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With the development of medical technology, more and more parameters are produced to describe the human physiological
condition, forming high-dimensional clinical datasets. In clinical analysis, data are commonly utilized to establish mathematical
models and carry out classi�cation. High-dimensional clinical data will increase the complexity of classi�cation, which is o	en
utilized in themodels, and thus reduce e
ciency.�eNiche Genetic Algorithm (NGA) is an excellent algorithm for dimensionality
reduction. However, in the conventional NGA, the niche distance parameter is set in advance, which prevents it from adjusting to
the environment. In this paper, an Improved Niche Genetic Algorithm (INGA) is introduced. It employs a self-adaptive niche-
culling operation in the construction of the niche environment to improve the population diversity and prevent local optimal
solutions. �e INGA was veri�ed in a strati�cation model for sepsis patients. �e results show that, by applying INGA, the feature
dimensionality of datasets was reduced from 77 to 10 and that the model achieved an accuracy of 92% in predicting 28-day death
in sepsis patients, which is signi�cantly higher than other methods.

1. Introduction

Clinical decision system is able to aid in diseases diagnosis
and predict the clinical outcomes in response to treatment
[1, 2]. For the diagnosis of sepsis, a number of scoring
systems have been proposed, such as the Acute Physiol-
ogy and Chronic Health Evaluation (APACHE), Sequential
Organ Failure Assessment (SOFA), and Clinical Pulmonary
Infection Score (CPIS) [1, 3]. �ey are challenged because
traditional markers of infection mislead and there is lack of
better evaluation methods for prognosis [1, 4–6]. To improve
the outcome of treatments, diagnostic models are needed to
accurately predict the development of sepsis as well as stratify
its severity [7].

However, the clinical data of sepsis involved in diagnostic
models are usually high dimensional. High-dimensional
datasets increase the complexity of classi�cation and reduce
the e�ect of models [8]. �us, before building models, it is
necessary to reduce the data dimension while retaining
essential information of the original data. Feature extraction

and feature selection are themainmethods in dimensionality
reduction [2, 9].

(A) Feature Extraction. Feature extraction transforms the
original feature space into a new one of lower dimension.
Algorithms like Principal Component Analysis (PCA), Mul-
tidimensional Scaling (MDS), and Independent Component
Analysis (ICA) are widely used for feature extraction. How-
ever, ICA and PCA are linear projection methods, and if
the feature vectors distribute along a nonlinear manifold in
a high-dimensional space, they might lead to classi�cation
errors [10, 11]. Besides, MDS is sensitive to undersampling
datasets and has di
culty in dealing with defect data [12].
Furthermore, PCA, MDS, and ICA will generate new param-
eters a	er dimensionality reduction, and the signi�cance of
the new parameters is not always interpretable.

(B) Feature Selection. Feature selection is a kind of process that
selects an optimal feature subset from the original features,
which retains su
cient information [13]. Currently, quite
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a lot of feature selection algorithms have been developed,
such as Genetic Algorithms (GAs), Support Vector Machines
(SVM) Wrapper, Sparse Generalized Partial Least Squares
Selection (PLS), and Particle Swarm Optimization (PSO)
[14–17]. Among them, GAs are popularly utilized. However,
in some multimodal optimization problems, GAs failed to
maintain multiple global or local optima [13]. �us many
e�orts have been made to improve the ability of GAs in
achieving multiple peak solutions, by adding scaling �tness
and adjusting �tness competence rule [18].

(a) GAs. Genetic Algorithms have been used to reduce the
numbers of features in datasets [19–21]. Genetic Algorithm
Pipe Network Optimization Model (GENOME) has been
applied to optimize the design of new looped irrigation water
distribution networks [22]. An online web-based feature
selection tool (DWFS) was developed according to the GA-
based wrapper paradigm [23]. However, when using GAs
[24–26], it is di
cult to handle problems such as nonlinear,
singular, and multimodal ones. �e key issue is that the
population is easily trapped in a limited number of solutions;
and premature solutions have no capability to obtain better
results [18].�erefore, theNicheGenetic Algorithms (NGAs)
are introduced to build a better environment to resolve the
problem.

