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Abstract
Reducing the dimensionality of data without losing intrinsic information is an important prepro-
cessing step in high-dimensional data analysis. Fisher discriminant analysis (FDA) is a traditional
technique for supervised dimensionality reduction, but it tends to give undesired results if sam-
ples in a class are multimodal. An unsupervised dimensionality reduction method called locality-
preserving projection (LPP) can work well with multimodal data due to its locality preserving
property. However, since LPP does not take the label information into account, it is not necessarily
useful in supervised learning scenarios. In this paper, we propose a new linear supervised dimen-
sionality reduction method called local Fisher discriminant analysis (LFDA), which effectively
combines the ideas of FDA and LPP. LFDA has an analytic form of the embedding transformation
and the solution can be easily computed just by solving a generalized eigenvalue problem. We
demonstrate the practical usefulness and high scalability of the LFDA method in data visualiza-
tion and classification tasks through extensive simulation studies. We also show that LFDA can be
extended to non-linear dimensionality reduction scenarios by applying the kernel trick.
Keywords: dimensionality reduction, supervised learning, Fisher discriminant analysis, locality
preserving projection, affinity matrix

1. Introduction

The goal of dimensionality reduction is to embed high-dimensional data samples in a low-dimensional
space so that most of ‘intrinsic information’ contained in the data is preserved (e.g., Roweis and
Saul, 2000; Tenenbaum et al., 2000; Hinton and Salakhutdinov, 2006). Once dimensionality re-
duction is carried out appropriately, the compact representation of the data can be used for various
succeeding tasks such as visualization, classification, etc. In this paper, we consider the supervised
dimensionality reduction problem, that is, samples are accompanied with class labels.

Fisher discriminant analysis (FDA) (Fisher, 1936; Fukunaga, 1990) is a popular method for
linear supervised dimensionality reduction.1 FDA seeks for an embedding transformation such

∗. An efficient MATLAB implementation of local Fisher discriminant analysis is available from the author’s website:
‘http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/LFDA/’.

1. FDA may refer to the classification method which first projects data samples onto a one-dimensional subspace and
then classifies the samples by thresholding (Fisher, 1936; Duda et al., 2001). The one-dimensional embedding space
used here is obtained as the maximizer of the so-called Fisher criterion. This Fisher criterion can be used for
dimensionality reduction onto a space with dimension more than one in multi-class problems (Fukunaga, 1990). With
some abuse, we refer to the dimensionality reduction method based on the Fisher criterion as FDA (see Section 2.2
for detail).
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that the between-class scatter is maximized and the within-class scatter is minimized. FDA is a
traditional but useful method for dimensionality reduction. However, it tends to give undesired
results if samples in a class form several separate clusters (i.e., multimodal) (see, e.g., Fukunaga,
1990).

Within-class multimodality can be observed in many practical applications. For example, in
disease diagnosis, the distribution of medial checkup samples of sick patients could be multimodal
since there may be several different causes even for a single disease. In a traditional task of hand-
written digit recognition, within-class multimodality appears if digits are classified into, for exam-
ple, even and odd numbers. More generally, solving multi-class classification problems by a set of
two-class ‘one-versus-rest’ problems naturally induces within-class multimodality. For this reason,
there is a universal need for reducing the dimensionality of multimodal data.

In order to reduce the dimensionality of multimodal data appropriately, it is important to pre-
serve the local structure of the data. Locality-preserving projection (LPP) (He and Niyogi, 2004)
meets this requirement; LPP seeks for an embedding transformation such that nearby data pairs
in the original space close in the embedding space. Thus LPP can reduce the dimensionality of
multimodal data without losing the local structure. However, LPP is an unsupervised dimensional-
ity reduction method and does not take the label information into account. Therefore, it does not
necessarily work appropriately in supervised dimensionality reduction scenarios.

In this paper, we propose a new dimensionality reduction method called local Fisher discrimi-
nant analysis (LFDA). LFDA effectively combines the ideas of FDA and LPP, that is, LFDA maxi-
mizes between-class separability and preserves within-class local structure at the same time. Thus
LFDA is useful for dimensionality reduction of multimodal labeled data.

The original FDA provides a meaningful result only when the dimensionality of the embedding
space is smaller than the number of classes because of the rank deficiency of the between-class
scatter matrix (Fukunaga, 1990). This is an essential limitation of FDA in dimensionality reduction.
On the other hand, the proposed LFDA does not generally suffer from this problem and can be
employed for dimensionality reduction into an arbitrary dimensional space. Furthermore, LFDA
inherits an excellent property from FDA—it has an analytic form of the embedding matrix and
the solution can be easily computed just by solving a generalized eigenvalue problem. This is an
advantage over recently proposed supervised dimensionality reduction methods (e.g., Goldberger
et al., 2005; Globerson and Roweis, 2006). Furthermore, LFDA can be naturally extended to non-
linear dimensionality reduction scenarios by applying the kernel trick (Schölkopf and Smola, 2002).

The rest of this paper is organized as follows. In Section 2, we formulate the linear dimen-
sionality reduction problem, briefly review FDA and LPP, and illustrate how they typically behave.
In Section 3, we define LFDA and show its fundamental properties. In Section 4, we discuss the
relation between LFDA and other methods. In Section 5, we numerically evaluate the performance
of LFDA and existing methods in visualization and classification tasks using benchmark data sets.
Finally, we give concluding remarks and future prospects in Section 6.

2. Linear Dimensionality Reduction

In this section, we formulate the problem of linear dimensionality reduction and review existing
methods.
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2.1 Formulation

Let xi ∈ R
d (i = 1,2, . . . ,n) be d-dimensional samples and yi ∈ {1,2, . . . ,c} be associated class

labels, where n is the number of samples and c is the number of classes. Let n` be the number of
samples in class `:

c

∑̀
=1

n` = n.

Let X be the matrix of all samples:

X ≡ (x1|x2| · · · |xn).

Let zi ∈ R
r (1≤ r ≤ d) be low-dimensional representations of xi, where r is the reduced dimension

(i.e., the dimension of the embedding space). Effectively we consider d to be large and r to be small,
but not limited to such cases.

For the moment, we focus on linear dimensionality reduction, that is, using a d× r transforma-
tion matrix T , the embedded samples zi are given by

zi = T>xi,

where > denotes the transpose of a matrix or vector. In Section 3.4, we extend our discussion to the
non-linear dimensionality reduction scenarios where the mapping from xi to zi is non-linear.

