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Abstract

Background: With a wide array of multi-modal, multi-protocol, and multi-scale biomedical data being routinely

acquired for disease characterization, there is a pressing need for quantitative tools to combine these varied channels

of information. The goal of these integrated predictors is to combine these varied sources of information, while

improving on the predictive ability of any individual modality. A number of application-specific data fusion methods

have been previously proposed in the literature which have attempted to reconcile the differences in dimensionalities

and length scales across different modalities. Our objective in this paper was to help identify metholodological

choices that need to be made in order to build a data fusion technique, as it is not always clear which strategy is

optimal for a particular problem. As a comprehensive review of all possible data fusion methods was outside the

scope of this paper, we have focused on fusion approaches that employ dimensionality reduction (DR).

Methods: In this work, we quantitatively evaluate 4 non-overlapping existing instantiations of DR-based data fusion,

within 3 different biomedical applications comprising over 100 studies. These instantiations utilized different

knowledge representation and knowledge fusion methods, allowing us to examine the interplay of these modules in

the context of data fusion. The use cases considered in this work involve the integration of (a) radiomics features from

T2w MRI with peak area features from MR spectroscopy for identification of prostate cancer in vivo, (b)

histomorphometric features (quantitative features extracted from histopathology) with protein mass spectrometry

features for predicting 5 year biochemical recurrence in prostate cancer patients, and (c) volumetric measurements

on T1w MRI with protein expression features to discriminate between patients with and without Alzheimers’ Disease.

Results and conclusions: Our preliminary results in these specific use cases indicated that the use of kernel

representations in conjunction with DR-based fusion may be most effective, as a weighted multi-kernel-based DR

approach resulted in the highest area under the ROC curve of over 0.8. By contrast non-optimized DR-based

representation and fusion methods yielded the worst predictive performance across all 3 applications. Our results

suggest that when the individual modalities demonstrate relatively poor discriminability, many of the data fusion

methods may not yield accurate, discriminatory representations either. In summary, to outperform the predictive

ability of individual modalities, methodological choices for data fusion must explicitly account for the sparsity of and

noise in the feature space.
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Background
Predictive, preventive, and personalized medicine has the

potential to transform clinical practice by enabling the

use of multi-scale, multi-modal, heterogeneous data to

better determine the probability of an individual con-

tracting certain diseases and/or responding to a spe-

cific treatment regimen. These heterogeneous modalities

may characterize either imaging (such as Magnetic Res-

onance Imaging (MRI), ultrasound, histology specimens)

or non-imaging (gene-, protein-expression, spectroscopy)

data, based on the method and type of data being

acquired.

These modalities also have differing dimensionalities,

where MRI, ultrasound are scalar intensity values, while

spectroscopy is a multi-dimensional signal comprising

metabolite concentrations at every image voxel (Fig. 1).

More crucially, each of these modalities capture different

types of information about the disease at different length

scales. For example, gene expression levels represent cel-

lular scale observations; changes in which would result in

a phenotypic structural or vascular difference on tumor

morphology that is captured at the pathologic scale via

standard H&E tissue specimens [1]. While data acquired

at different length scales may be considered to capture

complementary characteristics (structural versus biolog-

ical), the associated information is represented via fun-

damentally different data types (images versus molecular

concentrations).

We define multi-modal data fusion as the process of

combining a variety of complementary measurements

from different data modalities, existing at different length

scales, into an integrated predictor [1]. Combining com-

plementary sources of information in this manner to yield

a more comprehensive characterization of a disease or

tissue region has been demonstrated to yield a more accu-

rate predictor than using any individual data modality

[2, 3] .

Recently, our group and several others have explored

different dimensionality reduction (DR) based fusion

approaches, such as linear or non-linear projections [4–7],

multi-kernel learning [8, 9] or feature selection [10–12] to

address the challenge of multi-modal data fusion; specifi-

cally involving imaging and non-imaging data modalities.

Note that while there is a plethora of fusion methodolo-

gies, we choose to focus here on DR-based multimodal

data fusion.

Consider the publicly available ADNI database which

contains imaging (MRI and PET), as well as non-imaging

(genetics, cognitive tests, CSF and blood biomarkers)

information for a population of patients with and with-

out Alzheimer’s disease. Using the ADNI database, mul-

tiple data fusion methodologies have been proposed to

integrate these different data types to build a fused pre-

dictor for Alzheimer’s disease, including classifier-based

[13], dimensionality reduction-based [7], as well as multi-

kernel learning-based [14]. Given that these methods all

attemptmulti-modal data fusion, one can posit the follow-

ing questions:

(a) How are these approaches similar or different from

one another?

(b) How does a particular method compare to other

fusion methods applied to same dataset, either

methodologically or in terms of performance?

(c) How can a particular method be selected over any

other for a new application i.e. do the methods

generalize or do they require specific types of

information?

Motivated by the seminal work by Yan et al. [15],

who demonstrated that different dimensionality reduc-

tion methods can be formulated as instantiations of the

“generalized graph embedding” approach, in this paper we

propose to identify common methods and thus an under-

lying workflow which govern existing multi-modal data

fusion strategies. Further, we will compare a subset of

these data fusion methods to better understand the con-

tributions of the individual modules that comprise a data

fusion strategy.

The rest of the paper is organized as follows. We first

briefly define the specific steps (representation and fusion)

typically followed within a multi-modal data fusion strat-

egy, based on a summary of existing work in this domain.

We then provide a detailed description of the differ-

ent modules that have been previously utilized for data

representation as well as data fusion. Experiments to

demonstrate the application of multi-modal data fusion

in the context of different diagnostic and prognostic clin-

ical problems are then described, followed by the results

of quantitative and qualitative evaluation of representa-

tive data fusion strategies within these applications. Note

that while we have attempted to diversify in terms of our

choice of datasets and methods employed, this work is

not meant as a comprehensive evaluation of all possible

imaging and non-imaging fusion methods and datasets.

