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Network representations are useful for describing the structure of a large variety of complex systems. Although
most studies of real-world networks suppose that nodes are connected by only a single type of edge, most natural
and engineered systems include multiple subsystems and layers of connectivity. This new paradigm has attracted
a great deal of attention and one fundamental challenge is to characterize multilayer networks both structurally
and dynamically. One way to address this question is to study the spectral properties of such networks. Here we
apply the framework of graph quotients, which occurs naturally in this context, and the associated eigenvalue
interlacing results to the adjacency and Laplacian matrices of undirected multilayer networks. Specifically, we
describe relationships between the eigenvalue spectra of multilayer networks and their two most natural quotients,
the network of layers and the aggregate network, and show the dynamical implications of working with either of
the two simplified representations. Our work thus contributes in particular to the study of dynamical processes
whose critical properties are determined by the spectral properties of the underlying network.
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I. INTRODUCTION

Network theory has been demonstrated to be an invaluable
tool for studying complex systems, i.e., systems composed
of a large number of interacting elements. In particular,
by analyzing the spectral properties of the adjacency and
Laplacian matrix of a network it is possible to gain insight
on the structure and dynamics occurring on the network [1,2].
However, most natural and engineered complex systems
occur in interaction with other complex systems and, hence,
are better described by a multilayer network [3]. One can
distinguish different types of multilayer networks depending
on the interaction between the different systems (layers). For
example, a multiplex network is composed of elements that
interact through different channels. Each channel of interaction
is represented by a layer, and the connections between different
layers correspond to elements present in more than one layer
simultaneously, so in this case the intralayer and interlayer
interactions represent different kinds of relations.

Multilayer networks have attracted a lot of attention
recently [3], and many different structural and dynamical
features of multilayer networks have been studied [4–10],
demonstrating that the behavior of interacting complex sys-
tems differs substantially from a simple combination of the
isolated cases. In this work we argue that the mathematical
concept of quotient graph (see Sec. II C or Ref. [11]) underpins
the notion of multilayer network and gives fundamental
insights into the structure and properties of the network, in
particular its spectral properties.

In the first part of this paper, we apply eigenvalue
interlacing [11] to the adjacency and Laplacian eigenvalues
of multilayer network quotients and subnetworks. For the
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interlacing to hold for Laplacian eigenvalues, we define
an appropriate notion of quotient Laplacian and relate its
eigenvalues to a Laplacian of the quotient graph. In the
second part of the paper, we describe implications of the
spectral results to the structure and dynamical processes on
a multilayer network. In particular, we show how the pattern
of connections between layers constraints the dynamics on
the whole system. Our results agree with other methodologies
such as perturbative analysis [12,13] and put these and other
results in a more rigorous framework.

A network quotient can be seen as a coarsening, reduction,
or simplification of the original network. In this sense
our spectral results quantify the information loss about the
eigenvalue spectrum resulting from this reduction process,
expressed as certain eigenvalue inequalities.

We define two natural quotients for a multilayer network as
follows: the network of layers, which represents the connection
pattern between layers, and the aggregate network, which
results from the projection of all layers onto an aggregated
single-layer network (Fig. 1). In addition, we consider each
layer as a separate (sub-)network. We then relate their
adjacency and Laplacian eigenvalues to those of the whole
multilayer network, as an interlacing result in the most general
case, and as a lifting result is there is enough regularity in the
connectivity patterns. We also consider the layer subnetworks,
as their eigenvalues are related to the multilayer eigenvalues
in a similar fashion. See Table II for a brief summary of the
analytical results. The quotient point of view that we present
also suggests a very concrete notion of aggregate network
among the ones proposed in the literature [10,12,14].

II. MATHEMATICAL BACKGROUND

We give a self-contained description of network quotients
and interlacing results (deferring proofs to the Appendix),
including regular quotients and subnetworks. All the material
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FIG. 1. (Color online) Schematic representation of a multilayer
network with four layers and eight nodes per layer (a) and its two
quotients; the network of layers (b) and the aggregated network (c).
In (a), dashed lines represent interlayer edges. The quotient (b) is
undirected, as all layers have the same number of nodes [see Eq. (9)].
The quotient (c) is only partially drawn, it is directed, and the edge
thickness is proportional to the weight [Eq. (12)]. The network of
layers (b) corresponds to the layer interconnection structure, while
the aggregate network (c) represents the superposition of all the layers
onto one. In this sense, they can be thought of as “horizontal” and
“vertical” quotients, as the figure suggests. Both quotients clearly
represent a dimensionality reduction or coarsening of the original
multilayer network.

presented here is well known [2], except, as far as we know,
the definition of quotient Laplacian [Eq. (4)] and its relation
to the Laplacian of its quotient network.