2.2 Fisher Discriminant Analysis for Dimensionality Reduction

One of the most popular dimensionality reduction techniques is Fisher discriminant analysis (FDA)
(Fisher, 1936; Fukunaga, 1990; Duda et al., 2001). Here we briefly describe the definition of FDA.

Let S(w) and S(b) be the within-class scatter matrix and the between-class scatter matrix:

S(w) ≡
c

∑̀
=1

∑
i:yi=`

(xi−µ`)(xi−µ`)
>, (1)

S(b) ≡
c

∑̀
=1

n`(µ`−µ)(µ`−µ)>, (2)

where ∑i:yi=` denotes the summation over i such that yi = `, µ` is the mean of the samples in class
`, and µ is the mean of all samples:

µ` ≡
1
n`

∑
i:yi=`

xi,

µ≡
1
n

n

∑
i=1

xi =
1
n

c

∑̀
=1

n`µ`.

We assume that S(w) has full rank. The FDA transformation matrix T FDA is defined as follows:2

T FDA ≡ argmax
T∈Rd×r

[
tr
(
(T>S(w)T )−1T>S(b)T

)]
. (3)

2. The following definition is also used in the literature (e.g., Fukunaga, 1990) and yields the same solution.

T FDA = argmax
T∈Rd×r




det
(

T>S(b)T
)

det
(

T>S(w)T
)


 ,

where det(·) denotes the determinant of a matrix.
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That is, FDA seeks a transformation matrix T such that the between-class scatter is ‘maximized’
while the within-class scatter is ‘minimized’. In the above formulation, we implicitly assumed that
T>S(w)T is invertible. This implies that the above optimization is subject to

rank(T ) = r.

Let {ϕk}
d
k=1 be the generalized eigenvectors associated with the generalized eigenvalues λ1 ≥

λ2 ≥ ·· · ≥ λd of the following generalized eigenvalue problem:

S(b)ϕ = λS(w)ϕ.

Then a solution T FDA of the above maximization problem is analytically given by

T FDA = (ϕ1|ϕ2| · · · |ϕr).

Note that the solution is not unique and the following simple constraint is sometimes imposed
additionally (Fukunaga, 1990).

T>FDAS(w)T FDA = Ir,

where Ir is the identity matrix on R
r. This constraint makes the within-class scatter in the embedding

space sphered.
The between-class scatter matrix S(b) has at most rank c− 1 (Fukunaga, 1990). This implies

that the multiplicity of λ = 0 is at least d−c+1. Therefore, FDA can find at most c−1 meaningful
features; the remaining features found by FDA are arbitrary. This is an essential limitation of FDA
for dimensionality reduction and is very restrictive in practice.

2.3 Locality-Preserving Projection

Another dimensionality reduction technique that is relevant to the current setting is locality-preserving
projection (LPP) (He and Niyogi, 2004). Here we review LPP.

Let A be an affinity matrix, that is, the n-dimensional matrix with the (i, j)-th element Ai, j being
the affinity between xi and x j. We assume that Ai, j ∈ [0,1]; Ai, j is large if xi and x j are ‘close’
and Ai, j is small if xi and x j are ‘far apart’. There are several different manners of defining A. We
briefly describe typical definitions in Appendix D. The LPP transformation matrix T LPP is defined
as follows:3

T LPP ≡ argmin
T∈Rd×r

(
1
2

n

∑
i, j=1

Ai, j‖T
>xi−T>x j‖

2

)

subject to T>XDX>T = Ir, (4)

where D is the n-dimensional diagonal matrix with i-th diagonal element being

Di,i ≡
n

∑
j=1

Ai, j.

3. The matrix D in the constraint (4) is motivated by a geometric argument (Belkin and Niyogi, 2003). However, it is
sometimes dropped for the sake of simplicity (Ham et al., 2004).
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Eq. (4) implies that LPP looks for a transformation matrix T such that nearby data pairs in the
original space R

d are kept close in the embedding space. The constraint (4) is imposed for avoiding
degeneracy.

Let {ψk}
d
k=1 be the generalized eigenvectors associated with the generalized eigenvalues γ1 ≥

γ2 ≥ ·· · ≥ γd of the following generalized eigenvalue problem:

XLX>ψ = γXDX>ψ,

where
L≡ D−A.

L is called the graph-Laplacian matrix in the spectral graph theory (Chung, 1997), where A is seen
as the adjacency matrix of a graph. He and Niyogi (2004) showed that a solution of Eq. (4) is given
by

T LPP = (ψd |ψd−1| · · · |ψd−r+1).

2.4 Typical Behavior of FDA and LPP

Dimensionality reduction results obtained by FDA and LPP are illustrated in Figure 1 (LFDA will
be defined and explained in Section 3)—two-dimensional two-class data samples are embedded into
a one-dimensional space. In LPP, the affinity matrix A is determined by the local scaling method
(Zelnik-Manor and Perona, 2005, see also Appendix D.4).

For the simplest data set depicted in Figure 1(a), both FDA and LPP nicely separate the samples
in different classes (‘◦’ and ‘×’) from each other. For the data set depicted in Figure 1(b), FDA
still works well, but LPP mixes samples in different classes into a single cluster. This is caused by
the unsupervised nature of LPP. On the other hand, for the data set depicted in Figure 1(c), LPP
works well but FDA collapses the samples in different classes into a single cluster. The reason for
the failure of FDA is that the ‘levels’ of the between-class scatter and the within-class scatter are
not evaluated in an intuitively natural way because of the two separate clusters in ‘◦’-class (see also
Fukunaga, 1990).

3. Local Fisher Discriminant Analysis

As illustrated in Figure 1, FDA can perform poorly if samples in a class form several separate
clusters (i.e., multimodal). In other words, the undesired behavior of FDA is caused by the globality
when evaluating the within-class scatter and the between-class scatter (e.g., Figure 1(c)). On the
other hand, because of the unsupervised nature of LPP, it can overlap samples in different classes if
they are close in the original high-dimensional space R

d (e.g., Figure 1(b)).
To overcome these problems, we propose combining the ideas of FDA and LPP; more specif-

ically, we evaluate the levels of the between-class scatter and the within-class scatter in a local
manner. This allows us to attain between-class separation and within-class local structure preserva-
tion at the same time. We call our new method local Fisher discriminant analysis (LFDA).

