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Dimensionality Reduction of
Clustered Data Sets

Guido Sanguinetti

Abstract—We present a novel probabilistic latent variable model to perform linear

dimensionality reduction on data sets which contain clusters. We prove that the

maximum likelihood solution of the model is an unsupervised generalization of

linear discriminant analysis. This provides a completely new approach to one of

the most established and widely used classification algorithms. The performance

of the model is then demonstrated on a number of real and artificial data sets.

Index Terms—Dimensionality reduction, clustering, discriminant analysis,

probabilistic algorithms.

Ç

1 INTRODUCTION

DIMENSIONALITY reduction techniques form an important chapter
in statistical machine learning. Linear methods such as principal
component analysis (PCA) and multidimensional scaling are
classical statistical tools and more sophisticated techniques such
as latent variable models and Independent Component Analysis
(ICA) have attracted much interest in the past two decades. While
a lot of current research focuses on nonlinear dimensionality
reduction techniques, linear methods are still widely used in a
number of applications, from computer vision to bioinformatics.

An important advance in the understanding of dimensionality
reduction was provided by Tipping and Bishop’s probabilistic
interpretation of PCA (PPCA) [11]. The starting point for PPCA is
in defining a factor-analysis style latent variable model

y ¼Wxþ ��þ ��: ð1Þ

Here, y is a D-dimensional vector, W is a tall, thin matrix with
D rows and q columns (with q < D), x is a q-dimensional latent
variable, �� is a constant (mean) vector, and �� � N 0; �2Ið Þ is an
error term. Placing a spherical unitary normal prior on the latent
variable x, Tipping and Bishop proved that, having observed i.i.d.
data yi, at maximum likelihood the columns of W spanned the
principal subspace of the data. Therefore, the generative model (1)
could be said to provide a probabilistic equivalent of PCA.

This result opened the way for a number of applications and
generalizations: It allowed a principled treatment of missing data
and mixtures of PCA models [12], noise propagation through the
model [9] and, through different choices of priors, allowed the
linear dimensionality reduction framework to be extended to cases
where the data could not be modeled as Gaussian [6].

While PCA is indubitably one of the most widely used
statistical tools, it is important to understand its limitations. Since
PCA is based entirely on matching the data covariance, it may not
be appropriate in cases where the major interest lies in the
structure of the data, rather than its covariance.

In many cases, there is some prior knowledge available about
the structure of the data; often, it is known a priori that the data
may have a clustered structure. For example, in computer vision
one is often presented with images which consist of different parts

(background and several objects) without explicit class labels of
which pixel/area correspond to which part of the image. Similarly,
one might consider using genome-wide gene expression measure-
ment to discriminate between different conditions that are difficult
to diagnose (a famous example is [8] which classified two different
types of leukaemia which have very similar phenotypes). In these
cases, dimensionality reduction based solely on the data covar-
iance may not lead to good visualizations of the data set.

The problem is even more significant if we view dimensionality
reduction as a feature extracting technique. Feature extraction
techniques based on the covariance of the data (such as PCA or
factor analysis) do not necessarily give meaningful features when
the data set contains clusters. The most important features in this
case are clearly the ones that discriminate between clusters, which,
in general, do not coincide with the directions of greatest variation
in the whole data set.

While unsupervised techniques for dimensionality reduction of
data sets with clusters are relatively understudied, the supervised
case is addressed by linear discriminant analysis (LDA). It was
Fisher in a pioneering work [4] who first provided the solution to
the problem of identifying the optimal projection in order to
separate two classes. Under the assumption that the class
conditional probabilities are Gaussian with identical covariance,
he proved that the optimal one-dimensional projection to separate
the data maximizes the Rayleigh coefficient

J eð Þ ¼ d2

�2
1 þ �2

2

: ð2Þ

Here, e is the unit vector that defines the projection, d is the projected
distance of the (empirical) class centers, and �2

i is the projected
empirical variance of class i. The generalization to the multiclass
case is straightforward (see, e.g., [1]): defining the intraclass
covariance matrix SW (i.e., the sum of the empirical covariance
matrices of the various classes) and the interclass covariance
matrix SB (i.e., the sum of the exterior products of the vectors
connecting the class means), the optimal projection onto a
q-dimensional subspace is given by selecting the q generalized
eigenvectors with largest eigenvalues for the matrices SB and SW .
Since the interclass covariance matrix has a rank equal to the number
of classesK minus 1, it follows that the maximal value for q isK � 1.