A. Adjacency and Laplacian matrices

We represent an undirected network (or graph)G on n nodes
by its adjacency matrix AG = (aij ): aij �= 0 represents an edge
between nodes i and j with weight aij , while aij = 0 if there is
no such edge. Note that we allow positive and negative weights
and self-loops (aii �= 0). Any n × n real symmetric matrix is
the adjacency matrix of such a network.

If the weights satisfy aij = aji � 0, we define the Lapla-
cian matrix as LG = D − AG , where D = diag(d1, . . . ,dn) is
the diagonal matrix of the node degrees,

di =
n∑

j=1

aij =
n∑

j=1

aji . (1)

(In this article, by degree we will always refer to weighted
node degree as defined above.)

B. Interlacing

In this paper, we relate the adjacency and Laplacian
eigenvalues of a multilayer network to two quotient networks
that occur naturally. The main theoretical result that we will
exploit is that the eigenvalues of a quotient interlace the
eigenvalues of its parent network. Let m < n and consider
two sets of real numbers

μ1 � · · · � μm and λ1 � · · · � λn.

We say that the first set interlaces the second if

λi � μi � λi+(n−m) for i = 1, . . . ,m.

C. Network quotients

Suppose that {V1, . . . ,Vm} is a partition of the node set of a
network G with adjacency matrix AG , and write ni = |Vi |. The
subnetwork represented by Vi can be thought of as a cluster,
community, or layer, for example.

The quotient network Q of G is a coarsening of the network
with respect to the partition. It has one node per cluster Vi and
an edge from Vi to Vj weighted by an average connectivity
from Vi to Vj ,

bij = 1

σ

∑
k ∈ Vi

l ∈ Vj

akl, (2)

where we have a choice for the size parameter σ : We
will use σi = ni , σj = nj , or σij = √

ni
√

nj . We call the
corresponding network the left quotient, the right quotient, and
the symmetric quotient, respectively. Fortunately, the matrix
B = (bij ) has the same eigenvalues for the three choices of
σ (see Appendix A 1). We use the term quotient network to
refer to any of these three spectrally equivalent networks with
adjacency matrix B. Observe that the symmetric quotient is
undirected, while the left and right quotients are not, unless all
clusters have the same size, ni = nj for all i,j .

The key spectral result is that the adjacency eigenvalues of
a quotient network interlace the adjacency eigenvalues of the
parent network (see Appendix A 2 for a proof). The same result
applies for Laplacian eigenvalues if the Laplacian matrix of
the quotient is defined appropriately, as explained below.

Consider the left quotient of A with respect to the partition.
Observe that the row sums of Ql(A) are

di = 1

ni

∑
k∈Vi

dk, (3)

the average node degree in Vi . Let D be the diagonal matrix
of the average node degrees. Then we define the quotient
Laplacian as the matrix

LQ = D − Ql(A). (4)

(See Appendix A 4 a for a full discussion on this choice.)
With this definition, the Laplacian eigenvalues of the quotient
network interlace the Laplacian eigenvalues of the parent
network (see the theorem in Appendix A 4 a).

Let Q̃ be the loopless quotient of G, that is, the quotient
network Q with all the self-loops removed. As the quotient
Laplacian ignores self-loops (see Appendix A 4 a), we have
LQ = LQ̃, and the interlacing result also holds for the loopless
quotient.

D. Regular quotients

A partition of the node set {V1, . . . ,Vm} is called equitable
if the number of edges (taking weights into account) from a
node in Vi to any node in Vj is independent of the chosen node
in Vi , ∑

l ∈ Vj

akl =
∑
l ∈ Vj

ak′l for all k,k′ ∈ Vi, (5)

for all i,j . This indicates a regularity condition on the
connection pattern between (and within) clusters. If the
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TABLE I. Example of a regular quotient (adapted from Ref. [15]).
We show the adjacency eigenvalues and a basis of eigenvectors for
a simple network and a regular quotient. The shading indicates the
node set partition in three layers (represented vertically). Eigenvector
entries on each layer are separated by vertical bars for convenience.
Note that the spectrum of the quotient is a subset of the spectrum of
the parent network. Moreover, the eigenbasis of the parent network
consists of three eigenvectors of the quotient lifted to the parent graph
(repeated coordinates on each layer) and the other eigenvectors are
orthogonal to the partition (the sum of the coordinates on each layer
is zero). The analogous result applies for the Laplacian eigenvalues,
even if we add arbitrary intralayer edges (almost regular quotient).

Network Eigenvalues Eigenvectors

1 (1,−1,0,|1,−1,0,|0)
1 (1,0,−1,|1,0,−1,|0)

−1 (1,−1,0,|−1,1,0,|0)
−1 (1,0,−1,|−1,0,1,|0)
2 (1,1,1,|2,2,2,|3)

−2 (1,1,1,|−2,−2,−2,|3)
0 (1,1,1,|0,0,0,|−1)

2 (1,2,3)
−2 (1,−2,3)
0 (1,0,−1)

partition is equitable, we call the quotient network regular.
A source of regular quotients are network symmetries [15,16].
For a toy example of a regular quotient, see Table I.

