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Abstract

Spectral clustering is a flexible clustering

methodology that is applicable to a variety of

data types and has the particular virtue that it

makes few assumptions on cluster shapes. It has

become popular in a variety of application areas,

particularly in computational vision and bioinfor-

matics. The approach appears, however, to be

particularly sensitive to irrelevant and noisy di-

mensions in the data. We thus introduce an ap-

proach that automatically learns the relevant di-

mensions and spectral clustering simultaneously.

We pursue an augmented form of spectral clus-

tering in which an explicit projection operator

is incorporated in the relaxed optimization func-

tional. We optimize this functional over both the

projection and the spectral embedding. Experi-

ments on simulated and real data show that this

approach yields significant improvements in the

performance of spectral clustering.

1 Introduction

Research in unsupervised learning has classically focused

on two main kinds of data analysis problems—dimension

reduction and clustering. Solutions to these problems are

viewed as discovering statistical structure that is hoped to

be useful for a wide range of subsequent analyses. But a

useful statistical structure can have different definitions in

different application domains. A more recent trend is to

develop dimension reduction or clustering methods that di-

rectly aim at assisting in a specific downstream problem,

such as classification or regression. This trend has classical

antecedents (notably, linear discriminant analysis), and it

is exemplified by highly-active areas such as sufficient di-

mension reduction [13] and semi-supervised learning [6].
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The basic idea is that dimension reduction combats the

curse of dimensionality, and success in this battle is read-

ily measured by embedding the problem in a classification

or regression setting. But in many application areas, unsu-

pervised learning is often the end goal, even if it is often

difficult to state such goals quantitatively. For example,

the overall goal may be clustering for purposes of under-

standing or visualization. The curse of dimensionality is

as serious an obstacle to this goal as it is to the goal of

classification, and it is desirable to explore the use of di-

mension reduction in the service not of a downstream su-

pervised learning problem but in the service of the unsu-

pervised learning problem of clustering. While this gen-

eral desideratum has been suggested before in various con-

texts [see, e.g., 11, 12, 10, 7], there has been comparatively

little exploration of specific methods to date.

Our focus is the area of spectral clustering [17, 30] which

uses graph cuts as objective functions for nonlinear data

separation. Spectral clustering algorithms represent data

as a graph where samples are vertices and edge weights

represent the similarity between samples. Data are parti-

tioned by finding a k-way graph cut in two steps: (1) find

a spectral embedding by finding an eigenvector/eigenvalue

decomposition of a Laplacian matrix; and (2) based on the

embedding find a partition via a rounding procedure, which

generally takes the form of a simplified clustering algo-

rithm such as k-means. Spectral clustering has the virtue

that it makes relatively weak assumptions regarding the

shapes of clusters—clusters do not need to be convex or

homogeneous. Moreover, it is applicable to a wide vari-

ety of data types and similarity functions. This flexibility,

however, comes at a cost of lack of robustness; in partic-

ular, it has been observed that spectral clustering is quite

sensitive to the presence of irrelevant and noisy dimensions

in addition to signal-containing dimensions [2]. Of course,

clustering in general is difficult in high-dimensional spaces;

it is known, for example, that in high dimensions the dis-

tances between any two pairs of points are nearly constant

for a wide variety of data distributions and distance func-

tions [5]. Thus, it seems worthwhile to explore explicit

strategies for finding the relevant low-dimensional sub-

space in which clustering structures reside, and we might

expect that such strategies would be particularly beneficial
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for spectral clustering.

Before spectral clustering is applied, one must first com-

pute pair-wise similarities among data points. When some

input features are irrelevant to the clustering task, they act

as noise, distorting the similarities and confounding the

performance of spectral clustering. Figure 1 row 2 shows

an example on how irrelevant and noisy dimensions can

mislead spectral clustering. The desired cluster embedding

is a three ring structure in two relevant dimensions. Adding

a third noisy dimension using a zero-mean Gaussian with

variance σN and mixing the dimensions by a random pro-

jection Vrandom, Data = Data ∗ Vrandom, we get a 3D

scatter-plot as shown in subfigure (2a). Given the data in

subfigure (2a) as the original input. Typical spectral clus-

tering defines its similarity using all these dimensions. In

subfigure (2c), we show the spectral similarity matrix uti-

lized by spectral clustering. Because of the irrelevant and

noisy dimensions, spectral clustering was not able to re-

cover the three ring structure. Our goal in this paper is to

learn the low-dimensional subspace that captures the rele-

vant dimensions for defining the similarity graph to allow

us to discover the underlying cluster structure.