(b) NGAs. �e capability to locate multiple loci o	en permits
NGAs to be robust and e�ective in solving multimodal
optimization problems [27–29]. �e Twin-space Crowding
Genetic Algorithm (TCGA) and Game-�eoretic Genetic
Algorithm (GTGA) are introduced in the literature [18, 30].
�e reported work [31] showed that the Nondominated
Sorting Genetic Algorithm (NSGA) lacks elitism and needs
to specify the sharing parameter [32]. However, most niche
methods require prior knowledge such as the niche radius
or the distance threshold. Accordingly, the niche distance
is either set randomly or set as �xed value in advance.
�ese technologies are unable to adaptively obtain the niche
distance following evolution and prone to eliminate the
potentially excellent individuals [33, 34].

To address the problems, we proposed Improved NGA
(INGA) algorithm with embedded self-adaptive niche-
culling mechanism for dimensionality reduction. Since MDS
and PCA are the typical feature extraction algorithms while
GA and NGA are the typical feature selection algorithms,
we compared the dimension reduction results of them with
INGA to verify the validity of INGA in dimension reduction.
By applying INGA, the improvement in the accuracy rate
of sepsis diseases classi�cation is noteworthy, while the data
dimension is reasonably reduced.

2. Method

�e idea of NGA is applying the biological concept of a
niche to evolutionary computations. It shows a survival
environment with a prespeci�ed distance parameter �. �e� of NGA is set in advance, only allowing a single excellent
individual in this distance. NGA has the following main
disadvantages.

(1) A �xed distance parameter a�ects the convergence
rate. If the value of � is too large, there will be lots
of individuals within this distance and they need to
be culled. �is will lower the convergence rate. In
contrast, if the value of � is too small, there are no
su
cient individuals and this will lead to premature
convergence.

(2) Single individual will inhibit potential individuals.
Within the distance �, only one single excellent indi-
vidual is allowed and it will cause the elimination of
potentially excellent individuals and make the result
of the dimension reduction too large.

(3) �e diversity of the subpopulations is insu
cient.
Population diversity is closely related to subpopula-
tions scale, but the subpopulations scale of NGA is set
in advance and cannot be adjusted. It is di
cult to �nd
an optimum scale of subpopulations. As a result, if the
subpopulations scale is too large, the diversity of the
population is easy to be destroyed; on the contrary,
the additional calculation of the algorithm will be
increased.

To address these problems, we developed Niche Elimination
Operation, as shown in the part (A). A	erwards, INGA is
constructed, as shown in part (B) (Figure 2).

(A) Niche Elimination Operation

(a) Self-Adaptive Survival Distance. �e distance parameter� is designed to be self-adaptive with the Euclidean distance
among individuals of each generation to avoid the conver-
gence problem caused by preset �:
� = ������� − ������� = √ len∑

�=1
(	�� − 	��)2,

�, � ∈ {1, 2, . . . ,�} , � ̸= �.
(1)

�� and �� are two individuals of the current population,
which are made up of loci genetics.� is the number of indi-
viduals in the current population. len is the number of loci,
which is used to form and evaluate the lengths of individuals.	�� and 	�� are the values of loci. �e distance parameter � is
calculated by

� = min {�} . (2)

Because individuals of each generation are di�erent and
the values of the distance parameter vary with generation,
a reasonable distance parameter will be obtained in the
evolutionary process of each generation to get a better niche
environment.

(b) Similarity Criterion. Allowing one single excellent indi-
vidual within �, this will cause the elimination of poten-
tially excellent individuals which may not be similar to the
retained excellent. So, within the distance parameter �, the
similarities of biallelic loci are used to judge the similarity of
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the individuals anddeterminewhether the individuals should
be retained.

�e similarity of biallelic loci and average similarity
between two individuals are given by the following two
equations:

SD (��, ��) = len∑
�=1

num (��� == ���)
len

,
� ∈ {1, 2, . . . ,�} , � ∈ {� + 1, � + 2, . . . ,�} ,

(3)

where SD(��, ��) represents the similarity between two
individuals, �� and ��. num(��� == ���) is the number of
the same allele value of two individuals. Consider

MSD� = ∑��=�+1 SD (��, ��)
len ∗ (� − 1) ,
� ∈ {1, 2, . . . ,�} , � ∈ {� + 1, � + 2, . . . ,�} .