In this contribution, we propose a latent variable model to
perform dimensional reduction of clustered data sets in an
unsupervised way. The maximum likelihood solution for the
model fulfills an optimality criterion which is a generalization of
Fisher’s criterion, and reduces to maximizing Rayleigh’s coefficient
in the limit when cluster assignments become certain.

The rest of the paper is organized as follows: In the next section,
we describe the latent variable model and provide an expectation-
maximization (EM) algorithm for finding the maximum likelihood
solution. We then prove that, under certain assumptions, the
likelihood of the model is a monotonic function of Rayleigh’s
coefficient, so that LDA can be retrieved as a limiting case of our
model. We then present experimental results on several data sets,
both real and artificial. The results support the correctness of our
theoretical derivation, giving good performance both for visualiza-
tion and for classification. Finally, we discuss the advantages and
limitations of our model, as well as possible generalizations and
relationships with existing models.

2 LATENT VARIABLE MODEL

Let our data set be composed of N D-dimensional vectors yi,
i ¼ 1; . . . ; N . We have prior knowledge that the data set contains
K clusters, and we wish to obtain a q < D-dimensionality reduction
of the data which is optimal with respect to the clustered structure of
the data. The latent variable model formulation we present is
inspired by the extreme component analysis (XCA) model of [14].
We explain the data using two sets of latent variables which are
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forced to map to orthogonal subspaces in the data; the model then
takes the form

y ¼ V xþ ��þWz: ð3Þ

In this equation, V is a D� q matrix whose columns span the
subspace we wish to project on. XCA constrains V to have
orthonormal columns; we will see later, though, that other
constraints are more appropriate in our case, so for the time being
V will simply have full column rank. �� is a D-dimensional mean
vector, and W is a D� D� qð Þ matrix whose columns span the
orthogonal complement of the subspace spanned by the columns
of V , i.e., WTV ¼ 0. Notice a key difference from the PPCA model
of (1) is the absence of a noise term; this is common to our model
and the XCA model.

The assumption that the data has a clustered structure is
mirrored in our choice of prior distributions for the latent variables
x and z,

z � N 0; ID�q
� �

;

x �
XK
k¼1

�kN mk; �
2Iq

� �
;

XK
k¼1

�k ¼ 1:

ð4Þ

Thus, we have a mixture of Gaussians generative distribution in
the directions determined by the columns of V and a spherical
Gaussian covariance structure in the orthogonal directions.

The motivation for these definitions is as follows: Intuitively, the
mixture of Gaussians part will tend to optimize the fit to the clusters,
which (given the spherical covariances) will be obtained when the
subspace spanned by V interpolates the centers of the cluster in the
optimal (least squares) way. Meanwhile, the general Gaussian
covariance in the orthogonal directions will seek to maximize the
total variance in the directions orthogonal to V , hence minimizing
the sum of the projected variances. Therefore, the projection on the
subspace spanned by V will seek an optimal compromise between
separating the cluster centers and obtaining tight clusters.

From the definitions of the model and the priors, it is clear that
we can set the mean vector �� to zero and consider centred data sets
without loss of generality. We will systematically do this in the
following.

2.1 Likelihood

Given the model (3) and the prior distributions on the latent
variables (4), it is straightforward to marginalize the latent
variables and obtain a likelihood for the model. Using the
orthogonality of V and W , we readily obtain a log-likelihood for
the model (see the Appendix for a derivation, which can be found
at http://computer.org/tpami/archives.htm)

L yj; V ;W;mk; �
2; �

� �
¼ �N

2
log Cj j

� 1

2
tr C�1S
� �

þN
2

log �2V TV
� ��1
��� ���þ

XN
j¼1

log
XK
k¼1

�k exp �
yj � Vmk

� �T
Ĉ yj � Vmk

� �
2�2

" #
:

ð5Þ

Here, S ¼ 1
N

PN
j¼1 yjy

T
j is the empirical covariance of the (centered)

data, C ¼WWT , Ĉ ¼ V V TV
� ��2

V T and we have omitted a

number of constants. With a slight notational abuse, we denote

C�1 ¼W WWT
� ��2

WT (using the pseudoinverse of W ) and jCj as

the product of the nonzero eigenvalues of C.