3.1 Reformulating FDA

In order to introduce LFDA, let us first reformulate FDA in a pairwise manner.
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Figure 1: Examples of dimensionality reduction by FDA, LPP and LFDA. Two-dimensional two-
class samples are embedded into a one-dimensional space. The line in the figure denotes
the one-dimensional embedding space (which the data samples are projected on) obtained
by each method.
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Lemma 1 S(w) and S(b) defined by Eqs. (1) and (2) can be expressed as

S(w) =
1
2

n

∑
i, j=1

W (w)
i, j (xi− x j)(xi− x j)

>, (5)

S(b) =
1
2

n

∑
i, j=1

W (b)
i, j (xi− x j)(xi− x j)

>, (6)

where

W (w)
i, j ≡

{
1/n` if yi = y j = `,

0 if yi 6= y j,
(7)

W (b)
i, j ≡

{
1/n−1/n` if yi = y j = `,

1/n if yi 6= y j.
(8)

A proof of Lemma 1 is given in Appendix A. Note that 1/n−1/n` in Eq. (8) is negative while
1/n` and 1/n in Eqs. (7) and (8) are positive. This implies that if the data pairs in the same class are
made close, the within-class scatter matrix S(w) gets ‘small’ and the between-class scatter matrix S(b)

gets ‘large’. On the other hand, if the data pairs in different classes are separated from each other,
the between-class scatter matrix S(b) gets ‘large’. Therefore, we may interpret FDA as keeping the
sample pairs in the same class close and the sample pairs in different classes apart. A more formal
discussion on the above interpretation is given in Appendix B.

3.2 Definition and Typical Behavior of LFDA

Based on the above pairwise expression, let us define the local within-class scatter matrix S̃
(w)

and

the local between-class scatter matrix S̃
(b)

as follows.

S̃
(w)
≡

1
2

n

∑
i, j=1

W̃ (w)
i, j (xi− x j)(xi− x j)

>, (9)

S̃
(b)
≡

1
2

n

∑
i, j=1

W̃ (b)
i, j (xi− x j)(xi− x j)

>,

where

W̃ (w)
i, j ≡

{
Ai, j/n` if yi = y j = `,

0 if yi 6= y j,
(10)

W̃ (b)
i, j ≡

{
Ai, j(1/n−1/n`) if yi = y j = `,

1/n if yi 6= y j.
(11)

Namely, according to the affinity Ai, j, we weight the values for the sample pairs in the same class.

This means that far apart sample pairs in the same class have less influence on S̃
(w)

and S̃
(b)

. Note
that we do not weight the values for the sample pairs in different classes since we want to separate
them from each other irrespective of the affinity in the original space. From here on, we denote the
local counterparts of matrices by symbols with tilde.
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We define the LFDA transformation matrix T LFDA as

T LFDA ≡ argmax
T∈Rd×r

[
tr
(
(T>S̃

(w)
T )−1T>S̃

(b)
T
)]

. (12)

That is, we look for a transformation matrix T such that nearby data pairs in the same class are
made close and the data pairs in different classes are separated from each other; far apart data pairs
in the same class are not imposed to be close.

Eq. (12) is of the same form as Eq. (3). Therefore, we can similarly compute an analytic form

of T LFDA by solving a generalized eigenvalue problem of S̃
(b)

and S̃
(w)

. An efficient implementation
of LFDA is summarized as a pseudo code in Figure 2 (see Appendix C for detail).

Toy examples of dimensionality reduction by LFDA are illustrated in Figure 1. We used the
local scaling method for computing the affinity matrix A (see Appendix D.4). Note that we perform
the nearest neighbor search in the local scaling method in a classwise manner since we do not
need the affinity values for the sample pairs in different classes (see Eqs. 10 and 11). This highly
contributes to reducing the computational cost (see Appendix C). Figure 1 shows that LFDA gives
desirable results for all three data sets, that is, LFDA can compensate for the drawbacks of FDA and
LPP by effectively combining the ideas of FDA and LPP.

If the affinity value Ai, j is set to 1 for all sample pairs (i.e., all pairs are ‘equally close’ to each

other), S̃
(w)

and S̃
(b)

agree with S(w) and S(b), respectively, and LFDA is reduced to the original
FDA. Therefore, LFDA may be regarded as a natural localized variant of FDA.

3.3 Properties of LFDA

Here we discuss fundamental properties of LFDA.

First, we give an interpretation of LFDA in terms of the ‘pointwise scatter’. S̃
(w)

can be ex-
pressed as

S̃
(w)

=
1
2

n

∑
i=1

1
nyi

P̃
(w)
i ,

where nyi is the number of samples in the class to which the sample xi belongs and P̃
(w)
i is the

pointwise local within-class scatter matrix around xi:

P̃
(w)
i ≡ ∑

j:y j=yi

Ai, j(x j− xi)(x j− xi)
>.

Therefore, ‘minimizing’ S̃
(w)

corresponds to minimizing the weighted sum of the pointwise local

within-class scatter matrices over all samples. S̃
(b)

can also be expressed in a similar way as

S̃
(b)

=
1
2

n

∑
i=1

(
1
n
−

1
nyi

)
P̃

(w)
i +

1
2n

n

∑
i=1

P(b)
i , (13)

where P(b)
i is the pointwise between-class scatter matrix around xi:

P(b)
i ≡ ∑

j:y j 6=yi

(x j− xi)(x j− xi)
>.
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Input: Labeled samples {(xi,yi) | xi ∈ R
d ,yi ∈ {1,2, . . . ,c}}n

i=1
Dimensionality of embedding space r (1≤ r ≤ d)

Output: d× r transformation matrix T LFDA

1: S̃
(b)
←− 0d×d;

2: S̃
(w)
←− 0d×d;

3: for ` = 1,2, . . . ,c % Compute scatter matrices in a classwise manner
4: {xi}

n`
i=1←− {x j} j:y j=`;

5: for i = 1,2, . . . ,n` % Determine local scaling

6: x(7)
i ←− 7th nearest neighbor of xi among {x j}

n`
j=1;

7: σi←− ‖xi− x(7)
i ‖;

8: end
9: for i, j = 1,2, . . . ,n` % Define affinity matrix
10: Ai, j←− exp(−‖xi− x j‖

2/(σiσ j));
11: end
12: X ←− (x1|x2| · · · |xn`

);
13: G←− Xdiag(A1n`)X

>−X AX>;

14: S̃
(b)
←− S̃

(b)
+G/n+(1−n`/n)X X>+X1n`(X1n`)

>/n;

15: S̃
(w)
←− S̃

(w)
+G/n`;

16: end

17: S̃
(b)
←− S̃

(b)
−X1n(X1n)

>/n− S̃
(w)

;

18: {̃λk, ϕ̃k}
r
k=1←− generalized eigenvalues and normalized eigenvectors of

S̃
(b)