(4)

MSD� represents the average similarity between the �th
individual and the others. When ‖�� − ��‖ < �, the
similarity between two individuals will be distinguished.
If the similarity is larger than the average similarity, the
individual that has a lower �tness will be given a penalty
function, as shown in the following equation. Otherwise, the
lower �tness individuals can be retained:

��� (�) = �� (�) ∗ �, (5)

where ��(�) is the original �tness of the individual, ��� (�) is
the new �tness, and � is the penalty function (usually 10−30).
�is method can reduce the elimination of individuals.

(c) Maintain Population Diversity. To maintain the diversity
of the population, the scale of the subpopulations should be
controlled. So (6) and (7) are designedwith amemory pool of
optimal individuals to limit the scale for the subpopulations
of each generation:

� (�) = �(�)∑
�=1

�� (�)�(�) , (6)

where �(�) represents the average �tness value of generation�, ��(�) represents the �tness of individual � in generation �,
and �(�) is the scale of the population in generation �. �us,
the scale of subpopulations in generation � + 1 is�(�+1). �is
is calculated as

�(�+1) = �(�) ⋅ � (�) ⋅ �∑��=1 � (�) . (7)

A memory pool of optimal individuals is designed to
exchange excellent evolutionary individuals. �e operation
increases the possibility of obtaining more excellent individ-
uals, and to some extent, avoids the problem of premature
convergence during the evolutionary process of a single
population. �e individuals of general � + 1 are sorted by
�tness, and the formers� are put into the memory pool.

�rough the result of �(�+1), the ability of maintaining
the population diversity, �(�), is designed as in the following
two equations. �e smaller the value of �(�) is, the higher its
population diversity is:

� (�) = ∑�1 � (�)�� , (8)

where �(�)� is the capability to maintain the population
diversity in generation �. And �(�)� is designed as follows:

� (�)� = 1� ⋅ �(�)
�∑
�=1

max
{{{
�(�)∑
�=1

(1 −  ��) , 	∑
�=1
 ��}}} , (9)

where � is the length of the individual encoding, �(�) is the
scale of the population in generation �, and  �� is the �th loci
of the �th individual.

(B) Flowchart of INGA

Step 1 (calculate �tness). At �rst, � initial individuals are
produced at random. Usually, it takes the reciprocal of the
sum of error square of the classi�er test set data as �tness
function [33] in order to fully re�ect the advantage of
controlling errors by combining INGA with classi�er:

� (�) = 1∑	�=1 (�̂� − ��)2 , (10)

where �̂ is the predicted value of test set, � is the true value
of test set, and % is the sample number of test set. Individuals
are sorted by �tness in descending order, and the former �
individuals are remembered in the memory pool (� < �).

Step 2 (Niche EliminationOperation to produce excellent ini-
tial individuals). In this step, the excellent initial individuals�(�) are produced, as shown in Figure 1.

(a) Self-Adaptive Survival. First, calculate the Euclidean
distance � between �� and �� according to (1).
Second, calculate self-adaptive survival distance �
according to (2).

(b) Similarity Criterion. Judge the similarity of the indi-
viduals within the distance � according to themethod
of allele contrast, so as to determine whether the
individual should be retained. When ‖�� − ��‖ < �,
the similarity of biallelic loci and average similarity
between two individuals are compared. If they are not
similar, the individual of lower �tness needs not to be
eliminated. �e similarity of biallelic loci SD(��, ��)
and average similarity MSD� between two individuals
are given by (3) and (4). When SD(��, ��) > MSD�,
then ��(�) is punished, using a penalty function��� (�) = ��(�) ∗ � according to (5). If not, the

individual with lower �tness will be retained. On the
other hand, when ‖�� − ��‖ > �, the individual with
lower �tness will be retained.