We notice immediately that, as W is unconstrained (except for

being orthogonal to V and full column rank), at maximum

likelihood WWT will match exactly the covariance of the data in

the directions perpendicular to V . Therefore, the second term in (5)

will just be a constant D�q2 irrespective of the other parameters and

can be dropped from the likelihood. Also, we can use the

orthogonality between V and W to rewrite jCj in terms of V

alone. This can be done by observing that, if P and P? represent

two mutually orthogonal projections that sum to the identity, then

the determinant of a symmetric matrix A can be expressed as

jAj ¼ PAPT
�� �� P?APT

?
�� ��. Introducing the matrix E ¼ V V TV

� ��1
2,

which defines the orthonormal projection on the subspace spanned

by V , we obtain that

jCj ¼ jSj
jETSEj :

Substituting these results into the log-likelihood (5) and

omitting terms which do not depend on the parameters, we obtain

L yj; V ;mk; �
2; �;

� �
¼

N

2
log ETSE
�� ��þN

2
log �2V TV

� ��1
��� ���þ

XN
j¼1

log
XK
k¼1

�k exp �
yj � Vmk

� �T
Ĉ yj � Vmk

� �
2�2

" #
:

ð6Þ

This expression is now simply a mixture of Gaussian likelihood in

the projected space spanned by the columns of V , plus a term that

depends only on the projection E. This suggests a simple iterative

strategy to maximise the likelihood.

2.2 E-M Algorithm

We can optimize the likelihood (6) using an E-M algorithm [5].

This is an iterative procedure that is proven to converge to a

(possibly local) maximum of the likelihood. We introduce

unobserved binary class membership vectors c 2 <K ; we can then

define the responsibilities

�jk ¼
�k exp � 1

2�2 yj � Vmk

� �T
Ĉ yj � Vmk

� �h i
PK

k¼1 �k exp � 1
2�2 yj � Vmk

� �T
Ĉ yj � Vmk

� �h i :
We then obtain a lower bound on the log-likelihood in the form

Q y; V ;mk; �
2; �

� �
¼
XN
j¼1

XK
k¼1

�jk log �kp yjjcj
� �� �

þN
2

log ETSE
�� ��; ð7Þ

where

p yjjcj
� �

¼
exp � yj�Vmkð ÞT Ĉ yj�Vmkð Þ

2�2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� �2V TVj j

p
is the mixture component corresponding to class k (i.e., cj is zero

except for position k). Equation (7) can be interpreted as the

expectation of the joint likelihood taken under the posterior

probability of class membership.
Optimizing the bound (7), we obtain explicit values for the

parameters. For the latent means, these are

mk ¼ V TV
� ��1

V T��k ¼ V TV
� ��1

V T

PN
j¼1 �jkyjPN
j¼1 �jk

: ð8Þ

Similarly, we can easily obtain an update for the mixing coefficients

�k ¼
Nk

N
¼
PN

j¼1 �jk

N
: ð9Þ

Substituting (8) into (7) we obtain, ignoring terms not depending

on V and �2,
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Q V ; �2
� �

¼ N
2

log V TV
� ��1
��� ���

�Nq
2

log �2
� �

þN
2

log ETSE
�� ��

� N

2�2
trace V TV

� ��1
V TSKV V TV

� ��1
h i

;

ð10Þ

where

SK ¼
1

N

XK
k¼1

XN
j¼1

�jk yj � ��k
� �

yj � ��k
� �T( )

;

where ��k was defined in (8). Optimization with regard to �2 is then
straightforward and leads to

�2 ¼ 1

q
trace V TV

� ��1
V TSKV V TV

� ��1
h i

: ð11Þ

Substituting (11) into (10) we can now obtain an expression that

depends on V alone. Introducing the matrix Ê ¼ V V TV
� ��1¼

E V TV
� ��1

2 and using elementary properties of logarithms and

determinants, (10) simplifies to

QðV Þ ¼ � log
1

q
trace ÊTSKÊ

� �� �
þ 1

q
log ÊTSÊ
�� ��: ð12Þ

Notice the similarity of (12) with (20) in [11]. Maximization of (12)
with respect to Ê reduces to finding the q generalized eigenvectors
with largest generalized eigenvalues of the matrices S and SK .
Care must be excercised, however, in the implementation of this
step: The usual constraint in generalized eigenvalue problems is
that the columns of Ê be orthonormal with respect to the matrix
SK , but the matrix SK will change after each update of the
responsibilities. To avoid this problem, we will impose orthonorm-
ality with respect to S, which is fixed, and look for the eigenvectors
with the smallest eigenvalues.

Equation (12) is noteworthy. The matrix SK is a soft-assignment,
unsupervised analogue of the matrix SW , the sum of intraclass
variances appearing in the multiclass formulation of LDA. The
matrix S can be decomposed as SK þ ST (see, e.g., [1]), where ST is
the generalization of the interclass covariance SB to the unsuper-
vised case. Therefore, the intuition motivating the model was indeed
correct and the maximum likelihood estimates of the model
parameters return the natural unsupervised generalization of LDA.