If the quotient is regular, the adjacency eigenvalues of Q
not only interlace but are a subset of the adjacency eigenvalues
of G and, moreover, we can find an eigenbasis of G consisting
of m eigenvectors of the quotient lifted to G (by repeating the
coordinates on each cluster) and the other n − m eigenvectors
orthogonal to the partition (the sum of the coordinates on each
layer is zero); see Table I and Appendix A 3. We refer to this
spectral result as lifting.

For the Laplacian eigenvalues, the situation is somewhat
simpler. We call a partition almost equitable if condition (5)
is satisfied for all i �= j (but not necessarily for i = j ), that
is, if the regularity condition is satisfied after ignoring the
intracluster edges. In this case, we call the quotient graph Q
almost regular. Note that the quotient Q being almost regular
is equivalent to the loopless quotient Q̃ being regular.

The main result is that if the quotient graph Q is almost
regular, then the Laplacian eigenvalues of Q are a subset of
the Laplacian eigenvalues of G, and we can find a Laplacian
eigenbasis of G consisting of m Laplacian eigenvectors of the
quotient (Q or Q̃) lifted to G, and the other n − m eigenvectors
orthogonal to the partition (see Appendix A 4 for a proof). That
is, we have a lifting result for the Laplacian eigenvalues.

E. Subnetworks

Similar interlacing results apply when B is a principal
submatrix of A. If AG is the adjacency matrix of a graph,
a principal submatrix is the adjacency matrix of an induced
subgraph. An induced subgraph is a graph consisting of a
subset of nodes and all the links between them. In contrast,

TABLE II. Summary of spectral results. This summarizes the
spectral results in Sec. II; see the main text for details. In the context
of multilayer networks, the network of layers and aggregate network
are examples of quotients. Regularity is a very strong condition for
both quotients, but almost regularity may be satisfied by the network
of layers in certain cases, e.g., a layer-coupled multiplex [3]. The
layer subnetworks are induced subnetworks.

Adj. eigenvalues Laplacian eigenvalues

Quotient Interlacing Interlacing
Almost regular quotient Interlacing Lifting
Regular quotient Lifting Lifting

General subnetwork — Partial interlacing
Induced subnetwork Interlacing Partial interlacing

a factor subgraph consists of all the nodes and a subset of
the links. A general subgraph then consists of a subset of the
nodes and a subset of the links between them.

For induced subgraphs, the adjacency eigenvalues of a
induced subnetwork interlace the adjacency eigenvalues of the
network (see Appendix A 2). For the Laplacian eigenvalues,
only one of the interlacing inequalities hold, although this in-
terlacing applies to general subgraphs, not necessarily induced.
Namely, if λ1 � · · · � λn are the Laplacian eigenvalues of a
graph on n vertices, and μ1 � · · · � μm are the Laplacian
eigenvalues of general subgraph on m vertices, then

μi � λi+(n−m) for all 1 � i � m. (6)

(See Appendix A 4 b for a proof.)
These and the other spectral results are summarized in

Table II.

III. MULTILAYER NETWORK QUOTIENTS AND
SPECTRA

Now we turn to exploit the spectral results on quotient
networks in the framework of multilayer networks. After
introducing the multilayer network formalism, we discuss
two naturally occurring quotients: the network of layers and
the aggregate network. We also discuss layer subnetworks,
as similar interlacing results apply. This is not surprising, as
subnetworks and quotients are dual concepts in some abstract
categorical sense [17].

Note that analogous results to those presented here will
apply to arbitrary quotients or subnetworks on a multilayer
network, and we only focus on the most natural ones. For
the remainder, we implicitly assume the use of left quotients
Q(A) = Ql(A) (cf. Sec. II C).

A. Multilayer network formalism

We adopt the language and formalism of Ref. [3]. In
most generality, a multilayer network is a quadruplet M =
(VM,EM,V ,L), where V is a set of nodes, L = {La}da=1 is
a sequence of sets of layers, VM ⊆ V × ∏d

a=1 La are the
multilayer network nodes (an element (u,α) ∈ VM represents
node u ∈ V in layer α), and EM ⊆ VM × VM are the
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multilayer network edges. For simplicity, we assume from
now on d = 1, so there is only one set of layers L.

The pair GM = (VM,EM) is a graph called the underlying
graph of the multilayer network. The supra-adjacency matrix
of M is the adjacency matrix of this graph. In addition, each
layer can be considered a subgraph Gα = (Vα,Eα), where

Vα = {(u,α) ∈ VM}, (7)

Eα = {((u,α),(v,α)) ∈ EM}, (8)

for each α ∈ L. We write Aα for the adjacency matrix of Gα .
The supra-adjacency matrix AM = AGM has the matrices Aα

as diagonal blocks, while the off-diagonal blocks Aαβ represent
interlayer connectivity.