In this paper, we introduce an approach that incorporates

dimensionality reduction into spectral clustering to find the

relevant low-dimensional subspace and clusters simulta-

neously. Another virtue of spectral clustering is that, it

is based on an explicit optimization problem. The spec-

tral embedding step is specified as the optimization of

a tractable relaxation of the original intractable graph-

partition problem. This provides us with a relatively

straightforward way to incorporate dimension reduction

into spectral clustering: We simply introduce a projection

operator as an additional parameter in our problem and op-

timize the tractable optimization functional with respect to

both the embedding and the projection operator. We do this

by optimizing the embedding and the projection sequen-

tially. Assuming a fixed projection, optimizing the embed-

ding is simply an eigenproblem. Interestingly, as we show

in Section 3, the optimization with respect to the projec-

tion and simultaneously learning the spectral cluster em-

bedding has an interpretation as a solution to an unsuper-

vised sufficient dimensionality reduction problem based on

the Hilbert-Schmidt Independence Criterion (HSIC) [14].

There are several relevant threads of research in the litera-

ture. First, it is important to distinguish our approach from

the common practice of using principal component analy-

sis (PCA) as a preprocessing step before clustering [e.g.,

29]. The directions of maximum variance of the data may

have little relation to directions that reveal clustering, and

our goal is precisely to use a clustering-related criterion to

drive the choice of projection. Second, there are a vari-

ety of nonlinear dimension reduction methods—including

kernel PCA [24], locally linear embedding (LLE) [23],

Laplacian eigenmaps [4], and isometric feature mapping

(ISOMAP) [27]—that implicitly combine aspects of clus-

tering with dimension reduction. Indeed, when using ker-

nels based on radial basis functions, kernel PCA arguably

can be viewed as an implicit clustering method. However,

none of these nonlinear dimension reduction techniques

perform selection and transformation in the original input

feature space. Their assumption is that all of the original in-

put features are relevant and they perform selection in a ker-

nel space or embedding space. Our approach differs from

these in that we learn the relevant low-dimensional sub-

space in the input space. This reflects our goal of reducing

the sensitivity of spectral clustering to noisy input dimen-

sions, and also has advantages for interpretability, which

is often important in unsupervised learning. Note also that

our framework is based on an explicit clustering criterion

and an explicit dimension-reduction operator. Third, like

graph fitting methods [8], we learn a similarity graph. But,

their goal is to learn a graph that can serve as a general pre-

processing step prior to classification, regression or cluster-

ing. In contrast, our work tries to learn a graph by learning

a lower-dimensional subspace specifically for the purpose

of clustering. Fourth, our work has relationships to semi-

supervised metric learning [28], where a distance metric for

clustering is learned, and to the work of [2], which focuses

specifically on learning the weights for spectral clustering;

however, these ideas make use of both labeled and unla-

beled data, while our approach is entirely unsupervised.

Finally, most closely related to our approach are LDA-k-

means [10] and nonlinear adaptive distance metric learning

(NAML) [7]. These algorithms perform data projection and

clustering steps iteratively to enhance cluster quality un-

til convergence. In LDA-k-means, both of these steps are

carried out in the original space to optimize the k-means

objective. The method thus inherits the disadvantages of k-

means, notably the strong assumptions on cluster shapes.

The NAML algorithm performs both the projection and

clustering steps in kernel space, an idea reminiscent of ker-

nel Fisher discriminant analysis (KFDA) [18]. Our method,

on the other hand, performs spectral embedding in kernel

space and data projection in the original space.

The remainder of this paper is organized as follows. In Sec-

tion 2, we review spectral clustering. Section 3 presents

sufficient dimensionality reduction for unsupervised learn-

ing and relates it to spectral clustering. In Section 4, we de-

scribe our dimensionality reduction for spectral clustering

algorithm. Then, we present and discuss our experimental

results on Section 5. Finally, we conclude in Section 6.

2 Background on Spectral Clustering

Spectral clustering can be presented from different points

of view [17]; here, we focus on the graph partitioning view-

point. We are given a set of n data samples, {x1, . . . , xn},

with each xi a column vector in Rd, and we are given

a set of similarities, {kij}, between all pairs xi and xj ,
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Figure 1: (1a), (2a), (3a) and (4a) show the scatter plots of the synthetic datasets 1, 2, 3 and 4 respectively in the original space. (1b),
(2b), (3b) and (4b) show scatter plots of datasets 1, 2, 3 and 4 respectively in the reduced space discovered by our DRSC algorithm.
(1c), (2c), (3c) and (4c) are the spectral (similarity) matrix of the data. (1d), (2d), (3d) and (4d) are the spectral (similarity) matrix in the
learned reduced space.

where kij ≥ 0. Let G = {V,E} be a graph, with

V = {v1, . . . , vn} the set of vertices and E the set of

edges. Each vertex vi in this graph represents a data sam-

ple xi, with the similarities kij treated as edge weights.