For instance, we have not extensively explored the popular

canonical correlation class of fusion approaches [6]. We

have instead opted to systematically compare and relate

a few different representative multi-modal data fusion

strategies in the context of different clinical applications,

to provide a basic understanding of the interplay of dif-

ferent individual modules that can comprise a data fusion

method. As all the techniques compared in this study

involved projecting the data modalities to construct a

reduced fused representation, we have essentially focused

on DR-based multimodal data fusion. Finally, we conclude

by summarizing our takeaways and directions for future

work.
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Fig. 1 Illustration of data acquired at different length scales from imaging (radiology, pathology) and non-imaging (MR spectroscopy, protein

expression) data, which could be combined to create fused predictors of disease aggressiveness and treatment outcome. In this illustration we use

the example of prostate to illustrate the types of data that might be acquired before and after radical prostatectomy. In vivo information acquired

prior to prostatectomy includes MR imaging and spectroscopy, while the surgical specimen yields digitized histological sections as well as

undergoing genomic profiling via mass spectrometry. The middle column of the illustration depicts different knowledge representation methods

(e.g. dimensionality reduction, co-association matrices) for uniformly representing multi-modal data. Once represented in a common space, these

features can be combined to create a predictive model. An application of this predictive model could include survival curve analysis (far right

column, obtained by combining histologic and proteomic features) for identification of prostate cancer patients who will later suffer from

biochemical recurrence within 5 years (red) from those who will not (blue)

Generalized overview of a dimensionality reduction-based

multi-modal data fusion strategy

Table 1 summarizes a number of recently presentedmeth-

ods for multi-modal data fusion, including the variety of

data that has been examined and the different methods

that have been utilized in each case. Based on the litera-

ture, we observe that there appear to be two specific steps

that are utilized (either explicitly or implicitly):

1. Knowledge representation : We define this as

transforming the individual data modalities into a

common space where modality differences in terms

of scale and dimensionality are removed. This

includes methods such as kernel representations

[16], low-dimensional representations (LDR) [17], or

classifier-based decisions [18].

2. Knowledge fusion : We define this as combining

multiple different knowledge representations into a

single integrated result to build a fused predictor,

such that complementary information from different

modalities is leveraged as best possible. Methods

utilized in this regard include confusion matrices,

weighted or unweighted combinations, as well as

concatentation.

Based on our summary of the literature in Table 1,

we further conceptualize the interplay of these two steps

in the context of multi-modal data fusion as illustrated

in Fig. 2. We have additionally incorporated commonly

used strategies of resampling (generating multiple repre-

sentations from each data modality) as well as weighting

(differentially considering data modalities depending on

their contributions) into this series of steps. The differ-

ent options for representation as well as fusion have been

enumerated in the flowchart; note that any fusion method

could be used with any representation method. This indi-

cates that a wide variety of data fusion strategies can be

enumerated, however, we must once again note that the

current study is not intended as a comprehensive review of

all these possible methods. The representative strategies
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Table 1 Brief review of multi-modal data fusion methods from the literature and methodologies that have been used

Reference Data Method

Moutselos et al. [65] Skin images Combining features into a confusion matrix

Gene expression

Golugula et al. [6] Histopathology Correlating features via CCA, combining CCA-based
confusion matrices

Proteomics

Dai et al. [20] sMRI Construct classifiers from features, weighted
combination of classifier decisions

fMRI

Gode et al. [66] mRNA
Compute LDR/classifier decisions, unweighted
combination of LDR- or classifier-based confusion
matrices

miRNA

Raza et al. [22] Gene-expression Compute classifier decisions, unweighted
combination of classifier decisions

FNAC

Sui et al. [67] DTI Correlate features via CCA, unweighted combination
of CCA-based confusion matrices

fMRI

Wolz et al. [7] T1-w MRI Compute LDR, weighted combination of LDR-based
confusion matrices

ApoE genotype, Aβ1−42

Wang et al. [62] T1-w MRI, FDG-PET Feature selection, weighted concatenation of
selected features

Gene-expression

Lanckriet et al. [9] Protein expression Compute kernel representations, weighted
combination of kernels

Gene-expression

Yu et al. [68] Text ontologies Compute kernel representations, fuse kernel-based
confusion matrices

Gene-expression

Higgs et al. [54] CT Compute LDR, fuse LDR maintaining manifold
structure

Gene-expression

Lee et al. [4] Gene-expression Compute LDR, unweighted concatenation of LDR

Histopathology

Viswanath et al. [5] T2-w Compute LDR, combine LDR-based confusion
matrices using label information

ADC, DCE

Tiwari et al [8] T2-w MRI
Compute kernel representations, weighted
LDR-based combination of kernels using label
information

MRS

CCA Canonical Correlation Analysis, LDR Low-Dimensional Representation. See Description of methods utilized for multi-modal data fusion section for more details
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Fig. 2 Generalized overview of steps followed for DR-based multimodal data fusion. Knowledge representation refers to transforming each modality

individually into a space where modality-specific scale and dimensionality differences are removed. Resampling allows for generation of multiple

representations from each data modality to try and maximize the information extracted from it. Knowledge fusion then combines different

representations into a single integrated result to build a fused predictor. Weighting enables building of a fused result where the data modalities are

differentially considered depending on how well they individually characterize the data. The final fused result is expected to leverage the

complementary information from different modalities as best as possible

we have chosen to compare in the current study have

instead been chosen based on combining different aspects

of the workflow depicted in Fig. 2, and all of them involve

some form of dimensionality reduction.

Methods

Description ofmethods utilized formulti-modal data fusion

Notation

We define the original feature space associ-

ated with samples ci and cj for modality m as

Fm = [Fm(c1), . . . ,Fm(cN )], i, j ∈ {1, . . . ,N}, m ∈

{1, . . . ,M}, where N is the number of samples and M is

the number of modalities. The corresponding class label

for sample ci is given as ωi ∈[ 0, 1].

Knowledge representation

The primary goal of this step is to transform differ-

ent multi-modal data channels into a common space

to overcome inherent dimensionality and scale differ-

ences. Representation facilitates subsequent data fusion

step by (a) preserving information from each of the

input heterogeneous data modalities, while (b) accounting

for factors that would be detrimental to combining this

information.

Decision representations This class of approaches

involve deriving classifier outputs from independent data

channels [18]. For example, Jesneck et al. [19] calculated

individual sets of probabilities from different imaging

modalities (mammograms, sonograms) as well as patient

history (non-imaging). These sets of classifier probabili-

ties were then quantitatively fused to yield an integrated

classifier for improved breast cancer diagnosis (as the

modalities had been transformed into a common classifier

probability space).