Finally, we define the supra-Laplacian matrix as the
Laplacian of the underlying graph LM = LGM .

B. Network of layers

The layers of a multilayer network partition the node set,
so it is reasonable to consider the quotient induced by this
partition. Let {V1, . . . Vm} be the partition of the multilayer
node set by the layers, and nα = |Vα |. Define the average
interlayer degree from α to β as

dαβ = 1

nα

∑
i ∈ Vα

j ∈ Vβ

aij . (9)

This represents the average connectivity from a node in Gα to
any node in Gβ . If α = β we write dα for dαα and call it the
average intralayer degree.

Consider the quotient with respect to the partition given by
the layers, that is, the (directed) network with adjacency matrix
(dαβ). We call this quotient the network of layers. Each node
corresponds to a layer, with a self-loop weighted by the average
intralayer degree dα , and there is a directed edge from layer α

to layer β weighted by the average interlayer degree dαβ .
Alternatively, we could consider the spectrally equivalent

symmetric quotient by replacing 1/nα with 1/(
√

nα
√

nβ) in
Eq. (9); see Sec. II C. The network of layers will also be
undirected if each layer contains the same number of nodes.

Applying the spectral results of Sec. II C, we conclude
that the adjacency (respectively, Laplacian) eigenvalues of
the network of layers interlace the adjacency (respectively
Laplacian) eigenvalues of the multilayer network. Namely,
if μ1, . . . ,μm are the adjacency (respectively, Laplacian)
eigenvalues of the network of layers, then

λi � μi � λi+(n−m) for i = 1, . . . ,m, (10)

where λ1, . . . ,λn are the adjacency (respectively, Laplacian)
eigenvalues of the multilayer network.

The network of layers, ignoring weights and self-loops,
simply represents the layer connection configuration (Fig. 1).
The connectivity of this reduced representation, measured in
terms of the eigenvalues, thus relates to the connectivity of the
entire multilayer network via the interlacing results.

We turn to the question of when the layer partition is eq-
uitable. This requires, in particular, that the intralayer degrees
are constant, that is, each layer must be a dα-regular graph,
a very strong condition unlikely to be satisfied in real-world

multiplexes. Instead, we call a multilayer network regular if
the layer partition is almost equitable, that is, the inter-layer
connections are independent of the chosen vertices. This is a
more natural condition, and examples of interlayer connections
which give rise to regular multilayers are all-to-all empty or
one-to-one connections with homogeneous weights [3].

If the multilayer network is regular, then, in addition to the
interlacing, the Laplacian eigenvalues of the network of layers
are a subset of the Laplacian eigenvalues of the multiplex, and
we can lift a Laplacian eigenbasis of the quotient, as described
in Sec. II C. This latter result has also been derived in Ref. [12].

C. Aggregate network

The multilayer network formalism also includes informa-
tion about nodes representing the same entity in several layers:
given u ∈ V , we think of (u,α) and (u,β) (if they are both
multilayer nodes) as two nodes representing the same entity
in two layers α �= β. This allows for a second notion of a
quotient, the aggregate network.

The aggregate network is obtained by identifying nodes
representing the same “actor” or “component” in different
layers (e.g., same user in two social networks; same hub
in different transport networks; multiplexes describing time
series [3]). This identification also makes sense for inter-
dependent networks where the functioning of a node in a
layer critically depends on the functioning of another node in
another layer and vice versa [18]. Several candidates for this
aggregate network have been proposed in the literature such
as the average network [12], the overlapping network [14], the
projected monoplex network [10], or the overlay network [10].
We claim that the natural definition of an aggregate network is
given by the suitable notion of quotient network, as follows.

We define a supranode as the set of nodes representing the
same object,

ũ = {(u,α) ∈ VM | α ∈ L}. (11)

Note that not every node is present in every layer, and ũ may
have cardinality 1. We call κũ = |̃u| the multiplexity degree
of the supranode ũ, that is, the number of layers in which
an instance of the same object u appears. We also define the
average connectivity between supranodes ũ and ṽ as

dũṽ = 1

kũ

∑
i ∈ ũ

j ∈ ṽ

aij , (12)

and write dũ for dũũ.
Observe that the supernodes partition the multilayer node

set. We define the aggregate network as the quotient associated
with this partition. Each node in this quotient corresponds to
a supranode, with a self-loop weighted by dũ, and a directed
edge from ũ to ṽ weighted by dũṽ .

Alternatively, we could consider the symmetric quotient,
which is an undirected network and has the same eigenvalues,
by simply replacing 1/kũ by 1/(

√
κũ

√
κṽ) in Eq. (12). Note that

the aggregate network quotient will also be undirected if every
supranode has the same multiplexity degree (cf. Sec. II C).