ϕ̃ = λ̃S̃
(w)

ϕ̃; % λ̃1 ≥ λ̃2 ≥ ·· · ≥ λ̃d

19: T LFDA = (

√
λ̃1ϕ̃1|

√
λ̃2ϕ̃2| · · · |

√
λ̃rϕ̃r);

Figure 2: Efficient implementation of LFDA (see Appendix C for detail). The affinity matrix is
computed by the local scaling method (see Appendix D.4). Matrices and vectors denoted
with underline are classwise counterparts of the original ones. 0d×d denotes the d× d
matrix with zeros, 1n` denotes the n`-dimensional vector with ones, and diag(A1n`) de-
notes the diagonal matrix with diagonal elements A1n` . The generalized eigenvectors in
line 18 are normalized by Eq. (14), which is often automatically carried out by an eigen-
solver. The weighting scheme of the eigenvectors in line 19 is explained in Section 3.3.
A possible bottleneck of the above implementation is the nearest neighbor search in line
6. This could be alleviated by incorporating the prior knowledge of the data structure or
by approximation (see Saul and Roweis, 2003, and references therein). Another possible
bottleneck is the computation of X A X> in line 13, which could be eased by sparsely
defining the affinity matrix (see Appendix D). A MATLAB implementation is available
from ‘http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/LFDA/’.
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Note that P(b)
i does not include the localization factor Ai, j. Eq. (13) implies that ‘maximizing’ S̃

(b)

corresponds to minimizing the weighted sum of the pointwise local within-class scatter matrices
and maximizing the sum of the pointwise between-class scater matrices.

Next, we discuss the issue of eigenvalue multiplicity in LFDA. The original FDA allows us to
extract at most c−1 meaningful features since the between-class scatter matrix S(b) has rank at most

c−1 (Fukunaga, 1990). On the other hand, the local between-class scatter matrix S̃
(b)

generally has
a much higher rank with less eigenvalue multiplicity, thanks to the localization factor Ai, j included

in W̃
(b)

(see Eq. 11). In the simulation shown in Section 5, S̃
(b)

is always full rank for various data
sets. Therefore, the proposed LFDA can be practically employed for dimensionality reduction into
any dimensional spaces. This is a very important and significant improvement over the original
FDA.

Finally, we discuss the invariance property of LFDA. The value of the LFDA criterion (12) is
invariant under linear transformations, that is, for any r-dimensional invertible matrix H, T LFDAH is
also a solution of Eq. (12). Therefore, the solution T LFDA is not unique—the range of the transfor-
mation H>T>LFDA is uniquely determined, but the distance metric (Goldberger et al., 2005; Glober-
son and Roweis, 2006; Weinberger et al., 2006) in the embedding space can be arbitrary because
of the arbitrariness of the matrix H. In practice, we propose determining the LFDA transformation
matrix T LFDA as follows. First, we rescale the generalized eigenvectors {ϕ̃k}

d
k=1 so that

ϕ̃kS̃
(w)

ϕ̃k′ =

{
1 if k = k′,

0 if k 6= k′.
(14)

Note that this rescaling is often automatically carried out by an eigensolver. Then we weight each
generalized eigenvector by the square root of its associated generalized eigenvalue, that is,

T LFDA = (

√
λ̃1ϕ̃1|

√
λ̃2ϕ̃2| · · · |

√
λ̃rϕ̃r), (15)

where λ̃1 ≥ λ̃2 ≥ ·· · ≥ λ̃d . This weighting scheme weakens the influence of minor eigenvectors and
is shown to work well in experiments (see Section 5).

3.4 Kernel LFDA for Non-Linear Dimensionality Reduction

Here we show how LFDA can be extended to non-linear dimensionality reduction scenarios.
As detailed in Appendix C, the generalized eigenvalue problem that needs to be solved in LFDA

can be expressed as

XL̃
(b)

X>ϕ̃ = λ̃XL̃
(w)

X>ϕ̃, (16)

where L̃
(b)

= L̃
(m)
− L̃

(w)
and L̃

(m)
and L̃

(w)
are defined by Eqs. (33) and (35), respectively. Since

X>ϕ̃ in Eq. (16) belongs to the range of X>, it can be expressed by using some vector α̃ ∈ R
n as

X>ϕ̃ = X>Xα̃ = Kα̃,

where K is the n-dimensional matrix with the (i, j)-th element being

Ki, j ≡ x>i x j.
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Then multiplying Eq. (16) by X> from the left-hand side yields

KL̃
(b)

Kα̃ = λ̃KL̃
(w)

Kα̃. (17)

This implies that {xi}
n
i=1 appear only in terms of their inner products. Therefore, we can obtain

a non-linear variant of LFDA by the kernel trick (Vapnik, 1998; Schölkopf et al., 1998), which is
explained below.

Let us consider a non-linear mapping φ(x) from R
d to a reproducing kernel Hilbert space H

(Aronszajn, 1950). Let K(x,x′) be the reproducing kernel of H . A typical choice of the kernel
function would be the Gaussian kernel:

K(x,x′) = exp

(
−
‖x− x′‖2

2σ2

)
,

with σ > 0. For other choices, see, for example, Wahba (1990), Vapnik (1998), and Schölkopf and
Smola (2002). Because of the reproducing property of K(x,x′), K is now the kernel matrix, that is,
the (i, j)-th element is given by

Ki, j = 〈φ(xi),φ(x j)〉= K(xi,x j),

where 〈·, ·〉 denotes the inner product in H .

It can be confirmed that L̃
(w)

is always degenerated (since L̃
(w)

(1,1, . . . ,1)> always vanishes;

see Eq. 35 for detail). Therefore, KL̃
(w)

K is always degenerated and we cannot directly solve the

generalized eigenvalue problem (17). To cope with this problem, we propose regularizing KL̃
(w)

K
and solving the following generalized eigenvalue problem instead (cf. Friedman, 1989).

KL̃
(b)

Kα̃ = λ̃(KL̃
(w)

K + εIn)α̃, (18)

where ε is a small constant. Let {α̃k}
n
k=1 be the generalized eigenvectors associated with the gener-

alized eigenvalues λ̃1 ≥ λ̃2 ≥ ·· · ≥ λ̃n of Eq. (18). Then the embedded image of φ(x′) in H is given
by

(

√
λ̃1α̃1|

√
λ̃2α̃2| · · · |

√
λ̃rα̃r)

>




K(x1,x′)
K(x2,x′)

...
K(xn,x′)


 .