For each modality m ∈ M, decision representa-

tion involves calculating a probability for each sam-

ple as belonging to the target class, denoted as

hm(c1) . . . , hm(cN ), 0 ≤ hm ≤ 1, which may be

done via a wide variety of classifier methods that

exist [18]. While classifier-based approaches have seen

extensive use in as an implicit form of data fusion

[20–22], one of the major disadvantages to this class

of approaches is that all inter-source dependencies

between modalities are lost, as each modality is being

treated independently when computing the decision

representation [4].

Kernel representations Kernels are positive definite

functions which transform the input data to an implicit

dot product similarity space [16], and in typical use, dif-

ferent kernels are used to represent each data modality

[9], with the advantage being the flexibility to tweak and

fine-tune the kernel depending on the type of data being

considered [23].

For each modality m ∈ M, the kernel representa-

tion is calculated as Km(ci, cj) =
〈
�(Fm(ci),�(Fm(cj))

〉
,

where � is the implicit pairwise embedding between

the feature vectors Fm(ci) and Fm(cj) being calculated

between every pair of points ci and cj, i, j,∈ {1, . . . ,M},

for modality m, while 〈.〉 denotes the dot product

operation.

Kernels and multi-kernel learning are one of the

most powerful representation strategies which has found
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wide application in many different domains [14, 24–26].

However, in addition to being computationally expen-

sive, there is a lack of transparency in relating kernel

representations to the input multi-modal data, as it is not

possible to create an interpretable visualization of the joint

kernel space.

Low-dimensional representations (LDR) Dimension-

ality reduction transforms input data to a low-dimensional

space while preserving pairwise relationships between

samples as best possible [17]. Typically, these pairwise

relationships can be quantified via affinities or distances

(as used by methods such as spectral embedding [27]);

however, it is also possible to utilize measures such as

covariance as considered within canonical correlation

analysis (CCA) [6, 28] or principal component analysis

(PCA) [29].

Low-dimensional representations first require calcu-

lation of an N × N confusion matrix W =[wij] which

attempts to capture pairwise relationships between

objects ci and cj, i, j ∈ {1, . . . ,N}, N being the total

number of samples. The corresponding low-dimensional

representation y can be obtained via Eigenvalue

decomposition as,

Wy = λDy, (1)

with the constraint yTDy = 1, where Dii =
∑

j wij.

Given M modalities, Wm is calculated for every m ∈

M, each of which are then subjected to Eigenvalue

decomposition to yield the low-dimensional representa-

tions ym. Low-dimensional representations have proven

very popular for biomedical applications [30–33], espe-

cially as they enable informative visualizations (such as

cluster plots) while ensuring computational tractabil-

ity. Similar to kernel representations, depending on the

LDR method used, one cannot always relate the low-

dimensional representation to the original multi-modal

data.

Generation of multiple representations (resampling)

The robustness and generalizability of representation

techniques has been shown to improve when multiple

representations of input data are generated and com-

bined [5, 34–36]. For example, combining multiple clas-

sifier outputs into an “ensemble” classifier result has

been demonstrated to yield better classification accu-

racy and generalizability than any individual classifier

(both analytically and empirically) [34, 37]. This idea

of calculating a number of representations is typically

implemented by resampling a given dataset as demon-

strated for classifier decisions [34], projections [38], and

clusterings [39].

Thus, rather than calculate a single representation per

modality (i.e. generatingM representations forM distinct

modalities), n “weak” representations could be generated

for each ofM modalities, in total yielding nM representa-

tions of heterogeneous data modalities.

These may be generated in any of the following ways:

(a) Perturbing the samples : Given a set ofN samples in a

set C, n bootstrapped sets C1,C2, . . . ,Cn ⊂ C (with

replication) are created, which in turn will yield n
different representations. Each of C1,C2, . . . , Cn will

consist of samples drawn at random from C, but with
replacement, such that every sample c ∈ C may be

repeated multiple times across all of C1,C2, . . . ,Cn.

This approach has been termed “bootstrapped

aggregation” (or bagging [37]).

(b) Perturbing the parameters : All knowledge
representation schemes (kernels, decisions,

low-dimensional) are known to be sensitive to the

choice of parameters used [40–42]. For example, a

neighborhood parameter must be optimized for

calculating an accurate low-dimensional

representation via locally linear embedding [42, 43]

or for constructing an accurate k -nearest neighbor
classifier model [44]. A range of n possible parameter

values can be used to generate n different “weak”

representations [45].

(c) Perturbing the features : Similar to perturbing the

samples, we can create n bootstrapped sets of

features with replication.

By varying the feature space input to the

representation scheme, it is possible to generate n
distinct “weak” representations [5].

Knowledge fusion

Given nM knowledge representations of M input het-

erogeneous modalities, the objective of knowledge fusion

[9, 19, 34] is to combine multiple different representations

into a single integrated result, denoted as R̂. Note that this

fusion may involve combining the knowledge representa-

tions directly (i.e. combining kernels or low dimensional

representations) or by preserving specific relationships

associated with a representation technique (e.g. affinity-

based or structure-based fusion). R̂ will be subsequently

utilized to build a comprehensive predictor for a given

dataset [23, 46, 47].

Direct fusion The most popular class of fusion strate-

gies involve directly combining a set of knowledge rep-

resentations either through simple concatenation or a

weighted combination. Concatenation has most popularly

been used for combining information extracted frommul-

tiple imaging modalities which are in spatial alignment

[2, 48–50] i.e. intensity values from acrossmultiplemodal-

ities are concatenated at every spatial location into a single

feature vector.
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Calculating a final fused representation, R̂, based on a

set of representations φt , t ∈ {1, . . . , nM}, can be written

as, φ ∈ {F, h, y,K},

R̂ = ξ
∀t

[φt] , (2)

where ξ may be a weighted or unweighted combination

function (including concatenation). For example, R̂ =∑
∀t αt[ ht] corresponds to a weighted combination of

decision representations (α corresponds to the weight),

as typically performed via Adaboost [51]. Similarly, the

combination method adopted in [46], where PCA-based

representations of MRI (denoted as yMRI ) and MR

spectrocopy (denoted by yMRS) were concatenated into a

unified predictor, can be rewritten as R̂ =[ yMRI , yMRS].