3 RELATIONSHIP WITH LINEAR DISCRIMINANT

ANALYSIS

In this section, we will explicitly show how, in the limiting case of
large separation between the clusters, the likelihood of the model
becomes a monotonic function of the objective function of LDA.
For clarity’s sake, we will limit our discussion to the two classes,
one latent dimension case ðK ¼ 2; q ¼ 1Þ; the general case is not
significantly different. The projection is then defined by a single
vector e; since the length of the vector e is clearly irrelevant, we
will choose here eTe ¼ 1 to simplify the computations, even if this
differs (by a constant) from our previous choices.

If the clusters are well separated, assuming they are balanced in
the data, the likelihood of (6) can be simplified neglecting the
probability that points in one cluster were generated by the other
cluster, obtaining

L ¼ N log ��2 þ 1

2

XK
k¼1

XNk

j¼1

� 1

2�2
yj � emk

� �T
e

h i2
þN log eTSe

�� ��; ð13Þ

where we replaced �i ¼ 1
2 , Ni is the number of points assigned

cluster i and mk are the latent means as in (4). Using the fact thatPN
j¼1 yj ¼ 0, we define

yj ¼ ��ii þ vj; ð14Þ

where ��i ¼ 1
Ni

PNi

j¼1 yj. The intracluster covariances are then

Si ¼ 1
Ni

P
vjv

T
j . Since there are two balanced clusters, we have ��1 ¼

���2 ¼ �� and m1 ¼ �m2 ¼ m. Using (14), we obtain that

S ¼ 1

2
S1 þ S2 þ 2����T
� �

:

Defining �2
i ¼ eTSie the projected variance of cluster i and d ¼

2��Te the projected distance separating the clusters, it is easy to
compute the maximum likelihood estimates for m and �2, given,
respectively, by

m ¼ d; �2 ¼ � �2
1 þ �2

2

� �
with� a constant. Notice that these can also be obtained from (8)-(11)
by taking the limit when the responsibilities are 0 or 1 (hard
assignments). Ignoring constants, we obtain that the likelihood (13)
can be rewritten as

L ¼ log
�2

1 þ �2
2 þ 2d2

�2
1 þ �2

2


 �
¼ log 1þ 2J eð Þ½ �;

where J eð Þ is the Rayleigh coefficient of (2). Therefore, the
maximum likelihood solution is obtained at the maximum of the
Rayleigh coefficient, showing that the model reduces to Fisher’s
discriminant in these conditions.

4 EXPERIMENTAL RESULTS

In this section, we examine the behavior of our model on a number of
data sets. First, to clarify the way the model works, we demonstrate it
on a toy data set similar to the one used in [1] to explain Fisher’s
Discriminant Analysis. We then perform experiments on three more
challenging data sets. Two of them are taken from the Machine
Learning Repository at UCI1 while the third one is the USPS data set
of handwritten digits.2 Matlab code to recreate all the results shown,
as well as the data sets used, can be freely downloaded from http://
www.dcs.shef.ac.uk/~guido/software.html.

Before analyzing the results, it is important to stress the
limitations and possible pitfalls of the model. First of all, a natural
question when dealing with parameter estimations is whether the
likelihood is unimodal. Obviously, whenever mixture models are
involved, there is a trivial multimodality due to the permutations of
the components. It is clear that, for data sets where the clusters are
well separated, this is the only source of ambiguity in our model.
However, the situation becomes more delicate when the clusters
partially overlap; in this case, the likelihood can acquire multiple
modes and plateaus, leading to potentially hard optimization
problems.

Most importantly, we have proven in the previous section that
the model can be viewed as a probabilistic, unsupervised version of
LDA. As such, it shares all the limitations of LDA, aggravated by the
use of incomplete information (absence of class labels). Therefore,
the classification performance can be expected to be poor in cases
when the classes are overlapped or nonconvex, or when the
covariance structure of different clusters varies greatly. An example
of a case where these assumptions are not met, and our model fails to
produce a good visualization, is given in the Appendix, which can
be found at http://computer.org/tpami/archives.htm.