We call this kernelized variant of LFDA kernel LFDA (KLFDA).
Recently, kernel functions for non-vectorial structured data such as strings, trees, and graphs

have been proposed (see, e.g., Lodhi et al., 2002; Duffy and Collins, 2002; Kashima and Koyanagi,
2002; Kondor and Lafferty, 2002; Kashima et al., 2003; Gärtner et al., 2003; Gärtner, 2003). Since
KLFDA uses the samples only via the kernel function K(x,x′), it allows us to reduce the dimension-
ality of such non-vectorial data.

4. Comparison with Related Methods

In this section, we discuss the relation between the proposed LFDA and other methods.
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4.1 Dimensionality Reduction Using Local Discriminant Information

A discriminant adaptive nearest neighbor (DANN) classifier (Hastie and Tibshirani, 1996a) em-
ploys an adapted distance metric at each test point for classification. Based on a similar idea, they
also proposed a global supervised dimensionality reduction method using local discriminant infor-
mation (LDI) in the same paper. We refer to this supervised dimensionality reduction method as
LDI. The main idea of LDI is to localize FDA—which is very similar to the proposed LFDA. Here
we discuss the relation between LDI and LFDA.

In LDI, the data samples {xi}
n
i=1 are first sphered according to the within-class scatter matrix

S(w), that is, for i = 1,2, . . . ,n,
xi ≡ (S(w))−

1
2 xi.

Let Ai, j be the weight of sample x j around xi defined by

Ai, j ≡





[
1−

(
‖xi−x j‖

‖xi−x(K)
i ‖

)3
]3

if ‖xi− x j‖< ‖xi− x(K)
i ‖,

0 otherwise.

where x(K)
i is the K-th nearest neighbor of xi in the sphered space. Note that 0 ≤ Ai, j ≤ 1 and Ai, j

is non-increasing as ‖xi− x j‖ increases. Thus it has the same meaning as our affinity matrix. K is
suggested to be determined by

K = max(n/5,50).

Let µ[i]
` be the local weighted mean of the sphered samples in class ` around xi, and let µ[i] be the

local weighted mean of the sphered samples around xi:

µ[i]
` ≡

1

n[i]
`

∑
j:y j=`

Ai, jx j,

µ[i] ≡
1

n[i]

n

∑
j=1

Ai, jx j =
1

n[i]

c

∑̀
=1

n[i]
` µ[i]

` ,

where

n[i]
` ≡ ∑

j:y j=`

Ai, j,

n[i] ≡
n

∑
j=1

Ai, j.

Let S
(b)

be the average between sum-of-squares matrix defined as

S
(b)
≡

n

∑
i=1

1

n[i]

c

∑̀
=1

n[i]
` (µ[i]

` −µ[i])(µ[i]
` −µ[i])>.

The LDI transformation matrix T LDI is defined as

T LDI ≡ argmax
T∈Rd×r

[
T
>

S
(b)

T
]

subject to T
>

T = Ir.
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T LDI is a transformation matrix for sphered samples; the LDI transformation matrix T LDI for non-
sphered samples is given by

T LDI = (S(w))−
1
2 T LDI .

Similar to FDA (and LFDA), T LDI can be efficiently computed by solving a generalized eigenvalue
problem.

The average between sum-of-squares matrix S
(b)

is conceptually very similar to the local between-

class scatter matrix S̃
(b)

in LFDA. Indeed, as proved in Appendix E, we can express S
(b)

in a pairwise
manner as

S
(b)

=
1
2

n

∑
i, j=1

W
(b)
i, j (xi− x j)(xi− x j)

>, (19)

where

W
(b)
i, j ≡





n

∑
k=1

1

n[k]

(
1

n[k]
−

1

n[k]
`

)
Ai,kA j,k if yi = y j = `,

n

∑
k=1

1

(n[k])2
Ai,kA j,k if yi 6= y j.

(20)

However, there exist critical differences between LDI and LFDA. A significant difference is that the
values for the sample pairs in different classes are also localized in LDI (see Eq. 20), while they are
kept unlocalized in LFDA (see Eq. 11). This implies that far apart sample pairs in different classes
could be made close in LDI, which is not desirable in supervised dimensionality reduction. Further-

more, the computation of S
(b)

is slightly less efficient than S̃
(b)

since W
(b)

includes the summation
over k.

Another important difference between LDI and LFDA is that the within-class scatter matrix S(w)

is not localized in LDI. However, as we showed in Section 3.1, the within-class scatter matrix S(w)

also accounts for collapsing the within-class multimodal structure (i.e., far apart sample pairs in the
same class are made close). This phenomenon is experimentally confirmed in Section 5.2.

4.2 Mixture Discriminant Analysis

FDA can be interpreted as maximum likelihood estimation of Gaussian distributions with common
covariance and different means for each class. Based on this view, Hastie and Tibshirani (1996b)
proposed mixture discriminant analysis (MDA), which extends FDA to maximum likelihood esti-
mation of Gaussian mixture distributions.

A maximum likelihood solution is obtained by an EM-type algorithm (cf. Dempster et al., 1977).
However, this is an iterative algorithm and gives only a local optimal solution. Therefore, the com-
putation of MDA is rather slow and there is no guarantee that the global solution can be obtained.
Furthermore, the number of mixture components (clusters) in each class as well as the initial loca-
tion of cluster centers should be determined by users. For cluster centers, using standard techniques
such as k-means clustering (MacQueen, 1967; Everitt et al., 2001) or learning vector quantization
(Kohonen, 1989) are recommended. However, they are also iterative algorithms and have no guar-
antee that the global solution can be obtained. Furthermore, there seems to be no systematic method
for determining the number of clusters.

On the other hand, the proposed LFDA contains no tuning parameters (given that the affinity
matrix is determined by the local scaling method, see Appendix D.4) and the global solution can
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be obtained analytically. However, it still lacks a probabilistic interpretation, which remains open
currently.

4.3 Neighborhood Component Analysis

Goldberger et al. (2005) proposed a supervised dimensionality reduction method called neighbor-
hood component analysis (NCA). The NCA transformation matrix T NCA is defined as follows.

T NCA ≡ argmax
T∈Rd×r

(
n

∑
i=1

∑
j:y j=yi

pi, j(T T>)

)
, (21)

where

pi, j(U)≡





exp
{
−(xi− x j)

>U(xi− x j)
}

∑k 6=i exp{−(xi− xk)>U(xi− xk)}
if i 6= j,

0 if i = j.