Co-association matrix fusion This fusion approach

involves integrating information being derived from the

knowledge representations (i.e. properties of the repre-

sentations are extracted and combined). This information

is captured within what we term a co-association matrix,

which is then decomposed to yield a single, unified repre-

sentation. Typically Eigenvalue decomposition is utilized

for the latter as it will yield a mathematically interpretable

representation of an input square matrix.

We denote the co-association matrix as Wt = δ(φt),

where δ is any function used to quantify the informa-

tion within the representations φt , t ∈ {1, . . . , nM},

φ ∈ {F, h, y,K}. These Wt , t ∈ {1, . . . , nM}, can then be

combined as Ŵ = ξ∀t[Wt], where ξ is a weighted or

unweighted combination function. The final fused rep-

resentation, R̂, may then be calculated via Eigenvalue

decomposition as,

ŴR̂ = 
D̂R̂, (3)

such that R̂T D̂R̂ = 1 and D̂ii =
∑

j Ŵij (similar to Eq. 1).

Note that depending on the type of association being

captured in Wt and the type of representation φt , some

modifications to Eq. 3 may be required to obtain an

appropriate R̂. For example, when considering kernel rep-

resentations, Eq. 3 is modified to result in a multi-kernel

Eigenvalue decomposition problem as follows,

K̂ŴK̂
T
R̂ = 
K̂D̂K̂

T
R̂, (4)

subject to same conditions as for Eq. 3. Here, K̂ = ξ∀t[Kt],

t ∈ {1, . . . , nM}, is the combined kernel representation

based on the combination function ξ .

Co-association matrix fusion can be seen to encompass

a wide variety of previous work, including combining pair-

wise distances extracted from multiple low-dimensional

representations [5, 45], combining correlations extracted

from multiple kernel representations [52], or combining

CCA-based representations via regularization [6].

Structural fusion Fusing the structure inherent to a

knowledge representation [53, 54] is a perhaps lesser

explored approach to data fusion. In one of its earliest

applications, Higgs et al. [54] demonstrated that spectral

embedding revealed implicit complementary manifold

structure information in both image and microarray data,

which could be useful in classification. The idea of fusing

representations (derived from different data modalities)

at a structural level has thus been primarily explored

in the context of low-dimensional representations

[53, 55, 56].

Given a set of representations φt , t ∈ {1, . . . , nM}, φ ∈

{F, h, y,K}, structural fusion first involves some form of

“representation alignment” to ensure that all of φt lie in the

same co-ordinate frame-of-reference, i.e., calculating φ̂t =

T(φt), where T denotes the transformation required to

align the representation into a unified frame-of-reference.

For example, point correspondences have been used to

drive an alignment of low-dimensional representations to

one another, in previous work [57].

Once aligned, the final fused representation, R̂, could

be obtained via,

R̂ = ξ
∀t

(φ̂t), (5)

where ξ denotes the combination function. In addi-

tion to applications demonstrated in learning [55]

and retrieval [56], structural fusion was utilized by

Sparks et al. [35] to develop a parametrized shape

model to combine information from across multi-

ple aligned low-dimensional representations and thus

distinguish between tumor sub-types via pathology

data.

Weighted and unweighted data fusion

For each of the data fusion strategies above, the com-

bination function ξ enables either a weighted or an

unweighted combination of the different data modal-

ities. Calculation of weights requires quantification of

the relative contributions of the individual data modal-

ities, and ensures that the resulting unified represen-

tation accurately captures these contributions. Further,

the unified representation that leverages weighting may

be expected to demonstrate better class separability

compared to a naive, unweighted combination (or con-

catenation) of these data modalities, as demonstrated

in the context of decision and low-dimensional repre-

sentations. However, learning optimal weights for the

data modality typically requires some form of class

information.

In previous work, decision representations have been

extensively explored in terms of both unweighted [37]

and weighted [51] combinations, while kernel represen-

tations have classically been considered within weighted
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multi-kernel formulations [16, 23] alone. By contrast, low-

dimensional representations have typically been com-

bined within an unweighted formulation [5, 45]. Label

information has, however, been used to regularize low-

dimensional representations [6, 7] (i.e. to minimize out-

liers and ensure a smooth continuum between different

classes). Thus, for each of the knowledge fusion strategies

above, it is possible to utilize either of the following:

(a) Unweighted : Instead of using label information, a

data-driven estimation is typically utilized. For

example, both Tiwari et al. [45] and Viswanath et al.

[5] utilize the median as a maximum likelihood

estimator across multiple co-association matrices

Wt , t ∈ {1, . . . , nM}, (derived from corresponding

low-dimensional representations yt). This results in a

unified Ŵ , which then undergoes Eigenvalue

decomposition as detailed in Eq. 3.

(a) Weighted : An optimization function is utilized to

calculate different weights for each input

representations. In the presence of labeled

information, this function could optimize

classification accuracy; alternate objective functions

could include an unsupervised clustering measure or

a similarity measure. For example, label information

has been used both for multi-kernel learning [58] as

well as for constructing a semi-supervised

representation [8].

Experimental design

To better understand the interplay and contributions of

different modules that can be utilized for multimodal

data fusion, we have implemented four representative

DR-based data fusion methods and evaluated their per-

formance in three distinct clinically relevant problems.

Table 2 summarizes the 3 problems and different types of

data considered in this work. Note that each clinical prob-

lem was identified such that it involves heterogeneous

data integration of different data types and dimension-

alities, including fusion of radiology and gene-expres-

sion data (radio-genomics),MR imaging and spectroscopy

data (radio-omics), and histology and protein-expression

data (histo-omics). Further, for each clinical problem, the

features being extracted are at different length scales (per-

location, per-region, and per-patient basis), resulting in

different ratios for the number of samples (N) to the

number of features (P). Note that while we have attempted

to diversify in terms of our choice of datasets and meth-

ods employed, this work is not meant as a comprehensive

evaluation of all possible imaging and non-imaging fusion

methods and datasets.