When there is no edge between vi and vj , kij = 0. Let

us represent the similarity matrix as a matrix K with ele-

ments kij . This matrix is generally obtained from a ker-

nel function, examples of which are the Gaussian kernel

(k(xi, xj) = exp(−‖xi − xj‖
2
/2σ2)) and the polyno-

mial kernel (k(xi, xj) = (xi · xj + c)p).

The goal of spectral clustering is to partition the

data {x1, . . . , xn} into k disjoint groups or partitions,

P1, . . . , Pk, such that the similarity of the samples be-

tween groups is low, and the similarity of the samples

within groups is high. There are several objective func-

tions that capture this desideratum; in this paper we focus

on the normalized cut objective. The k-way normalized

cut, Ncut(G), is defined as follows: Ncut(P1, ..., Pk) =
∑k

c=1
cut(Pc,V \Pc)

vol(Pc)
, where the cut between sets A,B ⊆ V ,

cut(A,B), is defined as cut(A,B) =
∑

vi∈A,vj∈B kij ,

the degree, di, of a vertex, vi ∈ V , is defined as di =∑n
j=1 kij , the volume of set A ⊆ V , vol(A), is defined as

vol(A) =
∑

i∈A di, and V \A denotes the complement of

A. In this objective function, note that cut(Pc, V \Pc) mea-

sures the between cluster similarity and the within cluster

similarity is captured by the normalizing term vol(Pc). The

next step is to rewrite Ncut(G) using an indicator matrix

U of cluster membership of size n by k and to note that

Ncut(G) takes the form of a Rayleigh quotient in U . Re-

laxing the indicator matrix to allow its entries to take on

any real value, we obtain a generalized eigenvector prob-

lem. That is, the problem reduces to the following relaxed

Ncut minimization:

minU∈Rn×k trace(UTLU)
s.t. UTU = I.

(1)

where L is the normalized graph Laplacian, L = I −
D−1/2KD−1/2, I is an identity matrix, D also called the

degree matrix is a diagonal matrix whose diagonal entries

are the degree di, and U is the spectral embedding ma-

trix. Minimizing the relaxed Ncut objective is equivalent

to maximizing the relaxed normalized association Nasso
as follows:

maxU∈Rn×k trace(UTD−1/2KD−1/2U)
s.t. UTU = I.

(2)

From this point onwards, we refer to this maximization

problem as our spectral clustering objective. The solu-

tion is to set U equal to the k eigenvectors correspond-

ing to the largest k eigenvalues of the normalized simi-

larity, D−1/2KD−1/2. This yields the spectral embed-

ding. Based on this embedding, the discrete partitioning of

the data is obtained from a “rounding” step. One specific

rounding algorithm, due to [20], is based on renormaliz-

ing each row of U to have unit length and then applying

k-means to the rows of the normalized matrix. We then

assign each xi to the cluster that the row ui is assigned to.
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3 Unsupervised Sufficient Dimensionality

Reduction

Borrowing terminology from regression graphics [16, 15]

and classical statistics, sufficient dimension reduction is di-

mension reduction without loss of information. Sufficient

dimensionality reduction [16, 15, 21, 13] aims at finding a

linear subspace S ⊂ X such that S contains as much pre-

dictive information regarding the output variable Y as the

original space X . We can express this in terms of condi-

tional independence as follows:

Y ⊥⊥ X|WTX (3)

where W is the orthogonal projection of X onto subspace

S(W ) and ⊥⊥ denotes statistical independence. The sub-

space S(W ) is called a dimension reduction subspace. This

statement equivalently says that the conditional distribution

of Y |X is the same as Y |WTX , which implies that replac-

ing X with WTX will not lose any predictive information

on Y . There are many such subspaces because if S(W1)
is a dimension reduction subspace, any subspace S which

contains subspace S(W1), S(W1) ⊂ S , will also be a di-

mension reduction subspace. Note too that a dimension

reduction subspace always exists with W equal to the iden-

tity matrix I serving as a trivial solution. The intersection

of all such subspaces or the smallest dimension reduction

subspace is called the central subspace.

The literature on sufficient dimensionality reduction has fo-

cused on the supervised setting [16, 15, 21, 13]. This paper

addresses finding the central subspace in the unsupervised

setting, and in particular for clustering. In the supervised

case, they have Y to guide the search for the central sub-

space. In the unsupervised case, Y is unknown and must

be learned. To learn Y , we rely on criterion functions; in

our case, we utilize the spectral clustering criterion where

we estimate Y by U in Equation 2.