Finally, using the spectral results of Sec. II C, we conclude
that the adjacency (respectively, Laplacian) eigenvalues of
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the aggregate network interlace the adjacency (respectively,
Laplacian) eigenvalues of the multiplex. Namely, in a multi-
layer network with n nodes and ñ supranodes, the adjacency
(respectively, Laplacian) eigenvalues of the aggregate network
quotient μ1, . . . ,μñ satisfy

λi � μi � λi+(n−ñ) for i = 1, . . . ,̃n, (13)

where λ1, . . . ,λn are the adjacency (respectively, Laplacian)
eigenvalues of the multilayer network.

Observe that requiring the aggregate network to be regular,
or almost regular, is in this case very restrictive, as it would
require that every pair of nodes connects in the same uniform
way on every layer, and thus it is not likely to occur on real-
world multilayer networks.

D. Layer subnetworks

The layers of a multiplex form evident subnetworks, and
it is natural to relate the eigenvalues of each layer to the
eigenvalues of the multiplex. As we have seen (Sec. II E), the
interlacing result applies to the adjacency eigenvalues of an
induced subnetwork, such as the layers, and partial interlacing
also holds for the Laplacian eigenvalues. More precisely, if a
layer subgraph Gα has nα nodes and adjacency (respectively,
Laplacian) eigenvalues μ1, . . . ,μα , and λ1, . . . ,λn are the
adjacency (respectively, Laplacian) eigenvalues of the whole
multilayer network, then

λi � μi � λi+(n−nα ) for i = 1, . . . ,nα, respectivley, (14)

μi � λi+(n−nα ) for i = 1, . . . ,nα. (15)

IV. DISCUSSION AND APPLICATIONS

From a physical point of view, the adjacency and Laplacian
spectra of a network encode information on structural and
dynamical properties of the system represented by the network.
We now discuss some consequences and applications of
the spectral results derived in the previous sections. In the
following, let us write λi(A) for the ith smallest eigenvalue of
a matrix A.

A. Adjacency spectrum

The spectrum of the adjacency matrix is directly related to
different dynamical processes that take place on the system,
such as spreading processes, for which it has been shown
that critical properties are related to the inverse of the largest
eigenvalue of this matrix. As an example, consider a contact
process on the multilayer network M whose dynamic is
described by the equation

pi(t + 1) = β
∑

j

aijpj (t) − μpi(t), (16)

in which pi(t) is the probability of node i to be infected at
time t , β is the infection rate, μ is the recovery rate, and aij are
the elements of the supra-adjacency matrix AM. In this model,
each infected node contacts its neighbors with probability 1
and tries to infect them. The contact between two instances of
the same object in different layers is modelled in the same way
as the contact between any two other nodes (the layer structure

is ignored). The critical value for which the infection survives
is given by

βc = μ

λn(AM)
. (17)

From the interlacing result for the layer subnetworks
(Sec. III D) we have that

λnα
(Aα) � λn(AM), (18)

where Aα is the adjacency matrix of the layer α. This
means that the critical point for the multilayer network βc

is bounded from above by the corresponding critical points of
the independent layers [19]. This implies that the multilayer
network is more efficient as far as spreading processes are
concerned than the most efficient of its layers on its own.

On the other hand, if λm is the largest adjacency eigenvalue
of the network of layers, then (Sec. III B)

λm � λn(A), (19)

which means that the connections between layers also impose
constraints to the dynamics on the multilayer network. In
particular, the critical point of the spreading dynamics on the
multilayer network is bounded from above by the correspond-
ing critical point of the network of layers. Note that this also
explains the existence of a mixed phase [20].

Consider now the same process (16), this time defined on
the aggregate network

pũ(t + 1) = β
∑

ṽ

aũṽpṽ(t) − μpũ(t). (20)

Here aũṽ are the elements of Q(AM), the adjacency matrix of
the aggregate graph. The critical value is given by

β̃c = μ

λñ(Q(AM))
, (21)

where ñ is the number of supranodes in M (the size of the
aggregate network). From the interlacing result we have that

β̃c � βc.

Therefore the spreading process on M is at least as efficient
as the same spreading process on the aggregate network.

Note that Eqs. (16) and (20) describe two rather different
processes, that is, two different strategies that actors can adopt
in order to spread information across the multilayer network. In
the former, a node can infect any other node on any layer, while
in the latter, each supranode chooses at each time step with
uniform probability a layer in which an instance representing
it is present and then contacts all its neighbors in that layer. Our
results show that the former strategy is more effective than the
latter, as expressed by the relation between the critical points.