Multimodal data fusion strategies compared

For each problem, four distinct multimodal data fusion

methods were implemented, each of which utilized dif-

ferent combinations of fusion and representationmodules

(see Table 3 for details). In addition to having being previ-

ously published, these instantiations each utilize different

representation and fusion methods, but with the com-

mon step of using dimensionality reduction to construct

the final fused representation. These instantiations were

then systematically compared to the individual imaging

and non-imaging modalities in terms of their predictive

accuracy for each of these problems. For the purposes

of readability, we utilize the acronym DFS (Data Fusion

Strategy) in Table 3.

Dataset S1: MRI, proteomics for Alzheimer’s disease

identification

S1 requires the construction of a classifier to differentiate

Alzheimer’s Disease (AD) patients from a normal popula-

tion, based on quantitatively integrating area and volume

measurements derived from structural T1-weighted

brain MRI with corresponding plasma proteomic

biomarkers.

A total of 77 patients were identified from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (adni.loni.usc.edu), of which 52 had been cat-

alogued as having AD while the remainder were nor-

mal healthy controls. The ADNI was launched in 2003

as a public-private partnership, led by Principal Inves-

tigator Michael W. Weiner, MD. The primary goal of

ADNI has been to test whether serial magnetic res-

onance imaging (MRI), positron emission tomography

(PET), other biological markers, and clinical and neu-

ropsychological assessment can be combined to measure

the progression of mild cognitive impairment (MCI) and

early Alzheimer’s disease (AD). For up-to-date informa-

tion, see www.adni-info.org. Patients were included in

S1 based on having both (a) a structural 1.5 T T1w

MRI scan acquired per the standardized ADNI proto-

col, and (b) plasma proteomics data, for which detailed

collection and transportation protocols are described on

the ADNI website (http://www.adni-info.org/Scientists/

Table 2 Summary of the three clinical problems and data cohorts utilized to evaluate the GFA

Dataset # Studies Modalities Clinical problem addressed

S1 77 T1-w MRI, protein-expression Differentiating Alzheimer’s patients from normal subjects

S2 40 Histology, protein expression profiles Predicting biochemical recurrence in prostate cancer

S3 36 (3000 voxels) T2-w MRI, MR spectroscopy Detecting prostate cancer on a per-voxel basis

adni.loni.usc.edu
http://www.adni-info.org/Scientists/ADNIScientistsHome.aspx
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Table 3 Summary of different DR-based multimodal data fusion methods considered in this work

Strategy Resampling Representation Weighting Fusion

DFS-DD - Decision Unweighted Direct fusion (AND operation)

DFS-EC Feature perturbation PCA Unweighted Co-association matrix fusion

DFS-KC - Kernels Weighted, semi-supervised Co-association matrix fusion

DFS-ES - LLE Unweighted Structural fusion

DFS Data Fusion Strategy, DD Decision representation, Direct fusion, EC Embedding representation, Co-Association fusion, KC Kernel representation, Co-Association fusion, ES

Embedding representation, Structural fusion

ADNIScientistsHome.aspx). The brain regions known

to be most affected by AD had been segmented and

quantified via the widely used FreeSurfer software pack-

age (http://surfer.nmr.mgh.harvard.edu/), that was run

on each T1w MRI scan, yielding a total of 327 fea-

tures (that were available for download). Similarly, plasma

proteomics had been extracted through a multiplex

immunoassay panel of blood samples to yield a protein

expression vector (that was available for download). These

features are summarized in the Appendix (Table 5), and

described in more detail on the ADNI webpage (http://

adni.loni.ucla.edu/).

Dataset S2: Histology, proteomics for prostate cancer

prognosis

S2 requires building a prognostic classifier that can distin-

guish between prostate cancer (CaP) patients that are at

risk for disease recurrence versus those who are not, using

pathology and proteomic information acquired immedi-

ately after radical surgery.

A cohort of 40 CaP patients was identified at the

Hospital at the University of Pennsylvania, all of whom

underwent radical prostatectomy. Half of these patients

had biochemical recurrence following surgery (within 5

years) while the other half did not. For each patient, a rep-

resentative histological prostatectomy section was chosen

and the tumor nodule identified. Mass spectrometry was

performed at this site to yield a protein expression vector.

The resulting 650 dimensional proteomic feature vector

consisted of quantifiable proteins found across at least

50% of the studies. A corresponding set of 189 histol-

ogy features were extracted based on using quantitative

histomorphometry on the digitized slide specimen and

included information relating to gland morphology, archi-

tecture, and co-occurring gland tensors. Both sets of fea-

tures are summarized in the Appendix (Table 6), and have

been described in more detail in Lee et al. [11].

Dataset S3: Multiparametric MRI for prostate cancer

detection

S3 requires quantitatively combining 2 different MRI pro-

tocols for accurately identifying locations of prostate can-

cer (CaP) in vivo, on a per-voxel basis: (a) T2-weighted

MRI reflecting structural imaging information about the

prostate, where every location is characterized via a scalar

image intensity value, and (b) MR spectroscopy data

which captures the concentrations of specific metabolites

in the prostate, and every location is represented as a

vector or spectrum.

A total of 36 1.5 Tesla T2w MRI, MRS studies were

obtained prior to radical prostatectomy from University

of California, San Francisco. These patients were selected

as having biopsy proven CaP, after which an MRI scan

(including T2w MRI and MRS protocols) had been

acquired. For every patient dataset, expert labeled cancer

and benign regions (annotated on a per voxel basis) were

considered to form the CaP ground truth extent, yield-

ing a total of 3000 voxels. For each voxel, 6 MRS features

were calculated based on calculating areas under specific

peaks to determine deviations from predefined normal

ranges [46]. 58 voxel-wise MRI features were extracted

for quantitatively modeling image appearance and texture

to identify known visual characteristics of CaP presence

[46]. The specific features utilized are summarized in the

Appendix (Table 7), and were extracted as described in

Tiwari et al. [8].

Evaluation measures

In order to compare the performance of different mul-

timodal data fusion methods against each other, as well

as against using the individual modalities, we formulated

each of S1, S2, S3 as a 2-class classification problems. Clas-

sifier performance in segregating the two classes was

used to quantify how well each of these strategies pre-

serves information relevant to building such a predic-

tor. Thus the parameters governing the creation of the

integrated representation as well as for constructing the

classifier were kept as consistent as possible for all 3

datasets.