(22)

The above definition corresponds to maximizing the expected number of correctly classified samples
by a stochastic variant of nearest neighbor classifiers. Therefore, NCA seeks a transformation matrix
T such that the between-class separability is maximized.

Eqs. (21) and (22) imply that nearby data pairs in the same class are made close, which is
similar to the proposed LFDA. Indeed, the simulation results in Section 5.2 show that NCA tends
to preserve the multimodal structure of the data very well. However, a crucial weakness of NCA
is optimization: the optimization problem (21) is non-convex. Therefore, there is no guarantee that
the globally optimal solution can be obtained. Goldberger et al. (2005) proposed using a gradient
ascent method for optimization:

T ← T + ε∇JNCA(T ), (23)

where ε (> 0) is the step size and the gradient ∇JNCA(T ) is given by

∇JNCA(T ) = 2T
n

∑
i=1

({

∑
j:y j=yi

pi, j(T T>)

}{
n

∑
j=1

pi, j(T T>)(xi− x j)(xi− x j)
>

}

− ∑
j:y j=yi

pi, j(T T>)(xi− x j)(xi− x j)
>

)
.

The gradient ascent iteration (23) is computationally rather inefficient. Also, the choice of the step
size ε is troublesome. If the step size is small enough, the convergence to one of the local optima
is guaranteed but such a choice makes the convergence very slow; on the other hand, if the step
size is too large, gradient flows oscillate and proper convergence properties may not be guaranteed
anymore. Furthermore, the choice of the termination condition in the iterative algorithm is often
cumbersome in practice.

Because of the non-convexity of the optimization problem, the quality of the obtained solution
depends on the initialization of the matrix T . A useful heuristic to alleviate the local optimum
problem is to employ the FDA (or LFDA) result as an initial matrix for optimization (Goldberger
et al., 2005). In the experiments in Section 5, using the LFDA result as an initial matrix appears to
be better than the random initialization. However, the local optima problem still remains even with
the above heuristic.
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When a dimensionality reduction technique is applied to classification tasks, we often want to
embed the data samples into spaces with several different dimensions—the best dimensionality is
later chosen by, for example, cross-validation (Stone, 1974; Wahba, 1990). In such a scenario,
NCA requires to optimize the transformation matrix individually for each dimensionality r of the
embedding space. On the other hand, LFDA needs to compute the transformation matrix only once
for the largest r; its sub-matrices become the optimal solutions for smaller dimensions. Therefore,
LFDA is computationally more efficient than NCA in this scenario.

A simple MATLAB implementation of NCA is available.4 We use this software in Section 5.

4.4 Maximally Collapsing Metric Learning

In order to overcome the computational problem of NCA, Globerson and Roweis (2006) proposed
an alternative method called maximally collapsing metric learning (MCML).

Let p∗i, j be the ‘ideal’ value of pi, j(U) defined by Eq. (22):

p∗i, j ∝

{
1 if yi = y j,

0 if yi 6= y j,

where p∗i, j is normalized so that

∑
j 6=i

p∗i, j = 1.

p∗i, j can be attained if all samples in the same class collapse into a single point while samples
in other classes are mapped to other locations. In reality, however, any U may not be able to
attain pi, j(U) = p∗i, j exactly; instead the optimal approximation to p∗i, j under the Kullback-Leibler
divergence (Kullback and Leibler, 1951) is obtained. This is formally defined as

UMCML ≡ argmin
U∈Rd×d

(
n

∑
i, j=1

p∗i, j log
p∗i, j

pi, j(U)

)

subject to U ∈ PSD(r), (24)

where PSD(r) is the set of all positive semidefinite matrices of rank r (i.e., r eigenvalues are pos-
itive and others are zero). Once U MCML is obtained, the MCML transformation matrix T MCML is
computed by

T MCML = (φ1|φ2| · · · |φr), (25)

where {φk}
r
k=1 are the eigenvectors associated with the positive eigenvalues η1 ≥ η2 ≥ ·· · ≥ ηr > 0

of the following eigenvalue problem:

UMCMLφ = ηφ.

One of the motivations of MCML is to alleviate the difficulty of optimization in NCA. However,
MCML still has a weakness in optimization: the optimization problem (24) is convex only when
r = d, that is, the dimensionality is not reduced but only the distance metric of the original space is
changed. This means that if r < d (which is our primal focus in this paper), we may not be able to

4. Implementation available at ‘http://www.cs.berkeley.edu/˜fowlkes/software/nca/’.
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obtain the globally optimal solution. Globerson and Roweis (2006) proposed the following heuristic
algorithm to approximate T MCML.

First, the optimization problem (24) with r = d is solved:

ÛMCML ≡ argmin
U∈Rd×d

(
n

∑
i, j=1

p∗i, j log
p∗i, j

pi, j(U)

)

subject to U ∈ PSD(d). (26)

Although Eq. (26) is convex, an analytic form of the unique optimal solution ÛMCML is not known
yet. Globerson and Roweis (2006) proposed using the following alternate iterative procedure for
obtaining ÛMCML.

U ←U− ε∇JMCML(U), (27)

U ←
d

∑
k=1

max(0, η̂k)φ̂kφ̂
>

k , (28)

where ε (> 0) is the step size, η̂k and φ̂k are eigenvalues and eigenvectors of U , and the gradient
∇JMCML(U) is given by

∇JMCML(U) =
n

∑
i, j=1

(p∗i, j− pi, j(U))(xi− x j)(xi− x j)
>.

Then the eigenvalue decomposition of ÛMCML is carried out and eigenvalues η̂1 ≥ η̂2 ≥ ·· · ≥ η̂d

and associated eigenvectors {φ̂k}
d
k=1 are obtained:

ÛMCMLφ̂ = η̂φ̂.

Finally, {φk}
r
k=1 in Eq. (25) are replaced by {φ̂k}

r
k=1, which yields

T MCML ≈ (φ̂1|φ̂2| · · · |φ̂r). (29)

This approximation is shown to be practically useful (Globerson and Roweis, 2006), although there
seems to be no theoretical analysis for this approximation.

MCML may have an advantage over NCA in computation: there exists the analytic approx-
imation (29) that can be computed efficiently using the solution of another convex optimization
problem (26). However, MCML still relies on the gradient-based alternate iterative algorithm (27)–
(28) to solve the convex optimization problem (26), which is computationally very expensive since
the eigenvalue decomposition of a d-dimensional matrix should be carried out in each iteration (see
Eq. 28). Furthermore, the difficulty of appropriately choosing the step size and the termination
condition in the iterative procedure still remains.