B. Laplacian spectrum

The Laplacian of a network L = (lij ) is the operator of the
dynamical process described by

ṗij (t) = −
∑

k

pik(t) lki (22)

where pij (t) represents the transition probability of a particle
from node i to node j at time t . The second smallest eigenvalue
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of the Laplacian matrix sets the time scale of the process. From
the interlacing results applied to the Laplacian matrix we have
that for any quotient

λ2(LM) � λ2(Q(LM)). (23)

That is, the relaxation time on the multiplex is at most the relax-
ation time on any quotient, in particular the network of layers
or the aggregate network. If we interpret λ2 of a network Lapla-
cian as algebraic connectivity [2], Eq. (23) means that the alge-
braic connectivity of the multilayer network is always bounded
above by the algebraic connectivity of any of its quotients.

As a more concrete example of the above, consider a
multilayer network describing a time series. Then the network
of layers is a path graph on m nodes (the number of layers)
and hence

λ2(LM) � 2 − 2 cos

(
π

m

)
. (24)

This means that in this case the relaxation time is proportional
to the length of the time series, as one would expect.

On the other hand, the Laplacian of the aggregated
network is the operator corresponding to the dynamical process
described by

ṗũṽ(t) =
∑

k̃

pũk̃(t) ak̃ṽ − dũ pũṽ(t) =
∑

k̃

pũk̃(t) l̃k̃ũ, (25)

where pĩj̃ (t) is the transition probability of a particle from
supranode ũ to supranode ṽ at time t , aũk̃ are the elements
of the adjacency matrix of the aggregated contact network,
L̃ = (l̃ij ) is the Laplacian matrix of the aggregate contact
network (i.e., L̃ = Q(LM)) and dũ = ∑

ṽ aũṽ is the degree of
a supranode. Note that if we define the overlapping degree [14]
of a supranode as

oũ =
∑

ṽ

aũṽ,

then we have that

dũ = 1

κũ

oũ.

From the interlacing result for the Laplacian we have that

λ2(LM) � λ2(Q(LM)). (26)

That is, the diffusion process on the aggregate network
[Eq. (25)] is faster than the diffusion process on the entire
multilayer network [Eq. (22)].

Note that in Ref. [12], in a setting in which all nodes
are connected to a counterpart in each layer, the authors
obtained by means of a perturbative analysis that λ2(LM) ∼
λ2(Q(LM)) when the diffusion parameter between layers is
large enough. In Ref. [13] this result is generalized (in a
different framework, since they are interested in structural
properties of interdependent networks) to all almost regular
multilayer networks. In the framework of quotient networks
that we have presented here those results arise in a very nat-
ural way. Besides, eigenvalue interlacing between multilayer
and quotient eigenvalues holds for every possible interlayer
connection scheme.

In the context of synchronization, the smallest nonzero
Laplacian eigenvalue λ2 is also related to the stability of

a synchronized state [21], and indeed the larger λ2 is the
more stable is the synchronized state. Considering a multilayer
network, the bound in (23) means that the synchronized state
of a system supported on the multilayer network is at most as
stable as the synchronized state on any of its quotients.

V. CONCLUSIONS

We have presented the network quotient formalism in the
context of multilayer networks, highlighting the two most natu-
ral quotients, the network of layers, and the aggregate network.
Structurally, a quotient can be thought as a dimensionality
reduction of a multilayer network. In terms of spectra, we have
showed that eigenvalue interlacing applies to the adjacency and
Laplacian eigenvalues of any quotient and to subnetworks such
as the layer subnetwork. We needed in particular a definition of
the quotient Laplacian and to relate its eigenvalues to those of
a Laplacian of the quotient network. We have also investigated
regularity of the interlayer connectivity, which gives a stronger
lifting result on the eigenvalues and eigenvectors. Finally, we
have discussed possible applications of our results, including
reproducing previous results in the literature obtained by other
means such as perturbative analysis.

We argue that the notion of quotient is closely intertwined to
that of a multilayer network, as the latter formally corresponds
to an ordinary network with additional layer and node
identification information. Thinking of a network quotient
as a partition or identification of its node set, a multilayer
network indeed can be recovered from its underlying network
and these two quotients, the network of layers, and the
aggregate network. We hope that the quotient point of view
will be a useful and complementary perspective in the study
of multilayer networks.
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APPENDIX: MATHEMATICAL STATEMENTS

1. The quotient of a symmetric matrix

The quotient formalism holds more generally for any real
symmetric matrix, as we explain here. Let A = (aij ) be any
real symmetric n × n matrix. Write X = {1,2, . . . ,n}, let
{X1, . . . ,Xm} be a partition of X, and let ni = |Xi |. We write
Aij for the submatrix consisting of the intersection of the k

rows and l columns of A such that k ∈ Xi and l ∈ Xj . In
particular, Aij is an ni × nj matrix. Define bij as the average
row sum of Aij ,

bij = 1

ni

∑
k ∈ Xi

l ∈ Xj

akl . (A1)

052815-6



DIMENSIONALITY REDUCTION AND SPECTRAL . . . PHYSICAL REVIEW E 89, 052815 (2014)

The m × m matrix Ql(A) = (bij ) is called the left quotient
matrix of A with respect to the partition {X1, . . . ,Xm}.