(c) Maintaining Population Diversity. According to (7),
the number of subpopulations �(�+1) is calculated.
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(b) Similarity criterion

(a) Self-adaptive survival 
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Given a penalty function

Yes
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diversity

No

NoYes

Yes No

Yes No

Niche Elimination Operation M(t)

(ii) Calculate self-adaptive survival distance L(i) Calculate D = ‖Xi − Xj‖

If ‖Xi − Xj‖ < L

If SD(Xi, Xj) > MSDi
Retain Xj

Retain Xj

f�
j (X) = fj(X) ∗ P

Calculate M(t+1)

If M(t) > M(t+1)

Select the former M(t+1) If N+M(t) > M(t+1)

Select the former M(t+1) of (N + M(t)) Select M(t+1) = N +M(t) + p

Obtain the individuals M(t+1)

(j ∈ i + 1, i + 2, . . . ,M)

Figure 1: Niche Elimination Operation.

Output the optimal parameter reduction

Yes

Step 3: crossover and mutation

Step 4: Niche Elimination Operation

Sort by �tness in descending order

First: sort by �tness in descending order

Step 5: judging the convergence
condition 

Step 1: calculate �tness

Generate initial individuals M randomly

Second: remember the former N

First: sort by �tness in descending order Second: remember the former N

Step 2: Niche Elimination Operation → produce excellent initial individuals M(t)

t ← 1

t + 1
Generate
t ← 

Figure 2: Flowchart of INGA.
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Individuals are sorted by �tness in descending order,
if the scale of the existing subpopulation�(�) is larger
than�(�+1), select the individuals�(�+1); otherwise,� individuals are merged in the memory pool with
the existing subpopulations and sorted by �tness in
descending order; when � +�(�) > �(�+1), the
former individuals �(�+1) of (� +�(�)) are selected;
when� +�(�) < �(�+1), � individuals will be gener-
ated randomly; individuals�(�+1) are selected, on the
condition that �(�+1) = � + �(�) + �. �rough
this method, the initial population will have a higher
average �tness and will be conducive to the evolution
of population towards the solution of the problem.

Step 3 (self-adaptive crossover and mutation operation).
Considering the probability of crossover and mutation, it is
too small to escape frommaking the system fall into the local
optimal solution, and if it is too large, it can escape from the
local optimal solution but is prone to instability and con-
vergence because the count of crossover and mutation is so
frequent. In order to improve this shortcoming, the equations
of self-adaptive crossover (�
) and mutation probability (��)
are used [35, 36]:

�
 = {{{{{
�
1 − �
1 − �
2�max − �avg (�� − �avg) �� ≥ �avg
�
1 �� < �avg, (11)

�� = {{{{{
��1 − ��1 − ��2�max − �avg (� − �avg) � ≥ �avg
��1 � < �avg. (12)

�max is the maximum �tness value; �avg is the average �tness
value of each population; �� is the larger �tness value of
the two individuals crossing; and � is the �tness value
of individuals of mutation. �
1, �
2 are, respectively, the
crossover probability value of two individuals; ��1 and ��2
are the mutation probability values of two individuals.

Step 4 (Niche EliminationOperation). A	er the self-adaptive
crossover and mutation operation, put the new individual
into the Niche Elimination Operation again to obtain the
optimal individual, as shown in Figure 1.

Step 5 (judging the termination condition). If it does not
meet the termination condition, then update the counter �
as � + 1 and make the population in Step 4 be the new next
generation population, and then go to Step 2. If the termina-
tion condition is satis�ed, output the optimal dimensionality
reduction parameters selected.

3. Dataset Description

Experiments are conducted on a sepsis dataset, for which data
are gathered fromZhejiangHospital.�e goal of the classi�er
was to determine, based upon the test results provided,
whether a patient should be diagnosed as 28-day death [37].
�e number of samples in the two classes was balanced. �e
training set contained 124 negative (28-day death) cases and

173 positive cases. Likewise, the testing set consisted of 77
negative samples and 123 positive ones. Data are organized
in a table with 77 columns for attributes of patients and 497
rows for speci�c samples. �ere are missing values in this
table because some questions have not been answered, so we
replaced them with 0. �ere is not any correlation among
attributes, and this creates an orthogonal space for using
Euclidean distance. All samples include the same number of
attributes [13].

4. Experimental Setup

�is work used the PCA, MDS, NGA, and INGA to reduce
the dimensionality of the dataset, and the selected algorithms
were also combined with three classic classi�ers, Random
Forest (RF), Support VectorMachine (SVM), and Back Prop-
agation (BP). �e experimental setup is as follows.