Classifier construction and evaluation The Random

Forests (RF) classifier [37] was utilized to construct clas-

sifiers in all experiments. RF uses the majority voting

rule for class assignment by combining decisions from an

ensemble of bagged (bootstrapped aggregated) decision

trees.

http://www.adni-info.org/Scientists/ADNIScientistsHome.aspx
http://surfer.nmr.mgh.harvard.edu/
http://adni.loni.ucla.edu/
http://adni.loni.ucla.edu/
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The primary motivation for using RF over other clas-

sifier schemes were, (1) ability to seamlessly integrate a

large number of input variables, (2) robustness to noise

in the data, and (3) relatively few parameters that require

tuning [59].

The RF implementation within MATLAB (TreeBagger)

was utilized, where the number of bagged decision trees

was set to 100, and each decision tree was generated

through subsampling 66% of the input training feature

space. A separate RF classifier was trained and evalu-

ated on each of the 4 multimodal fusion methods (see

Table 3) as well as on each the 2 individual data modal-

ities (i.e. a total of 6 classifiers). Evaluation of the RF

classifier in each case was done through ROC analysis,

to yield an area under the receiver-operating character-

istic curve (AUC) as a measure of performance for each

method.

Classifier robustness was determined via a randomized

three-fold cross validation procedure, with segregation of

data on a per-patient basis. Each run of three-fold cross

validation involved randomly dividing a given dataset into

three folds, following which 2 folds (i.e. 2/3rd) were used

for training and the remaining fold (1/3rd) for testing.

This is repeated until all the samples are classified within

each dataset. This randomized cross-validation was then

repeated a total of 25 times, and done separately for each

of the 6 RF classifiers.

Statistical testing Through the three-fold cross-

validation procedure, each classifier yielded a set of 25

AUC values (corresponding to each cycle of the pro-

cedure) and for each of 6 strategies being compared.

Multiple comparison testing to determine statistically sig-

nificant differences in AUC values for each dataset con-

sidered (i.e. within the results for each of S1, S2, S3)

was performed using the Kruskal–Wallis (K-W) one-way

analysis of variance (ANOVA) [60]. The K-W ANOVA

is a non-parametric alternative to the standard ANOVA

test which does not assume normality of the distribu-

tions when testing. The null hypothesis for the K-W

ANOVA was that the populations from which the AUC

values originate have the same median. Based off the

results of a K-W ANOVA, multiple comparison test-

ing was performed to determine which representations

showed significant differences in performance in a given

problem.

Results
Table 4 summarizes the mean as well as the standard devi-

ation in AUC values for each of 6 strategies, in each of the

3 classification tasks considered (calculated over 25 runs

of three-fold cross validation). The highest performing

strategy in each task is highlighted in bold.

Experiment 1: Integrating MRI and proteomics to identify

patients with Alzheimer’s disease

DFS-DD (decision representation, direct fusion) demon-

strated the highest overall AUC value, which can be

directly attributed to the relatively high performance of

the individual protocols (AUC of 0.77 for non-imaging,

0.88 for imaging data). However, the 3 top perform-

ing strategies (DFS-DD, DFS-KC, imaging data) also did

not demonstrate any statistically significant differences

in their performance in a Kruskal-Wallis test, indicat-

ing they were all comparable in terms of predictive

performance. The least successful method was DFS-

EC (embedding representation, co-association fusion),

which demonstrated statistically significantly worse clas-

sifier performance compared to all the remaining

strategies.

These results imply that when the input features have

relatively high discriminability, multimodal data fusion

that utilizes a simple representation (decisions) and a

simple fusion (direct) approach, as utilized by DFS-

DD, can be highly effective for creating an accurate

predictor.

Table 4 Mean and standard deviation in AUC values (obtained via three-fold cross validation) for datasets S1 , S2 , and S3 , while utilizing

different DR-based multimodal data fusion methods (see Table 3 for details)

Strategy Dataset S1 Dataset S2 Dataset S3

Non-imaging 0.774 ± 0.043 0.511 ± 0.078 0.771 ± 0.009

Imaging 0.885 ± 0.034 0.503 ± 0.076 0.564 ± 0.036

DFS-DD 0.905± 0.035 0.496 ± 0.079 0.752 ± 0.026

DFS-EC 0.675 ± 0.065a 0.465 ± 0.111 0.720 ± 0.020

DFS-KC 0.888 ± 0.040 0.808± 0.067 b 0.857± 0.009 b

DFS-ES 0.789 ± 0.035 0.531 ± 0.086 0.748 ± 0.013

For baseline performance comparison, AUC values for the individual data modalities are also reported
a indicates that the result was statistically significantly worse than comparative strategies
b indicates that the result was statistically significantly better than comparative strategies

The best performing data fusion strategy for each classification task is highlighted in bold
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Experiment 2: Integrating histopathology and proteomics

to predict prostate cancer recurrence after surgery

DFS-KC (kernel representation, co-association fusion)

yielded the highest AUC value in Dataset S2, and was

also statistically significantly better than any alternative

strategy (p = 2.14e−12). All the remaining strategies

performed comparably, albeit relatively poorly (AUC ≈

0.5), with no significant differences in their classifier

performance. In comparison to dataset S1, it appears

that dataset S2 has relatively poor features associated

with the imaging and non-imaging modalities. As a

result, most data fusion strategies (as well as the indi-

vidual modalities) performed poorly for classification,

possibly as they are unable to capture enough relevant

information.

Experiment 3: Integrating MRS andMRI to identify

voxel-wise regions of prostate cancer recurrence after

surgery in vivo

DFS-KC (kernel representation, co-association fusion)

performed statistically significantly better than any alter-

native strategy in the classification task for Dataset S3
(p = 9.81e−26). Amongst the remaining strategies,

DFS-DD and DFS-ES (embedding representation, struc-

tural fusion), as well as the non-imaging data, per-

formed comparably and significantly better than DFS-EC

or using imaging data alone. In this dataset, a mis-

match can be observed in the relative discriminabil-

ity of the individual modalities (AUC = 0.77 vs 0.56

for non-imaging vs imaging). Both kernel-based meth-

ods (DFS-KC) and embedding-based methods (DFS-ES)

appear somewhat robust to this effect, however DFS-

EC (embedding representation, co-association fusion)

appears to have been affected by this issue. One pos-

sible factor contributing to the poor performance of

DFS-EC may be the relatively low dimensionality of

the MRS feature space (6 dimensions), which would

prevent the resampling step of DFS-EC from being

effective.