We can express Ql(A) in matrix form, as follows. Let S =
(sij ) be the n × m characteristic matrix of the partition, that is,
sij = 1 if i ∈ Xj , and 0 otherwise. Then ST AS is the matrix of
coefficient sums of the submatrices Aij , and, hence, Ql(A) =
�−1ST AS, where � = diag(n1, . . . ,nm).

There are two alternatives to Ql(A), called the right quotient
and the symmetric quotient, written Qr (A) and Qs(A). They
correspond to replacing 1/ni in (A1) by 1/nj , respectively
1/

√
ni

√
nj . In matrix form, we have Qr (A) = ST AS�−1 and

Qs(A) = �−1/2ST AS�−1/2. Note that Ql(A) is the transpose
of Qr (A), and they are not symmetric unless ni = nj for all i,j .

Nevertheless, these three matrices have the same spectrum
(the proof is straightforward):

Lemma. Let X,D be m × m matrices, with D diagonal.
Then the matrices DX, XD and D1/2XD1/2 have all the same
spectrum.

The key result is that the eigenvalues of a quotient matrix
interlace the eigenvalues of A, as we explain next. From now
on let Q(A) = Ql(A), the quotient matrix normally referred
to in the literature.

2. Interlacing eigenvalues

All the interlacing results we refer to are a consequence of
the theorem below, which in turn follows from the Courant-
Fisher max-min theorem.

Theorem ([11], Thm. 2.1(i)]). Let A be a symmetric matrix
of order n, and let U be an n × m matrix such that UT U = I .
Then the eigenvalues of UT AU interlace those of A.

Observe that the matrix UT AU is symmetric, and hence it
has real eigenvalues.

If U is the characteristic matrix of a subset α ⊂
{1,2, . . . ,n}, that is, U = (uij ) of size n × |α| and nonzero
entries uii = 1 if i ∈ α, then UT AU equals the principal
submatrix of A with respect to α. As UT U is the identity,
we conclude as follows from the theorem above:

Corollary ([11], Cor. 2.2]). Let B be a principal submatrix
of A. Then the eigenvalues of B interlace the eigenvalues
of A.

On the other hand, if S is the characteristic matrix of the
partition, then ST S = � is a diagonal nonsingular matrix, and
hence U = S�−1/2 satisfies the hypothesis of the theorem. We
conclude that the eigenvalues of UT AU = �−1/2ST AS�−1/2

interlace those of A. Using the Lemma in A 1, we conclude as
follows:

Corollary ([11], Cor. 2.3(i)]). Let B be a quotient matrix
of A with respect to some partition. Then the eigenvalues of
B interlace the eigenvalues of A.

3. Equitable partitions

A partition of the node set is called equitable if, for each
i,j , the row sum of the submatrix Aij is constant, that is,

∑
l∈Xj

akl =
∑
l∈Xj

ak′l for all k,k′ ∈ Xi. (A2)

This can be expressed in matrix form as AS = S Q(A). We
call the matrix Q(A) a regular quotient if it is the quotient of
an equitable partition.

If the quotient is regular, then the eigenvalues of Q(A) not
only interlace but are a subset of the eigenvalues of A. In fact,
there is a lifting relating both sets of eigenvalues, as we explain
now.

If v,w are column vectors of size m and n, we say that
Sv represents the vector v lifted to A, and ST w the vector
w projected to Q(A). The vector Sv has constant coordinates
on each Xi , while the vector ST w is created by adding the
coordinates on each Xi . The vector w is called orthogonal to
the partition if ST w = 0, that is, the sum of the coordinates
over each Xi is zero.

If the quotient is regular, the spectrum of A decomposes
into the spectrum of B lifted to A (i.e., eigenvectors constant
on each Xi), and the remaining spectrum is orthogonal to the
partition (i.e., eigenvectors with coordinates adding to zero on
each Xi):

Theorem. Let B be the quotient matrix of A with respect
to an equitable partition with characteristic matrix S. Then the
spectrum of B is a subset of the spectrum of A. More precisely,
(λ,v) is an eigenpair of B if and only if (λ,Sv) is an eigenpair
of A.

Moreover, there is an eigenbasis of A of the form
{Sv1, . . . ,Svm,w1, . . . ,wn−m} such that {v1, . . . ,vm} is any
eigenbasis of B, and ST wi = 0 for all i.