Recently, kernel measures have been utilized to find the

central subspace [21, 13]. To perform sufficient dimension-

ality reduction, Equation 3, some way of measuring the in-

dependence/dependence between X and Y is needed. Mu-

tual information is an example of a criterion for measuring

dependence, however it requires estimating the joint dis-

tribution between X and Y . The work by [13] and [14]

provide a way to measure dependence among random vari-

ables without explicitly estimating joint distributions. The

basic idea is to map random variables into reproducing ker-

nel Hilbert spaces (RKHSs) such that second-order statis-

tics in the RKHS capture higher-order dependencies in the

original space. One such measure is the Hilbert-Schmidt

Independence Criterion (HSIC) [14]. HSIC is the Hilbert-

Schmidt norm of the cross-covariance operator on two ran-

dom variables. Interestingly, the spectral clustering objec-

tive, Equation 2, can be expressed in terms of the HSIC

measure. This relationship is also noted in [25]. The em-

pirical approximation to HSIC(X,U) is:

HSIC(X,U) = (n− 1)−2trace(K1HK2H),

where K1, K2 ∈ Rn×n are the Kernel gram matrices

K1,ij = k1(xi, xj), K2,ij = k2(ui, uj) and H is a cen-

tering matrix. For notational convenience, let us assume

that K1 and K2 are centered and ignore the scaling factor

(n − 1)−2, and use HSIC(X,U) = trace(K1K2). Let

K1 = D−1/2KD−1/2, where K is the similarity kernel

with elements, kij = k(xi, xj), and K2 = UUT . Then,

HSIC(X,U) = trace(D−1/2KD−1/2UUT )
= trace(UTD−1/2KD−1/2U),

which is the spectral clustering objective.

Assuming the labels U are known, we can estimate

the central subspace by optimizing for W that maxi-

mizes the HSIC(WTX,U) dependence between WTX
and U , where kij = k(WTxi,W

Txj) and WTW =
I . We can thus perform sufficient dimensionality

reduction in the unsupervised setting by finding the

central subspace and U that simultaneously maximize

trace(UTD−1/2KD−1/2U). We describe this approach

in detail in the next section.

4 Dimension Reduction for Spectral

Clustering

In spectral clustering, the kernel similarity is defined on

all the features. However, some features or directions may

be noisy or irrelevant. Our goal is to project data onto

a linear subspace and subsequently perform spectral clus-

tering on the projected data. Moreover, we wish to cou-

ple these steps so that the projection chosen is an effec-

tive one for clustering as measured by the normalized as-

sociation criterion. We achieve this goal by introducing

a projection operator into the spectral clustering objective.

Specifically, in computing for the similarity matrix K, we

first project to a low-dimensional subspace by calculating

k(WTxi,W
Txj), where W ∈ Rd×q is a matrix that trans-

forms xi ∈ Rd in the original space to a lower dimensional

space q (q < d). For example, if using a Gaussian kernel,

the kernel function is defined as

k(WTxi,W
Txj) = exp(−

∥

∥WTxi −WTxj

∥

∥

2

/2σ2)
(4)

For identifiability reasons, we constrain W to be orthonor-

mal: WTW = I . We then formulate the spectral clustering

objective on the low-dimensional subspace as follows:

maxU∈Rn×k,W∈Rd×q trace(UTD−1/2KD−1/2U)
s.t. UTU = I

kij = k(WTxi,W
Txj), i,j=1, . . . , n

WTW = I,
(5)
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where K has elements kij = k(WTxi,W
Txj) and where

D is the degree matrix dii =
∑

j k(W
Txi,W

Txj).

We optimize this objective function using a coordinate as-

cent algorithm:

1. Assuming W is fixed, optimize for U . With the pro-

jection operator W fixed, we compute the similarity

and degree matrices, K and D, respectively. We set U

equal to the first k eigenvectors (corresponding to the

largest k eigenvalues) of D−1/2KD−1/2.

2. Assuming U is fixed, optimize for W . With U fixed,

each row of U is the spectral embedding of each data

instance. We utilize a dimension growth algorithm to

optimize the objective with W . First, we set the di-

mensionality of the subspace to be one, w1. We use

gradient ascent to optimize w1, where w1 is initialized

by random projection and normalized to have norm 1.

We, then, increase the dimensionality by one and op-

timize for w2. w2 is initialized by random projection,

then projected to the space orthogonal to w1, and fi-

nally normalized to have norm 1. We decompose the

gradient of w2 into two parts,

∇f = ∇fproj +∇f⊥ (6)

∇fproj is the projection of ∇f to the space spanned

by w1 and w2, and ∇f⊥ is the component orthogonal

to ∇fproj (∇fproj ⊥ ∇f⊥). ∇f⊥ is normalized to

have norm 1. We update w2 according to the following

equation

w2,new =
√

1− γ2w2,old + γ∇f⊥ (7)

The step size γ is set by line search satisfying the two

Wolfe conditions. Repeat Equation 7 up to conver-

gence. Because w1 and w2 are initially set to be or-

thonormal and w2 is updated according to the above

equation, w2 and w1 will remain orthonormal. wj is

optimized in the same way. wj is updated orthogonal

to w1, w2, . . . , wj−1. Once we have the desired num-

ber of dimensions q, we repeat Equation 7 for each

wj , j = 1, . . . , q until convergence.