As a toy example, we first consider a simple artificial data set
consisting of two highly elongated clusters in two dimensions
(Fig. 1a). Each cluster consists of 100 points and the covariance of
each cluster is 36 times greater in the horizontal direction than in
the vertical direction. This is a classical example when PCA would
fail miserably; projecting onto the first principal component
(shown in the figure by the dashed-dotted line) would lead to
almost completely overlapping clusters. To obtain a reasonable
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initialization, we ran k-means (initialized at random data points)

followed by LDA (using the cluster assignments as class labels).

This procedure was followed in all the experiments.
The initial direction of the projection vector is shown in Fig. 1a

by a solid line. As can be seen, this is a better projection than the
one obtained by PCA, but fails to be optimal. The reason for this is

that k-means implicitly assumes isotropic clusters; in the presence

of highly elongated clusters (as is the case shown), it will break the
clusters, hence causing the application of LDA to find a suboptimal

projection. The results of our model are shown by the dashed and
dotted line and coincide exactly with the projection obtained by

LDA using the correct class labels. This is obviously not surprising
since the clusters are well separated and have equal covariance

matrix, precisely the conditions under which our model (and LDA)
provide good results.

We then turn to the highly used Iris data set, initially used by

Fisher in his groundbreaking paper [4], and still widely used as a
benchmark (for a recent usage see [7]). This data set consists of

150 measurements of four different attributes of three different
species of Iris, I. versicolor, I. setosa, and I. virginica. Each of the three

classes contains 50 data points. One of the classes is well separated,

the other two are partially overlapping. The results of applying our
model to project in two dimensions are shown in Fig. 1b. The

visualization gives one compact cluster for the separable class, the
other two classes are partially overlapped. To assess the quality of

the visualization, we used a One Nearest Neighbor (1NN)
technique, which showed that approximately 96 percent of the

points are nearest to a point within the same class. While this

percentage is clearly quite high, it is very similar to the one obtained
by PCA, and indeed to the one obtained by supervised LDA.

A more challenging data set is the Image data set, created in the
nineties by the computer vision group at University of Massachu-
setts. This consists of 210 data points from seven different types of
images: brick-face, sky, foliage, cement, window, path, and grass.
Each data point consists of 19 different features extracted from the
image using standard techniques. We removed from the data
seven features that were obviously non-Gaussian distributed (such
as edge detectors and pixel counts), and performed dimensionality
reduction from 12 dimensions to two.

Fig. 2 shows the results of 1) our model, 2) compared with PCA,
3) and with supervised LDA. The first thing to notice is that PCA
provides a very poor visualization of the data; one class is
reasonably separated, but the other six are completely overlapped.
The visualization provided by our model clearly shows the presence
of more clusters; in particular, besides the circle class, the diamond
class and the crosses class are quite well separated. The visualization
obtained with our model is similar to the one obtained with
supervised LDA, besides a permutation of classes. In order to give a
more quantitative appreciation of the quality of the visualization, we
again applied a 1NN classifier to the three projections. This
confirmed that the projection given by PCA indeed does not respect
the clustered structure; only 49.5 percent of the projected points are
nearest to a point of the same class. The situation is dramatically
better in our model, with the percentage of points closest to points in
the same class rising to 74.3 percent. This comes very close indeed to
the 75.7 percent obtained by LDA (which obviously employed the
class information). It may be worthwhile reporting that the same test
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Fig. 1. Experimental results. (a) Toy data: The solid dotted line represents the first principal direction of the data; the solid line is the initialization (obtained using k-means

followed by Fisher’s discriminant); the dashed and dotted line gives the maximum likelihood estimate of the model, which coincides with (supervised) Fisher’s

discriminant. (b) Iris data set: The three classes are shown as triangles, crosses, and circles.

Fig. 2. Visualization results for the image data set: (a) projection given by our model, (b) projection given by PCA, and (c) projection obtained by supervised LDA.



carried out on the whole 12-dimensional data set gives a result of
83.8, so there is a substantial level of overlap among some classes.

While the visualization results are very reasonable, the best
separation among classes in LDA can be obtained projecting onto a
K � 1-dimensional space, in this case a six-dimensional space. We
therefore ran our model in this case and considered the cluster
assignments given naturally by the mixture responsibilities. The
classification thus obtained had an accuracy of 64.7 percent. Most of
the misclassifications were due to the algorithm grouping together
the brick-face class with the cement class, which is quite plausible.