Proof. The first part follows easily from the identity SA =
SB, which is equivalent to Eq. (A2) [note that Sv �= 0 as
Ker(S) = 0]. For the second part, note that S is an isomorphism
onto Im(S), as it has trivial kernel, so {Sv1, . . . ,Svm} is a basis
of Im(S). It is easy to show that the orthogonal complement
Im(S)⊥ equals Ker(ST ), hence we can complete the linearly
independent set of eigenvectors {Sv1, . . . ,Svm} to a eigenbasis
of Rn = Im(S) ⊕ Im(S)⊥. �

4. Laplacian eigenvalues

a. Quotients

We want to show that the Laplacian of a quotient graph
is the quotient of the Laplacian matrix, as this will allow us
to extend the interlacing results to the Laplacian eigenvalues.
First, we need to clarify what we mean by the Laplacian of a
nonsymmetric matrix.

If A = (aij ) is a real symmetric (adjacency) matrix, define
the node out-degrees as

dout
i =

∑
j

aij (row sum). (A3)

The out-degree Laplacian is the matrix

Lout = Dout − A, (A4)

where Dout is the diagonal matrix of the out-degrees. We define
d in

i , Din and the in-degree Laplacian Lin analogously. Note that
both Laplacian matrices ignore the diagonal values of A. (If A

is the adjacency matrix of a graph, we say that the Laplacian
“ignores self-loops.”)
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Consider the left and right quotients of A with respect to a
given partition. Observe that the row sums of Ql(A) are

di = 1

ni

∑
k∈Vi

dk, (A5)

the average node degree in Vi . Let D be the diagonal matrix
of the average node degrees. Then we define the quotient
Laplacian as the matrix

LQ = D − Ql(A), (A6)

that is, the out-degree Laplacian of the left quotient matrix.
Alternatively, we could have defined LQ as the in-degree
Laplacian of the right quotient matrix, giving a transpose
matrix with the same eigenvalues. (Note that there is no
obvious way of interpreting the symmetric quotient Qs(L)
as the Laplacian of a graph.)

Now we can prove that the Laplacian of the quotient is the
quotient of the Laplacian, in the following sense.

Theorem. Let G be a graph with adjacency matrix A and
Laplacian matrix L. Then

Lout(Ql(A)) = Ql(L).

The analogous result holds for the right quotients and the
in-degree Laplacian.

Proof. By definition (see Appendix A 1),

Ql(L) = �−1ST LS = �−1ST (D − A)S

= �−1ST DS − �−1ST AS = D − Ql(A).

The second statement follows by transposing the equation
above. �

This theorem allows us to use the interlacing results of
Appendix A 2 for Laplacian eigenvalues.

We finish by studying equitable partitions in the context
of Laplacian matrices. We demonstrate that a partition being
regular for the Laplacian matrix is equivalent to the partition
being almost regular for the adjacency matrix. In particular, the
spectral results of Appendix A 3 will hold for almost regular
quotients and Laplacian eigenvalues.

Theorem. Let G be a graph with adjacency matrix A and
Laplacian matrix L. Then a partition is equitable with respect
to L if and only if it is almost equitable with respect to A.

Proof. By relabeling the nodes if necessary, we can assume
the block decomposition

A =

⎛
⎜⎜⎝

A11 . . . A1m

...
. . .

...

Am1 . . . Amm

⎞
⎟⎟⎠, (A7)

where the ni × nj submatrix Aij represents the edges from Vi

to Vj . The matrix L has then a similar block decomposition
into submatrices Lij . As L = D − A and D is diagonal, we
have Lij = −Aij for all i �= j . In particular, the row sums of
Lij are constant if and only if the row sums of Aij is constant
for all i �= j . On the other hand, as the row sums in L are zero,
the row sums in Lii equals the sum of the row sums of the
matrices Lij for j �= i, and the result follows. �

b. Subnetworks

The adjacency eigenvalues of an induced subgraph interlace
those of the graph, as per the first corollary in Appendix A 2.
However, they do not behave well for factor subgraphs [11].
For the Laplacian eigenvalues, they behave well for general
subgraphs, in the following sense.

Theorem. Let λ1 � · · · � λn be the Laplacian eigenvalues
of a graph G on n vertices, and let μ1 � · · · � μm be the
Laplacian eigenvalues of a general subgraph on m vertices.
Then μi � λi+(n−m) for all 1 � i � m.

Proof. The proof uses the same ideas described in Ap-
pendix A 2 (cf. [2], Prop. 3.2.1(ii)]). Write L = BBT , where
B is the incidence matrix of the graph. The matrices BBT

and BT B have the same nonzero spectrum (probably with
different multiplicities), and removing an edge is equivalent
to taking a principal submatrix of BT B, hence interlacing
applies. To remove a vertex, first remove all the incident edges,
and then removing the vertex corresponds to removing a zero
eigenvalue. �

[1] P. Van Mieghem, Graph Spectra for Complex Networks
(Cambridge University Press, Cambridge, 2012).

[2] A. E. Brouwer and W. H. Haemers, Spectra of Graphs (Springer,
Berlin, 2012).
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[10] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä,
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