We repeat these two steps iteratively until convergence. Af-

ter convergence, we obtain the discrete clustering by using

k-means in the embedding space U . Algorithm 1 provides

a summary of our approach, we call Dimension Reduced

Spectral Clustering (DRSC).

Applying DRSC to Gaussian and Polynomial Kernels.

More specifically, we provide here details on how to im-

plement DRSC to two widely used kernels: Gaussian and

polynomial kernels. Different kernels only vary Step 2 of

DRSC.

Algorithm 1 Dimension Reduced Spectral Clustering

(DRSC)

Input: Data xi, number of clusters k.

Initialize: Set W = I (i.e., use the original input data).

Step 1: Given W , find U .

Calculate kernel similarity matrix K and normalized

similarity matrix D−1/2KD−1/2. Keep the eigenvectors

with the largest k eigenvalues of the normalized similar-

ity D−1/2KD−1/2 to form U .

Step 2: Given U , find W .

Optimize W by dimension growth algorithm. Project

data into subspace formed by W .

REPEAT steps 1 and 2 until convergence of the Nasso

value.

k-means step: Form n samples yi ∈ Rk from the rows

of U . Cluster the points yi, i = 1, . . . , n, using k-means

into k partitions, P1, . . . , Pk.

Output: Partitions P1, . . . , Pk and the transformation

matrix W .

Gaussian Kernel Case: For Step 2, we assume U is fixed,

optimize for W . With the Gaussian kernel, we can re-write

the objective function as follows:

maxW
∑

ij
uT
i uj

didj
exp(−

∆xT
ijWWT∆xij

2σ2 )

s.t. WTW = I
(8)

where ∆xij is the vector xi − xj , and ∆xT
ijWWT∆xij is

the l2 norm in subspace W . The above objective can be

expressed as

maxW
∑

ij
uT
i uj

didj
exp(−

trace(WT∆xij∆xT
ijW )

2σ2 )

s.t. WTW = I
(9)

or

maxW
∑

ij
uT
i uj

didj
exp(−

wT
1
Aijw1+wT

2
Aijw2+...

2σ2 )

s.t. WTW = I
(10)

where wi is the ith column of W , and Aij is the d by d

semidefinite positive matrix ∆xij∆xT
ij . In this step, we

assume
uT
i uj

didj
is fixed. Note that wTAw is a convex func-

tion. Thus, the summation of wT
i Awi is convex. exp(−y)

is a decreasing function, so exp(−
wT

1
Aw1+wT

2
Aw2+...

2σ2 ) is a

concave function. Each component wi must be orthogo-

nal to each other to form a subspace. Since W with this

constraint is not a convex set, the optimization problem is

not a convex optimization. We then apply the dimension

growth algorithm described earlier. Using the property of

the exponential function, the objective becomes:

max
W

∑

ij

uT
i uj

didj
exp(−

wT
1 Aijw1

2σ2
) exp(−

wT
2 Aijw2

2σ2
)

(11)
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With w1 fixed, the partial derivative with respect to w2 is:

∑

ij

−
uT
i uj

didj

1

σ2
g(w1) exp(−

wT
2 Aijw2

2σ2
)Aijw2 (12)

where g(w1) is exp(−
wT

1
Aijw1

2σ2 ). We update w2 and wj by

Eqn. 7.

Polynomial Kernel Case: For the polynomial ker-

nel, the kernel similarity in the projected subspace is

k(WTxi,W
Txj) = (xT

i WWTxj + c)p. The derivative

of this kernel function with respect to W is

∂kij

∂W
= p(xT

i WWTxj + c)p−1(xjx
T
i + xjx

T
i )W (13)

W can be optimized by the modified gradient ascent algo-

rithm in a similar way as that of the Gaussian case in Step

2 of DRSC but using this polynomial gradient equation.

Remark: The dimension growth algorithm will converge

to a local optimum.

In the algorithm, we use update Eqn. 7, with γ > 0
satisfying the two Wolfe conditions. 〈∇f⊥,∇f ′(w)〉 =
〈∇f⊥,∇f⊥ +∇fproj〉 = 〈∇f⊥,∇f⊥〉 ≥ 0, thus ∇f⊥ is

an ascent direction (i.e., it gives f(wnew) > f(wold)). 〈, 〉
is the inner product operator. The algorithm will generate

a sequence of w with f(wn) > f(wn−1) > f(wn−2) . . ..
The objective function is upper bounded in both steps. In

Step 1, the objective is bounded by k if using k eigen-

vectors. In Step 2, if each element in the kernel simi-

larity matrix is bounded, the objective is bounded. For

the Gaussian kernel, exp(−wTAw
2σ2 ) < 1. For the poly-

nomial kernel, using Cauchy inequality, (xT
i WWTxj +

c)p ≤ (|xT
i WWTxj | + c)p ≤ (|WTxi||W

Txj | + c)p ≤
(|xi||xj | + c)p. This kernel is then bounded for finite and

positive c and p if each original input xi are finite. Assum-

ing these conditions are held, the algorithm will converge

to a local optimum.