As a further example, we considered a subset of the USPS
handwritten digits data set, which has long been used as benchmark
for classification. This data set consists of 256-dimensional vectors
representing gray level pixel intensities; we selected a subset of
1,396 points representing the digits 1, 3, and 8. The results are shown
in Fig. 3; while there is some (unavoidable) overlap between the 3s
and the 8s, the visualization given by our model in Fig. 3a is clearly
superior to the visualization given by PCA Fig. 3b. In terms of 1NN
classification, our model returns a 93 percent success rate against the
90 percent of PCA; however, the overall separation between classes
is clearly much better. Interestingly, using the label information in
supervised LDA on this data set (Fig. 3c) leads to a marked
improvement in accuracy as measured by 1NN (99 percent), but
does not lead to a significantly different visualization.

5 DISCUSSION

In this paper, we have addressed the question of selecting an
optimal linear projection of a high-dimensional data set, given
prior knowledge of the presence of clusters in the data. The
proposed solution is a generative model which is made up of two
orthogonal latent variable models: One is an unconstrained, PPCA-
like model [11], while the other has a mixture of Gaussians prior on
the latent variables. The rationale behind this choice of priors is
that the PPCA-like part will tend to maximize the variance of the
data in the directions orthogonal to the projection, hence forcing
the projected clusters to maximise the intercluster spread, while
minimizing the intracluster variance. Indeed, we prove that the
maximum likelihood estimator for the projection in our model
satisfies an unsupervised, soft assignment generalization of the
criterion for LDA. We also prove that when the projection is one
dimensional and the clusters are well separated, the likelihood of
the model reduces to a monotonic function of the Rayleigh
coefficient used in Fisher’s discriminant analysis.

Our model is related to several previously proposed models. It
can be viewed as an adaptation of the XCA model of [14] to the case
when the data set has a clustered structure; it is remarkable though
that the generalized LDA criterion is obtained without imposing
that the variance in the directions orthogonal to the projection be

maximal. Bishop and Tipping [2] dealt with the problem of
visualizing clustered data sets by proposing a hierarchical model
based on a mixture of PPCAs [12]. While this approach addresses
successfully the problem of analyzing the detailed structure of each
cluster, it does not provide a single optimal projection for
visualizing all the clusters simultaneously. Another approach where
a dimensionality reduction is combined with a mixture model is
[15]; however, the dimensionality reduction there is a random one,
performed solely to avoid the curse of dimensionality. It would be
interesting, however, to apply the estimation framework proposed
in [15] in a case where the projection is not random, as an alternative
to the EM framework proposed here.

Perhaps the contribution that is closest to ours is in [7]. This paper
considered the clustering problem using an Independent Compo-
nent Analysis (ICA) model with one latent binary variable corrupted
by Gaussian noise. The author then proved that the minimum of the
negative entropy for the model returned an unsupervised analogue
of Fisher’s discriminant. This approach is somewhat complemen-
tary to ours in that it uses discrete rather than continuous variables,
but the end result is remarkably close. In fact, in the one dimensional,
two classes case, the objective function of the ICA model is the same
as the likelihood (6). The major difference comes when considering
latent spaces which are more than one dimensional or data sets with
more than two clusters, which are generally the most important
cases. Generalizing the ICA approach would enforce an indepen-
dence constraint between the directions of the projection which is
not plausible; this is not a problem in our approach.

The performance of our model depends critically on some
assumptions. Being a natural unsupervised version of LDA, it
tends to perform well under similar conditions. Specifically, there
is a Gaussian generative assumption for each of the clusters, with a
shared covariance structure. While removing the constraint of
equal covariances can be done easily by introducing latent
covariances (at a moderate computational cost), the assumption
of normality is harder to remove. Also, since the algorithm is
unsupervised, overlapped clusters may be difficult to detect, and
lead to local optima in the likelihood. Notice, however, that the
equal covariance assumption removes the unboundedness of the
likelihood, a traditional weakness of mixture models.

There are several interesting directions for generalizing the
present work. One possibility would be to extend it to nonlinear
dimensional reductions techniques such as the GTM or the GPLVM
[3], [10]. While this is in principle possible due to the shared
probabilistic nature of these models, in practice it will require
considerable further work. Another important direction would be to
automate model selection issues (such as the number of clusters or
number of latent dimensions) using Bayesian techniques such as
Bayesian PCA [13]. While this is feasible, careful consideration
should be given to issues of numerical efficiency. Finally, our model
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Fig. 3. Visualization results for the USPS digits data set: (a) Projection given by our model, (b) projection given by PCA, and (c) projection given by supervised LDA.



provides an unsupervised, probabilistic extension of LDA; by
combining it with a discriminative, supervised part, it should be
relatively simple to obtain a semisupervised version of LDA, which
could be useful in many applications.
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