Set the Initial Population Scale.�e literature [37, 38] suggests
that an optimal initial population should number from 20
to 100; the present work takes 90 as the initial population�, considering the computation time and the range of the
search.�e stored individuals� in Niche Genetic Algorithm
are usually selected as one-thirds of population scale. �e
probability of crossover is determined by (11), and the
mutation probability is determined by (12).

Set the Encoding. �e data are organized in a table with 77
columns for attributes of patients and each bit is assigned
to one feature; thus the encoding length is designed as 77.
If the �th bit equals 1, then the �th feature is involved in
classi�cation; otherwise, the corresponding feature is not
involved, as shown in Figure 3.

Set the Convergence Condition. �e evolutional generation is
set to 100 according to the previously publishedworks [13, 37].
�e �tness function is the reciprocal of the sum of the predic-
tion error square of themodel. Convergence is achievedwhen
the largest and least �tness values are equivalent. �is paper
adopts the maximum evolutional generation and conver-
gence degree of the population to construct the condition of
algorithm convergence: end the calculation when it can meet
one of the two conditions; namely, the evolutional generation
reaches the preset values or population convergence appears
[36].

Set the Experiment Running Time.�e experiment used *-fold
cross-validation, 80% of the samples were randomly selected
as the training set, and the rest were used as the test set. �e
experiment was repeated 100 times [39].

5. Result

�eclinicalmanifestation of the sepsis disease is complicated,
and it is di
cult to accurately determine the 28-daymortality.
�is study applies the improved self-adaptive Niche Genetic
Algorithm to the diagnosis process of septic 28-day mor-
tality, using dimensionality reduction to obtain the optimal
feature parameters and improve the diagnostic precision.
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�e encoding

1 �e �rst feature is involved in classi�cation

0
�e second feature is not involved in

classi�cation

1 0

77

· · · · · · · · · · · · · · ·

...

Figure 3: �e relationship between encoding and features.

Table 1: �(�): the ability to maintain population diversity. �(�) was
run for 20, 50, and 100 generations, respectively, in GA, NGA, and
INGA.

Generation GA NGA INGA

20 0.5635 0.5213 0.4812

50 0.6271 0.5748 0.5248

100 0.6963 0.6147 0.5629

Here, premature state, population distribution, accuracy of
classi�cation, and robustness have been used to measure the
quality of the algorithms.

(A) Premature State. Avoiding premature state is a standard
of the algorithms; premature means that the performance is
as follows: (a) the population diversity is reduced, (b) the
convergence ability is low, and (c) the convergence rate is
low. �us, we used these factors to measure whether the
algorithms were premature or not.

(a) Population Diversity. �e Scha�er function, presented as
(13), is used to generate data, and the results of population
diversity, with �(�) calculated with (9), are shown in Table 1:

� (	1, 	2) = 0.5 − sin2√	21 + 	22 − 0.5
(1 + 0.001 (	21 + 	22))2 ,− 100 ≤ 	� ≤ 100 (� = 1, 2) .

(13)

We can see from Table 1 that the value of �(�) of INGA is
smaller than that of GA and NGA under the condition of the
same evolution generations, demonstrating the advantages of
INGA in maintaining the population diversity.

(b) Convergence Ability. Convergence abilitymeans the ability
to obtain global optimal values when algorithm stops. We
know from the properties of the Scha�er function that the
global maximum is 1 and that two local maxima near the
maximum value are 0.99028 and 0.96278. If the maximum
value was larger than 0.999, we can judge the convergence
appearance, and the global solution is obtained. When local
maxima values are obtained, we can judge that there is no
convergence, as only the local solution is obtained.�us, GA,
NGA, and INGA are used to obtain the maximum value of
the Scha�er function, as shown in Table 2.

GA

NGA

INGA

0.75

0.8

0.85

0.9

0.95

1

F
it

n
es

s

0 40 60 80 10020

Evolution time

Figure 4: Convergence curves.

From the data in Table 2, we can see that, in the 10
independent experiments, it is easier for GA and NGA to
fall into two local maxima. �ere are 10 times for INGA to
search the global optimal value, there are 7 times for NGA to
search the global optimal solution, and GA only has 4 times,
which means that there is a certain gap between the ability of
these two algorithms to search for the global optimal solution
compared with INGA.