Since MCML requires all the samples in the same class to collapse into a single point, it is
not necessarily useful in dimensionality reduction of multimodal data samples. Furthermore, the
MCML results can be significantly influenced by outliers since the outliers are also required to
collapse into the same single point together with other samples. This phenomenon is illustrated in
Figure 3, where a single outlier significantly changes the MCML result.

Globerson and Roweis (2006) showed that the sufficient statistics of the MCML algorithm are
pointwise scatter matrices (cf. Section 3.3). Since LFDA also has an interpretation in terms of
pointwise scatter matrices, there may be a link between LFDA and MCML and this needs to be
investigated in the future work.
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(a) Toy data set 1
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(b) Toy data set 1’

Figure 3: Toy examples of dimensionality reduction. The toy data set 1 is equivalent to the one
used in Figure 1(a). The data set 1’ includes a single outlier.

4.5 Remark on Rank Constraint

The optimization problem of MCML (see Eq. 24) is not generally convex since the rank constraint
is non-convex (Boyd and Vandenberghe, 2004). The non-convexity induced by the rank constraint
seems to be a universal problem in dimensionality reduction. NCA eliminates the rank constraint
by decomposing U into T T> (see Eqs. 21 and 22). However, even with this decomposition, the
optimization problem is still non-convex. On the other hand, FDA, LDI, and LFDA cast the opti-
mization problem in the form of the Rayleigh quotient. This is computationally very advantageous
since it allows us to analytically determine the range of the embedding space. However, we cannot
determine the distance metric in the embedding space since the Rayleigh quotient is invariant under
linear transformations. For this reason, an additional criterion is needed to determine the distance
metric (see also Section 3.3).

5. Numerical Examples

In this section, we numerically evaluate the performance of LFDA and existing methods.

5.1 Exploratory Data Analysis

Here we use the Thyroid disease data set available from the UCI machine learning repository (Blake
and Merz, 1998) and illustrate how LFDA can be used for exploratory data analysis.

The original data consists of 5-dimensional input vector x of the following laboratory tests.

1. T3-resin uptake test.

2. Total Serum thyroxin as measured by the isotopic displacement method.
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Figure 4: Histograms of the first feature values obtained by FDA and LFDA for the Thyroid disease
data set. The top row corresponds to the sick patients and the bottom row corresponds to
the healthy patients.

3. Total Serum triiodothyronine as measured by radioimmuno assay.

4. Basal thyroid-stimulating hormone (TSH) as measured by radioimmuno assay.

5. Maximal absolute difference of TSH value after injection of 200 micro grams of thyrotropin-
releasing hormone as compared to the basal value.

The task is to predict whether patients’ thyroids are euthyroidism, hypothyroidism, or hyperthy-
roidism (Coomans et al., 1983), that is, whether patients’ thyroids are normal, hypo-functioning,
or hyper-functioning (Blake and Merz, 1998). The diagnosis (the class label) is based on a com-
plete medical record, including anamnesis, scan etc. Here we merge the hypothyroidism class and
the hyperthyroidism class into a single class and create binary labeled data (whether thyroids are
normal or not). Our goal is to predict whether patients’ thyroids are normal, hypo-functioning, or
hyper-functioning from the binary labeled data samples.

Figure 4 depicts the histograms of the first feature values obtained by FDA and LFDA—the
top row corresponds to the sick patients and the bottom row corresponds to the healthy patients.
This shows that both FDA and LFDA separate the patients with normal thyroids from sick patients
reasonably well. In addition to between-class separability, LFDA clearly preserves the multimodal
structure among sick patients (i.e., hypo-functioning and hyper-functioning), which is lost by or-
dinary FDA. Another interesting finding from the figure is that the first feature values obtained by
LFDA has a strong negative correlation to the functioning level of thyroids—this could be used for
predicting the functioning level of thyroids.
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Data Set d ‘◦’-and-‘•’ class ‘×’ class
Letter recognition 16 ‘A’ & ‘C’ ‘B’

Iris 4 ‘Setosa’ & ‘Virginica’ ‘Versicolour’

Table 1: Two-class data sets used for visualization experiments (r = 2).

5.2 Data Visualization

Here we apply the proposed and existing dimensionality reduction methods to benchmark data sets
and investigate how they behave in data visualization tasks.

We use the Letter recognition data set and the Iris data set available from the UCI machine
learning repository (Blake and Merz, 1998). Table 1 describes the specifications of the data sets.
Each data set contains three types of samples specified by ‘◦’, ‘•’, and ‘×’. We merged ‘◦’ and
‘•’ into a single class and created two-class problems. We test LFDA, FDA, LPP, LDI, NCA, and
MCML and evaluate the between-class separability (i.e., ‘◦’ and ‘•’ are well separated from ‘×’)
and the within-class multimodality preservation capability (i.e., ‘◦’ and ‘•’ are well grouped). For
LPP and LFDA, we determined the affinity matrix by the local scaling method (see Appendix D.4).
For NCA, we used the LFDA result as an initial matrix since this initialization scheme appears to
work better than the random initialization. FDA allows us to extract only one meaningful feature in
two-class classification problems (see Section 2.2), so we choose the second feature randomly here.
Figures 5 and 6 depict the samples embedded in the two-dimensional space found by each method.
The horizontal axis is the first feature found by each method, while the vertical axis is the second
feature.

First, we compare the embedding results of LFDA with those of FDA and LPP. For the Let-
ter recognition data set (see the top row of Figure 5), LFDA nicely separates samples in different
classes from each other, and at the same time, it clearly preserves within-class multimodality. FDA
separates ‘◦’ and ‘•’ from ‘×’ well, but within-class multimodality is lost, that is, ‘◦’ and ‘•’ are
mixed. LPP gives two separate clusters of samples, but samples in different classes are mixed in one
of the clusters. For the Iris data set (see the top row of Figure 6), LFDA simultaneously achieves
between-class separation and within-class multimodality preservation. On the other hand, FDA
tends to mix samples in different classes, which would be caused by within-class multimodality.
LPP also works well for this data set because three clusters are well separated from each other in
the original high-dimensional space. Overall, LFDA is found to be more appropriate for embed-
ding labeled multimodal data samples than FDA and LPP, implying that our primal goal has been
successfully achieved.