Initialization. Our approach is dependent on initial pa-

rameter values. We can simply start by setting the kernel

similarity using all the features W(0) = I . Then calcu-

late the embedding U using all the features. If the data

has many possible clustering interpretations as explored in

[22], this initialization will lead to the solution with the

strongest clustering structure.

Computational Complexity. Calculating the similarity

matrix K can be time consuming. We apply incomplete

Cholesky decomposition as suggested in [1] giving us an

approximate similarity matrix K̃. The complexity of cal-

culating this matrix is O(ns2), where n is the number of

data points, s is the size of the Cholesky factor G̃, where

K̃ = G̃G̃T . We set s such that the approximate error

is less than ǫ = 10−4. Thus, the complexities of the

eigen-decomposition and derivative computations are now

O(ns2) and O(ns). The complexity of the overall algo-

rithm is O((ns2 + nsrd)t), where d is the reduced dimen-

sionality, r is the number of steps in the gradient ascent in

Step 2, and t is the number of overall iterations.

5 Experiments

In this section, we present an empirical evaluation of our

DRSC algorithm on both synthetic and real data. We

compare DRSC against standard k-means (k-means), stan-

dard spectral clustering (SC) [20], PCA followed by spec-

tral clustering (PCA+SC), adaptive Linear Discriminant

Analysis combined with k-means (LDA-k-means) [10] and

weighted kernel k-means combined with kernel Fisher dis-

criminative analysis (WKK-KFD) [18]. Standard k-means

and spectral clustering serve as our baseline algorithms.

PCA+SC applies a dimensionality reduction algorithm,

principal component analysis (PCA) in particular, before

applying spectral clustering. LDA-k-means iteratively ap-

plies k-means and LDA until convergence, where the ini-

tialization is a step of PCA followed by k-means. In

addition, we compare our algorithm to a kernel version

of LDA-k-means, where we combine kernel k-means and

kernel LDA (WKK-KFD). This method iteratively applies

weighted kernel k-means and kernel Fisher discriminative

analysis until convergence. As pointed out in [9], weighted

kernel k-means is equivalent to spectral clustering, if we set

the weight for each data instance according to its degree in

the Laplacian matrix. We employ a Gaussian kernel for

all spectral/kernel-based methods and set the kernel width

by 10-fold cross-validation using the mean-squared error

measure from the k-means step, searching for width values

ranging from the minimum pairwise distance to the maxi-

mum distance of points in the data. For all methods running

k-means, we initialize k-means with 10 random re-starts

and select the solution with the smallest sum-squared error.

We set the convergence threshold ε = 10−4 in all experi-

ments. To be consistent with LDA, we reduce the dimen-

sionality for all methods to k− 1, where k is the number of

clusters. In our dimension growth algorithm, at each time

we add an extra dimension, if the normalized association

value does not increase, we can stop the dimension growth.

However, to be consistent and fair with the other methods,

we simply use k − 1. Determining the cluster number is

not trivial and remains an open research problem in spectral

clustering. One possible way of selecting k is by checking

the eigen-gap. Again, to be consistent and for ease of com-

parison for all methods, we assume it is known and we set

it equal to the number of class labels for all methods.

The evaluation of clustering algorithms is a thorny prob-

lem. However, a commonly accepted practice in the com-

munity is to compare the results with known labeling. We

measure the performance of our clustering methods based

on the normalized mutual information (NMI) [26] be-



     558

Donglin Niu, Jennifer G. Dy, Michael I. Jordan

0 5 10
1

1.5

2

2.5

3

Iteration step

N
a

s
s
o

 V
a

lu
e

(1)

0 5 10
1.5

2

2.5

3

Iteration step

N
a

s
s
o

 V
a

lu
e

(2)

0 2 4
1

1.2

1.4

1.6

1.8

2

Iteration step

N
a

s
s
o

 V
a

lu
e

(3)

0 2 4
1.5

2

2.5

3

Iteration step

N
a

s
s
o

 V
a

lu
e

(4)

0 2 4 6 8

5

10

15

20

Iteration step

N
a

s
s
o

 V
a

lu
e

(5)

Figure 2: (1), (2), (3) and (4) are the Nasso values of synthetic datasets 1, 2, 3 and 4 respectively, and (5) is for the real face data
obtained by our DRSC algorithm (black line with circles), LDA-k-means (cyan line with square) and WKK-KFD (magenta line with
plus) in each iteration. k-means (red cross), SC (blue diamond) and PCA + SC (green asterisk) results are also shown.

