5)

In this expression, the variables �wp and �w′
p die on the scale of the inverse of the pump waist and duration 2/σp, 2/τp. Because of

the presence of the terms A∗
p( �w′

1− �w1 + �wp) and A∗
p( �w1 − �w′

1 + �w′
p), the variable δ = �w1 − �w′

1 also dies out on the same scale.

We can then make use of the NPWP approximation, which amounts to substituting

V ( �w1,− �w1 + �wp) ≈ V ( �w1 − �δ,− �w1 + �δ + �w′
p) ≈ V ( �w1,− �w1) := V ( �w1), (B6)

where we took into account that all of the pump variables �wp, �δ, �δ + �w′
p die out on the fast scale of the inverse of the pump waist

and duration, over which the function V remains constant. Similarly,

V ∗( �w1 − �δ,− �w1 + �wp) ≈ V ∗( �w1,− �w1 + �δ + �w′
p) ≈ V ∗( �w1,− �w1) := V ∗( �w1). (B7)

Within the NPWP approximation, we hence obtain a new expression for B ′, which reads

B ′ =
∫

d �wp d �w′
p d�δÃp( �wp)Ãp( �w′

p)Ãp
∗
( �wp − �δ)Ãp

∗
( �w′

p + �δ)

∫

d �w1|V ( �w1)|4. (B8)

The integral over the pump variables can be further simplified by noting that it involves two convolutions:
∫

d �wpÃp( �wp) Ã∗
p( �wp ± �δ) =

∫

d�ξp|Ap(�ξp)|2e−±i�ξp ·�δ = (2π )
3
2 [F(|Ap|2)](±�δ), (B9)

where the symbol F(f ) denotes the Fourier transform of the function f. By also performing the integration over �δ, we obtain
∫

d�δ[F(|Ap|2)](�δ)[F(|Ap|2)](−�δ) =
∫

d�ξp|Ap(�ξp)|4, (B10)

where we used the Plancherel theorem
∫

d3 �w|f̃ ( �w)|2 =
∫

d3ξ |f (ξ )|2. This leads to

B ′ = (2π )3

[∫

d�ξp|Ap(ξp)|4
] [∫

d �w|Vpw( �w)|4
]

. (B11)

In order to complete the Schmidt-number calculation, we also have to evaluate N ′, proportional to the mean photon number.

With the usual change of variables, ( �w1, �w2) → ( �wp = �w1 + �w2, �w1), Eq. (B3) becomes

N ′ =
∫

d �wp |Ãp( �wp)|2
∫

d �w1 |V ( �w1,− �w1 + �wp)|2. (B12)

In the NPWP limit [see Eq. (28)], we get

N ′ =
∫

d �wp|Ãp( �wp)|2
∫

d �w|V ( �w)|2, (B13)
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which, using the Plancherel theorem in the first integral, can be also written as

N ′ =
∫

d�ξp|Ãp(�ξp)|2
∫

d �w|V ( �w)|2. (B14)

In the NPWP limit, the Schmidt number takes therefore the simplified form

K = N2

B
=

[ ∫

d�ξp|Ap(�ξp)|2
]2

∫

d�ξp|Ap(�ξp)|4

[ ∫

d �w|V ( �w)|2
]2

(2π )3
∫

d �w|V ( �w)|4 , (B15)

where the integrals now factorize into the pump and signal degrees of freedom.
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