These conclusions are supported by the qualitative

results in Fig. 3, which depicts representative classification

results for detecting the presence of CaP on a voxel-wise

basis in vivo via different strategies. These results were

obtained by visualizing the voxel-wise RF classifier result

for this section as a heatmap, where red corresponds

to a higher likelihood of CaP presence. Classifying the

MRS (Fig. 3b) and T2w (Fig. 3c) data modalities individ-

ually yields results that appear to detect CaP with widely

varying accuracy (note poor overlap of red region with

ground truth, depicted via a red outline). By contrast, mul-

timodal data fusion via DFS-KC appears to show both

optimal sensitivity and specificity, as much of the red in

the heat map is located within the ground truth cancer

region.

Discussion
Our preliminary findings from this work were as follows,

• In terms of the knowledge representation module, a

kernel-based method (DFS-KC) demonstrated the

best classifier performance consistently across all 3

applications, implying that kernels may offer distinct

advantages for multimodal data representation. This

performance may have been further enhanced by the

fact that DFS-KC utilized differential weighting for

individual data modalities based on their

contributions, in addition to using semi-supervised

learning. However, we must note that this method

was also amongst the most computationally

expensive in terms of memory usage.
• For the knowledge fusion module, co-association

matrix fusion yielded consistently high classifier

performance; albeit when combined with kernels (as

done by DFS-KC) rather than when combined with

embeddings (reflected by the poor performance of

DFS-EC). However, further exploration of how each

representation strategy interplays with each fusion

strategy is required to understand this aspect better,

which was out of the scope of the current work.
• One of our multimodal data fusion methods

(DFS-EC) demonstrated consistently poor classifier

performance across all 3 applications. While this

method has demonstrated significant success in

previous work [5], its poor performance in the

current work could be attributed to (a) inability to

handle sparse feature spaces (as seen in Dataset S3),

and (b) use of a linear embedding method (PCA)

which is likely unable to handle representation of

potentially non-linear biomedical data [30].
• Our experimental datasets demonstrated wide

variability in terms of the classifier performance

associated with the individual data modalities, which

had significant bearing on the performance of

different multimodal data fusion methods. For

example, in dataset S1 where both modalities showed

a relatively high classifier AUC individually, a simple

combination of decision representations offered the

highest performance amongst the integrated

representations (DFS-DD). However, in dataset S2
where both modalities showed relatively poor

discriminability individually, most of the data fusion

methods failed to create accurate, discriminatory

representations.
• Dataset S2 was an example of a Big-P -Small-N

(number of features P >> number of samples N )

problem where the large noisy feature space ensured

that most representation strategies failed to yield an

accurate classifier. In additional experiments

involving feature selection (not shown) to assuage
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Sample predictive heatmaps for detection of prostate cancer in vivo through combining MRI and MRS data. a shows a T2w MRI section with

the MRS grid overlaid in white. The expert annotation of cancer presence is also shown with a red outline around those voxels that were assessed as

cancerous. Corresponding automated classification results are shown for using: b T2w MRI texture features alone, cMRS peak area metabolite ratios,

d DFS-ES, e DFS-EC, f DFS-KC. These are visualized in the form of heatmaps, where red corresponds to higher probability of CaP presence. The

expert annotation of CaP presence is also superposed via a red outline in each image

this mismatch, we found that kernel-based

approaches performed better in the absence of

feature selection (i.e. when provided the entire

feature space). By contrast, with feature selection

applied, LDR-based approaches improved in

performance, likely because they could better identify

a discriminatory projection for the data.
• Dataset S3 was an example of a Small-P -Big-N

(number of samples N >> number of features P )
problem, wherein very sparse feature space caused

embedding-based methods (DFS-EC, DFS-ES) to

throw a number of errors during our experiments.

The issue of very few number of input dimensions

was further exacerbated by having a large number of

samples causing these methods to become more

computationally expensive than when P >> N .
• While one would expect multimodal data fusion

strategies to always perform better than at least the

weaker modality under consideration, our

experimental results suggest otherwise. When

suboptimal representation or fusion strategies are

utilized e.g. using PCA within DFS-EC for

representation, or simple structural fusion within

DFS-EC, such data fusion methods tend to perform

comparably or worse than the individual modalities.

Conversely, when a method leverages different

modules in a complementary manner (e.g. kernels,

weighting, and semi-supervised learning in DFS-KC),

we can construct a truly robust, accurate multimodal

data fusion predictor.

The most significant finding of our methodological

review and experimental results was the variety of factors

affect the process of DR-based data fusion. For exam-

ple, when combining fusion and representation strate-

gies, one should consider how noisy the individual

modalities are or how many samples are available for

training the predictive model. Thus, while our initial

results indicate that kernel-based methods (DFS-KC)

yield highly discriminatory predictive models within all

3 biomedical datasets (each of which comprised dif-

ferent heterogenous modalities), a more wide-ranging

evaluation is required to ratify this finding. Our cur-

rent findings do echo previous work demonstrating the

high performance offered by kernel-based representations

[14, 24–26].

We also acknowledge several additional limitations

exist in our study. While we have attempted to diver-

sify in terms of our choice of datasets and methods

evaluated in the current study, we did not attempt a

comprehensive evaluation of all possible imaging and

non-imaging fusion methods. We have instead opted

to systematically compare and relate a few representa-

tive DR-based multi-modal data fusion strategies in the

context of different clinical applications, to provide an

overview of the interplay between different individual
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modules that can comprise a data fusion method. For

example our experiments did not explicitly include an

examplar of CCA-based methods [61]. Methods we did

implement and compare involved directly projecting data

either linearly or non-linearly into a reduced embedding

space. As CCA based methods optimize for correlations

between modalities when projecting them, they did not

fit within the strict definition we utilized in this study.

Further, none of the datasets considered in this work

comprise more than 2 modalities, nor did we examine

multi-class or multi-task learning problems. However,

our methodological description (as well as the meth-

ods we compared in this work), have been described

to be easily extensible to multiple data modalities or

labels.