Figure 3: NMI values discovered by different clustering algorithms as a function of increasing noise levels for synthetic datasets 1,
2, 3 and 4. Red lines with crosses are results for the k-means algorithm. Blue lines with diamonds are results for spectral clustering.
Cyan Lines with squares are results for LDA-k-means. Green lines with asterisks are results of PCA+SC. Magenta lines with pluses are
results for WKK-KFD, and black lines with circles are results for DRSC.

tween the clusters found by these methods with the “true”

class labels. We normalize to the range [0, 1] by defin-

ing NMI(X,Y ) = MI(X,Y )/
√

H(X)H(Y ), where

MI(X,Y ) denotes the mutual information and where

H(X) and H(Y ) denote the entropy of X and Y . Higher

NMI values mean higher agreement with the class labels.

5.1 Synthetic Data

To get a better understanding of our method, we first per-

form experiments on synthetic data. Synthetic datasets

were generated in the following way. First, we embedded

linear or nonlinear structures involving clusters, rings or

hooks in two dimensions. The third dimension was a noise

dimension, drawn from N(0, σ2

N
). We performed random

projection, Data = Data ∗ Vrandom, to mix these dimen-

sions, where Vrandom is a random orthonormal transfor-

mation matrix, V T

random
Vrandom = I . Data 1 has three

Gaussian clusters in the two relevant dimensions. Data 2

and 3 are based on three rings and two hooks. Data 4 is

a mixture of linear and nonlinear structures with two com-

pact clusters and one hook.

Figure 1 shows the data in the original feature space (a)

and in the reduced space discovered by our algorithm (b).

The figure also shows the spectral (similarity) matrix of

the data in the original space (c) and in the reduced space

(d). From Figure 1 (a) and (c), we see that while the

data and their spectral (similarity) matrices in the original

space have some structure, this structure is overwhelmed

by noise. Indeed, at this noise level (σN = 7, 5, 3.5, 0.2 re-

spectively), spectral clustering cannot find the correct parti-

tions. On the other hand, from Figure 1 (b) and (d), we see

that the data and the spectral (similarity) matrix in the re-

duced space discovered by DRSC show strong cluster struc-

tures. Moreover, spectral clustering in the reduced space

can discover the underlying partitions. Figure 2 (1-4) dis-

plays the Nasso value obtained by DRSC and the other

methods as a function of iteration. Non-iterative methods

are shown as just a point at iteration 1. The figure confirms

that DRSC increases the Nasso value in each step. More-

over, DRSC obtained the highest Nasso score compared to

competing methods at convergence. Since synthetic data

1 is linearly separable, LDA-k-means performed as well as

DRSC on this dataset, but performed poorly on the other

data sets.

In Figure 3, we show a comparison of the different methods

in terms of NMI as the noise level σ2 is varied. Note that

our proposed DRSC method is the most robust to noise.

LDA-k-means is satisfactory for Synthetic Data 1 where

the clusters are spherical, but fails for the arbitrary-shaped

data. In the presence of noise, k-means fails even for

spherical clusters (Data 1). Because WKK-KFD can cap-

ture clusters with arbitrary shapes, it performed better than

LDA-k-means on Data 2, 3 and 4. It is better than spec-

tral clustering but is much worse than DRSC. This is be-

cause WKK-KFD only reduces the dimension in the em-
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Table 1: NMI for Real Data
FACE MACHINE SOUND HD DIGITS CHART GLASS SATELLITE

k-means 0.71± 0.03 0.61± 0.03 0.60± 0.03 0.66± 0.01 0.43± 0.03 0.41± 0.02

LDA-k-means 0.76± 0.03 0.71± 0.03 0.67± 0.02 0.75± 0.02 0.32± 0.02 0.42± 0.03

SC 0.75± 0.02 0.79± 0.02 0.65± 0.02 0.68± 0.02 0.36± 0.02 0.40± 0.02

PCA+SC 0.75± 0.02 0.81± 0.03 0.73± 0.02 0.69± 0.03 0.33± 0.02 0.42± 0.02

WKK-KFD 0.81± 0.03 0.80± 0.02 0.69± 0.03 0.69± 0.02 0.32± 0.03 0.43± 0.03

DRSC 0.87±0.03 0.85±0.02 0.79±0.02 0.78±0.02 0.45±0.02 0.46±0.03

bedding space, whereas our DRSC approach reduces the

subspace dimension in the input space. PCA+SC does not

help spectral clustering much in dealing with noise. Spec-

tral and k-means clustering performed poorly in the pres-

ence of noise; notice that when the noise is large, the NMI

values drop rapidly.