(c) Convergence Rate. �e comparison of convergence curves
among GA, NGA, and INGA is shown in Figure 4. We can
see from Figure 4 that INGA has the fastest convergence
rate. It has converged to the average �tness by the 20th
generation. �e remaining two algorithms converged to the
average �tness by the 42th and 67th generations, respectively.

(B) Population Distribution. In Section 2, self-adaptive sur-
vival distance is used to set up the distance of NGA, and cri-
terion similarity is used to determine whether the individual
is retained or not. Both of them constitute the population
distribution. So the �gure of population distribution is built
to assess the e�ect of the self-adaptive survival distance and
criterion similarity methods.
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Table 2: Convergence of the Scha�er function.

Execution count
GA NGA INGA

Optimal value Whether converges Optimal value Whether converges Optimal value Whether converges

1 0.9903 N 0.9903 N 0.9995 Y

2 0.9632 N 0.9998 Y 1 Y

3 1 Y 1 Y 0.9998 Y

4 0.9619 N 0.9625 N 1 Y

5 0.9991 Y 0.9991 Y 0.9995 Y

6 0.9631 N 0.9995 Y 1 Y

7 0.9631 N 1 Y 0.9998 Y

8 0.9992 Y 0.9628 N 1 Y

9 0.9617 N 0.9982 Y 1 Y

10 0.9996 Y 1 Y 0.9998 Y

0
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1 0
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(a) NGA
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(b) INGA

Figure 5: Individuals’ distribution, where the 	-axis represents the �tness of the individuals and the 3- and 4-axes represent the Euclidean
distance between the individuals.

Table 3: �e number of feature parameters a	er dimensionality
reduction.

PCA MDS NGA INGA

BP 17 ± 2 27 ± 3 21 ± 3 15 ± 2

SVM 2 ± 10 26 ± 4 20 ± 4 16 ± 3

RF 21 ± 4 22 ± 3 23 ± 3 10 ± 2

Figure 5 is the population distribution within the niche
distance. It shows that the �nal population obtained by
INGA can be more uniformly distributed; thus self-adaptive
survival distance and similarity criterion designed in this
paper is adaptive.

(C) Dimensionality Reduction and Classi
cation. To assess the
performance of dimensionality reduction, PCA, MDS, NGA,
and INGAwere embedded in the BP, SVM, and RF classi�ers
to carry out the classi�cation diagnosis. �e accuracy of
classi�cation and ROC curve diagram are shown as follows.

(a) Accuracy of Classi
cation. �e number of feature subsets
before and a	er dimensionality reduction is shown inTable 3.

It is shown that INGA has better control over the number of
feature subsets than other dimensionality reductionmethods,
as a smaller number of feature subsets were obtained by
INGA. However, considering the number of feature subsets
alone is not enough, as the classi�cation accuracy should
be combined. �e classi�cation accuracies before and a	er
dimensionality reduction are shown in Figure 6. It is noticed
that the accuracy increased obviously a	er the dimensionality
reduction; the highest accuracy was obtained by RF-INGA.

(b) �e ROC Curves. �e receiver operating characteristic
(ROC) curve and area under the curve (AUC) are shown in
Figures 7 and 8.

FromFigures 7 and 8, we can see that INGAyields a better
result and that the covered areas of ROC o�er an obvious
improvement compared with PCA, MDS, and NGA. At the
same time, the highest AUC was obtained by the RF classi�er
a	er INGA dimensionality reduction.

(D) Robustness. �e robustness of the algorithm was tested
by introducing random noise in the data. �e k-fold cross-
validation method was used to compare the e�ects of noise.
5% of the samples, selected randomly from the training
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Figure 6: Classi�cation accuracy (%). (a) is the result before dimensionality reduction and (b)–(e) are the result a	er dimensionality
reduction.
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Figure 7: ROC curves. Classi�cation using BP, SVM, and RF based
on the INGA dimension reduction algorithm.

set, and their labels are changed, used as noise samples.
�e operation was repeated 100 times, and the average value
was taken to compare the classi�cation accuracy.