Recently, several papers have examined the use of

imputation between heterogeneous data modalities i.e.

predicting “missing” values on one modality based on

available values on a complementary data modality

[62–64]. We have instead examined how to combine

the information from across heterogeneous modalities

to build predictive models. Our framework also specif-

ically focuses on the steps associated with data fusion,

rather than the entire pipeline for building predictive

models. For example, while we did perform additional

experiments regarding the effect of feature selection

(not shown), we did not evaluate this in more detail

due to the complexity it would add to our experimen-

tal design. The effect on the data fusion method of

varying the input feature space or the number of sam-

ples required for training are also avenues for future

work.

Conclusions
In this paper, we have presented common concepts,

methodological choices, and a unifying workflow to

address the major challenges in quantitative, heteroge-

neous multi-modal data integration. In addition to a

wide variety of choices for representation and fusion

techniques, we have acknowledged the contribution of

resampling or weighting approaches; all of which enable

the construction of a variety of different data integra-

tion approaches which can be tuned for a particular

application, dataset, or domain. In addition to provid-

ing an overview of different modules, we experimen-

tally implemented and compared 4 representative data

fusion methods in the context of 3 clinically signifi-

cant applications: (a) integrating T2w MRI with spec-

troscopy for prostate cancer (CaP) diagnosis in vivo, (b)

integrating quantitative histomorphometric features with

protein expression features (obtained via mass spectrom-

etry) for predicting 5 year biochemical recurrence in CaP

patients following radical prostatectomy, and (c) integrat-

ing T1w MR imaging with plasma proteomics to dis-

criminate between patients with and without Alzheimers’

Disease.

Our preliminary results indicate that kernel-based

representations are highly effective for heterogeneous

data fusion problems such as those considered in this

work, as seen by the fact that a weighted multi-kernel

data fusion method yielded the highest area under

the ROC curve of over 0.8 in all three applications

considered. Our results also suggest that in situations

where the individual modalities demonstrate relatively

poor discriminability, many of the data fusion meth-

ods may not yield accurate, discriminatory representa-

tions either. This implies that when developing such

multimodal data fusion schemes, one must account for

how noisy or sparse individual modality feature spaces

are, as this could significantly affect embedding-based

representations. Optimally weighting individual modali-

ties or samples as implemented in the most successful

data fusion strategy also appear to have a significant

effect on the discriminability of the final integrated

representation.

With the increasing relevance of fused diagnostics in

personalized healthcare, it is expected that such hetero-

geneous fusion methods will play an important role in

developing more comprehensive predictors for disease

diagnosis and outcome.

Appendix

Table 5 Description of 327 imaging and 146 proteomic features in Dataset S1 for classifying AD patients from normal controls

T1w MRI # Description

FreeSurfer ROIs extracted 327 Subcortical, cortical volumes, surface area, thickness average and standard
deviation for Pallidum, Paracentral, Parahippocampal, Opercularis, Pars Orbitalis,
Triangularis, Pericalcarine, Cingulate, Frontal, Pareital, Temporal, Caudate, Insula,
Occipital etc.

Proteomic data Description

Plasma proteomics 146 Microglobulin, Macroglobulin, Apolipoproteins, Epidermal growth factors,
Immunoglobulins, Interleukins, Insulin, Monocyte Chemotactic Proteins,
Macrophage Inflammatory Proteins, Matrix Metalloproteinases etc.
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Table 6 Description of 189 histomorphometric and 650 proteomic features in Dataset S2 to be used to identify patients who will and

who will not suffer CaP recurrence within 5 years

Morphological # Description

Gland Morphology 100 Area Ratio, distance Ratio, Standard Deviation of Distance, Variance of
Distance, Distance Ratio,Perimeter Ratio, Smoothness, Invariant Moment 1–
7, Fractal Dimension, Fourier Descriptor 1–10 (Mean, Std. Dev, Median, Min/
Max of each)

Architectural Description

Voronoi Diagram 12 Polygon area, perimeter, chord length: mean, std. dev., min/max ratio,
disorder

Delaunay Triangulation 8 Triangle side length, area: mean, std. dev., min/max ratio, disorder

Minimum Spanning Tree 4 Edge length: mean, std. dev., min/max ratio, disorder

Co-occurring Gland Tensors 39 Entropy, energy: mean, std. dev., range

Gland Subgraphs 26 Eccentricity, Clustering coefficient C, D, and E, largest connected
component: mean, std. dev.

Proteomic Description

Proteins Identified 650 Protein-disulfide isomerase A6, T-complex protein subunit delta, ADP-
ribosylation factor 1/3, Protein di-sulfide-isomerase, Ras GTPase-activating-
like protein IQGAP2, T-complex protein subunit beta, Ras-related protein
Rab-5C, ATP-dependent RNA helicase DX3X/DDX3Y, 40S ribosomal protein
S17, Serine/arginine-rich splicing factor 7, Tubulin alpha-1A chain/alpha-
3C/D chain/ alpha-3E chain, Laminin subunit alpha-4, Collagen alpha-1 (VIII)
chain, Tubulin-tyrosine ligase-like protein 12

Table 7 Description of 58 texture and 6 metabolic features in Dataset S3 , extracted from 1.5 Tesla T2w MRI and MRS for identifying

prostate cancer (CaP) on a per-voxel basis

Texture features # Description

Kirsh Filters 4 X-direction, Y-direction, XY-diagonal, YX-diagonal

Sobel Filters 4 X-direction, Y-direction, XY-diagonal, YX-diagonal

Directional Filters 5 x-Gradient, y-Gradient, Magnitude of Gradient, 2 Diagonal Gradients

First order Gray Level 8 Mean, Median, Standard deviation, Range for window size = 3 × 3, 5 × 5

Haralick features 13 Contrast Energy, Contrast Inverse Moment, Contrast Average, Contrast Variance, Contrast Entropy, Intensity
Average for window size = 3× 3, Intensity Variance, Intensity Entropy , Entropy, Energy, Correlation, info. Measure
of Correlation 1 , Info. Measure of Correlation 2

Gabor filters 24 Filterbank constructed for different combinations of scale and orientation

Metabolic features Description

Metabolites Identified 6 Area under peaks for choline (Ach), creatine (Acr ), citrate (Acit ), and ratios (Ach/Acr , Ach/Acit , Ach+cr/Acit)
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