5.2 Real Data

We now test on real data to investigate the performance of

our algorithm. In particular, we test on face images, ma-

chine sounds, digit images, chart, glass data and satellite

data. The face dataset from the UCI KDD archive [3] con-

sists of 640 face images of 20 people taken at varying poses

(straight, left, right, up), expressions (neutral, happy, sad,

angry), eyes (wearing sunglasses or not). Note that identity

is the dominant clustering structure in the data compared to

pose, expression and eyes. The machine sound data is a col-

lection of acoustic signals from accelerometers. The goal

is to classify the sounds into different basic machine types:

pump, fan, motor. We represent each sound signal

by its FFT (Fast Fourier Transform) coefficients, providing

us with 100, 000 coefficients. We select the 1000 highest

values in the frequency domain as our features. The mul-

tiple digit feature dataset [19] consists of features of hand-

written digits (‘0’–‘9’) extracted from a collection of Dutch

utility maps. Patterns have been digitized in binary images.

These digits are represented by several feature subsets. In

the experiment, we use the profile correlation feature subset

which contains 216 features for each instance. The chart

dataset [19] contains 600 instances each with 60 features

of six different classes of control charts. The glass dataset

[19] contains 214 instances with 10 features. One feature is

the refractive index and nine features describe the chemical

composition of glass. The satellite dataset [19] consists of

7 kinds of land surfaces. Features are multi-spectral values

of pixels in 3× 3 neighborhoods in a satellite image.

From Table 1, we observe that compared to competing al-

gorithms, our DRSC algorithm obtained the best cluster-

ing results in terms of NMI (where the best values are

shown in bold font). Similar to the results on synthetic

data, we observe that LDA-k-means in general improves

the performance of k-means. PCA+SC performs similarly

or slightly better than spectral clustering, SC. WKK-KFD

is better than SC, but DRSC performs the best in all cases.

DRSC led to better results than WKK-KFD, because WKK-

KFD only reduces the dimension in the embedding space,

whereas our DRSC approach reduces the subspace dimen-

sion in the input space. We take a closer look at the results

for the face data. We observe that spectral clustering dis-

covers a reasonable clustering based on identities. How-

ever, the spectral clustering results show interference from

the pose aspect of the data. Our algorithm, on the other

hand, focuses solely on the identity, which is the strongest

clustering structure in the data. In Figure 2 (5), we show

Nasso values obtained by different algorithms with re-

spect to the number of iterations for the face data. The plot

confirms that our approach increases Nasso in each step.

In addition, the Nasso value at convergence is close to

the number of different persons (20) and the Nasso value

reached is the highest compared to competing methods.

6 Conclusions

Dimension reduction methods are increasingly being re-

fined so as to find subspaces that are useful in the solution

of downstream learning problems, typically classification

and regression. In this paper we have presented a contri-

bution to this line of research in which the downstream tar-

get is itself an unsupervised learning algorithm, specifically

spectral clustering. We have focused on spectral clustering

due to its flexibility, its increasing popularity in applica-

tions and its particular sensitivity to noisy dimensions in

the data. We have developed a dimension reduction tech-

nique for spectral clustering that incorporates a linear pro-

jection operator in the relaxed optimization functional. We

have shown how to perform optimization in this functional

in the spectral embedding and the linear projection. Our

results on synthetic and real data show that our approach

improves the performance of spectral clustering, making it

more robust to noise.
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[24] B. Scholköpf, A. J. Smola, and K. R. Müller. Ker-

nel principal component analysis. In 7th Inter-

national Conference on Artificial Neural Networks,

pages 583–588, 1997.

[25] L. Song, A. J. Smola, A. Gretton, and K. M. Borg-

wardt. A dependence maximization view of cluster-

ing. In Proceedings of the 24th International Confer-

ence on Machine Learning (ICML), pages 815–822,

2007.

[26] A. Strehl and J. Ghosh. Cluster ensembles–a knowl-

edge reuse framework for combining multiple parti-

tions. Journal on Machine Learning Research, 3:583–

617, 2002.

[27] J. B. Tenenbaum, V. Silva, and J. C. Langford. A

global geometric framework for nonlinear dimen-

sionality reduction. Science, 290(5500):2319–2323,

2000.

[28] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Dis-

tance metric learning, with application to clustering

with side information. In Advances in Neural Infor-

mation Processing Systems, 15, pages 505–512, 2003.

[29] K. Yeung and W. Ruzzo. Principal component analy-

sis for clustering gene expression data. Bioinformat-

ics, 17:763–774, 2001.

[30] Z. Zhang and M. I. Jordan. Multiway spectral cluster-

ing: A margin-based perspective. Statistical Science,

23:383–403, 2008.