From Figure 9, we can see that noise poses a signi�cant
e�ect on the dimensionality reduction methods of PCA and
MDS. In comparison with Figure 6, the accuracy of the three
classi�ers decreased by 18% to 35%; on the contrary, INGA
is less a�ected by the noisy conditions, and the accuracy of
the three classi�ers with INGA only decreased by 3% to 13%.
�e robustness of the INGA algorithm is strengthened, and
its antinoise ability is the best, especially when it is combined
with RF.

6. Discussion

�e integrated feature selection algorithms and classi�cation
accuracy were valid on clinical sepsis data. INGA exhibited
advantages in feature selection over other approaches, and,
moreover, INGA-RF obtained classi�cation accuracy higher
than 90% in identifying the death of sepsis patients, showing
the best performance of all of the techniques and using only
10 features.
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Figure 8: Area under the curve (AUC) of the algorithm.

�e present work has proposed an improved INGA
algorithm to resolve the premature state in traditionalGAand
NGA, which are characterized as having reduced population
diversity, weak convergence ability, and low convergence rate.
As shown in Table 1, regarding �(�), a measure of population
diversity, INGA has the smallest value of 0.5629 as compared
with GA and NGA. As shown in Table 2, for 10 independent
experiments, INGA achieved the global optimum in all
experiments, while NGA and GA succeeded in only 7 and
4 experiments, respectively. Figure 4 shows the convergence
rate estimated by the generations of convergence. INGA had
the fastest convergence rate with 20 generations, while 42 and
67 generations were required for GA and NGA, respectively.
�ese �ndings suggest that INGA is superior overall to the
other methods.

�e dominating performance of INGA in avoiding pre-
mature convergence is owed to the following improvements
in the work: (i) the introduction of the self-adaptive survival
distance: di�ering from the conventional methods, the sur-
vival distance is automatically adjusted in the evolutionary
process of each generation; this ensures reasonable distance
parameters and leads to an adaptive niche environment;
this approach can obtain more reasonable individuals with
excellent global optimization ability and high convergence

speed; (ii) the application of a similarity criterion that retains
more reasonable individuals: the similarity of biallelic loci
was used to decide whether the individuals in the neighbor-
hood should be retained; this approach can harvest more
reasonable individuals, increasing the possibility of �nding
the global optimal solution; and (iii) the use of a memory
pool for optimal individuals: a pool was designed to reserve
and exchange excellent evolutionary individuals for each
generation; this maintains the diversity of the population and
increases the quantity of excellent individuals; to some extent,
it also avoids the problem of premature convergence during
the evolutionary process of a single population.

�e testing results on clinical sepsis cases show that,
combined with INGA, three types of classi�ers achieved
the accuracies in predicting 28-day death of 92% (RF), 78%
(SVM), and 77% (BP), respectively. In contrast, the highest
accuracy of the classi�ers employing NGA, PCA, andMDS is
only 70%. �is suggests that INGA is e�ective in improving
the performance of classi�ers for complex clinical datasets.

However, it is worth pointing out that the present work
has some limitations. First, the validity of INGA was only
tested in sepsis patients. Although the algorithm is generally
functional, it is necessary to investigate the e�ectiveness of
INGA on further datasets. Second, the coherence between
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Figure 9: Robustness (%) of the algorithm.

INGA and the classi�ers remains unclear. Our work revealed
that the RFmethod with embedded INGA is mostly satis�ed.
One question that may arise is how to �gure out the optimum
combination of the dimension reduction algorithm and
classi�er.�is question is out of the scope of the current work,
which is focused on the dimension reduction. However, it
should be clari�ed in a further study.

7. Conclusion

�is paper proposed an improved algorithm for feature
reduction in high-dimensional data. �e methods were
imbedded in classi�ers to predict the prognosis of sepsis
patients based on complex clinical datasets. �e results
indicate that the improved NGA, INGA, is most e�ective in
reducing the number of attributes and enhancing the conver-
gence speed compared to other commonly used algorithms,
such as PCA, MDS, and NGA. Moreover, INGA associated
with RF to achieve the highest accuracy in assessing the
severity of sepsis. �is suggests that INGA has the potential
for complex data processing, particularly for medical pattern
recognition.
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