Next, we compare the results of LFDA with those of LDI, NCA, and MCML. For the Letter
recognition data set (see Figure 5), LFDA, LDI, NCA, and MCML separate the samples in different
classes from each other very well. However, LDI and MCML collapse ‘◦’ and ‘•’ into a single
cluster, while LFDA and NCA preserve the multimodal structure clearly. The NCA result is almost
identical to the LFDA result (i.e., the initial value of the NCA iteration), but the result may vary if the
initial value for the gradient ascent algorithm is changed. For the Iris data set (see Figure 6), LFDA,
LDI, and NCA work excellently in both between-class separation and within-class multimodality
preservation. On the other hand, MCML mixes the samples in different classes. Overall, LDI works
fairly well, but the within-class multimodal structure is sometimes lost since LDI only partially
takes within-class multimodality into account (see Section 4.1). NCA also works very well, which
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Figure 5: Visualization of the Letter recognition data set.
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Figure 6: Visualization of the Iris data set.
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Data name
Input

dimensionality

# of
training
samples

# of
test

samples

# of
realizations

∗banana 2 400 4900 100
breast-cancer 9 200 77 100

diabetes 8 468 300 100
flare-solar 9 666 400 100

german 20 700 300 100
heart 13 170 100 100
image 18 1300 1010 20

ringnorm 20 400 7000 100
splice 60 1000 2175 20
∗thyroid 5 140 75 100
titanic 3 150 2051 100

twonorm 20 400 7000 100
∗waveform 21 400 4600 100
∗USPS-eo 256 1000 1000 20
∗USPS-sl 256 1000 1000 20

Table 2: List of binary classification data sets. Data sets indicated by ‘∗’ contain intrinsic within-
class multimodal structures.

implies that the heuristic to use the LFDA result as an initial value is useful. However, NCA does
not provide significant performance improvement over LFDA in the above simulations. The MCML
results have similar tendencies to FDA.

Based on the above simulation results, we conclude that LFDA is a promising method in the
visualization of multimodal labeled data.

5.3 Classification

Here we apply the proposed and existing dimensionality reduction techniques to classification tasks,
and objectively evaluate the effectiveness of LFDA.

There are several measures for quantitatively evaluating separability of data samples in different
classes (e.g., Fukunaga, 1990; Globerson et al., 2005). Here we use a simple one: misclassifica-
tion rate by a one-nearest-neighbor classifier. As explained in Section 3.3, the LFDA criterion
is invariant under linear transformations, while the misclassification rate by a one-nearest-neighbor
classifier depends on the distance metric. This means that the following simulation results are highly
dependent on the normalization scheme (15).

We employ the IDA data sets,5 which are standard binary classification data sets originally used
in Rätsch et al. (2001). In addition, we use two binary classification data sets created from the USPS
handwritten digit data set. The first task (USPS-eo) is to separate even numbers from odd numbers
and the second task (USPS-sl) is to separate small numbers (‘0’ to ‘4’) from large numbers (‘5’ to
‘9’). For training and testing, 100 samples are randomly chosen for each digit. Table 2 summarizes

5. Data sets available at http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.
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Data set LFDA LDI NCA MCML LPP PCA
∗banana ◦13.7±0.8 ◦13.6±0.8 14.3±2.0 39.4±6.7 ◦13.6±0.8 ◦13.6±0.8

breast-cancer ◦34.7±4.3 36.4±4.9 34.9±5.0 ◦34.0±5.8 ◦33.5±5.4 ◦34.5±5.0
diabetes 32.0±2.5 ◦30.8±1.9 — ◦31.2±2.1 31.5±2.5 ◦31.2±3.0

flare-solar ◦39.2±5.0 ◦39.3±4.8 — — ◦39.2±4.9 ◦39.1±5.1
german ◦29.9±2.8 30.7±2.4 ◦29.8±2.6 31.3±2.4 30.7±2.4 ◦30.2±2.4
heart ◦21.9±3.7 23.9±3.1 23.0±4.3 23.3±3.8 23.3±3.8 24.3±3.5
image ◦3.2±0.8 ◦3.0±0.6 — 4.7±0.8 3.6±0.7 ◦3.4±0.5

ringnorm 21.1±1.3 ◦17.5±1.0 21.8±1.3 22.0±1.2 20.6±1.1 21.6±1.4
splice ◦16.9±0.9 17.9±0.8 — ◦17.3±0.9 23.2±1.2 22.6±1.3
∗thyroid ◦4.6±2.6 8.0±2.9 ◦4.5±2.2 18.5±3.8 ◦4.2±2.9 ◦4.9±2.6
titanic ◦33.1±11.9 ◦33.1±11.9 ◦33.0±11.9 ◦33.1±11.9 ◦33.0±11.9 ◦33.0±12.0

twonorm ◦3.5±0.4 4.1±0.6 3.7±0.6 ◦3.5±0.4 3.7±0.7 3.6±0.6
∗waveform ◦12.5±1.0 20.7±2.5 ◦12.6±0.8 17.9±1.5 ◦12.4±1.0 12.7±1.2
∗USPS1 9.0±0.8 12.5±0.9 — — 7.2±1.0 ◦3.5±0.7
∗USPS2 12.9±1.2 25.9±1.7 — 11.7±1.3 7.5±0.8 ◦3.9±0.8

Computation
time (ratio)

1.00 1.11 97.23 70.61 1.04 0.91

Table 3: Means and standard deviations of the misclassification rate when the embedding dimen-
sionality is chosen by cross validation. For each data set, the best method and comparable
ones based on the t-test at the significance level 5% are marked by ‘◦’. Data sets indicated
by ‘∗’ contain the intrinsic within-class multimodal structure.

the specifications of the data sets. The ringnorm, twonorm, and waveform data sets contain features
with only noise. The thyroid, waveform, USPS-eo, and USPS-sl data sets contain intrinsic within-
class multimodal structures since they are converted from multi-class problems by merging some of
the classes. The banana data set is also multimodal.

We test LFDA, LDI, NCA, MCML, LPP, and principal component analysis (PCA). Note that
LPP and PCA are unsupervised dimensionality reduction methods, while others are supervised
methods. NCA is not tested for the diabetes, flare-solar, image, splice, USPS-eo, and USPS-sl
data sets and MCML is not tested for the flare-solar and USPS-eo data sets since the execution time
is too long.

Figure 7 depicts the mean misclassification rate by a one-nearest-neighbor classifier as functions
of the dimensionality r of the reduced space. The error bars are omitted for clear visibility. Instead,
we plotted the results of the following significance test: for each dimensionality r, the mean mis-
classification rate by the best method and comparable ones based on the t-test (Henkel, 1979) at the
significance level 5% are marked by ‘◦’. The results show that LFDA works quite well, but overall
there is no single best method that consistently outperforms the others.

Table 3 describes the mean and standard deviation of the misclassification rate by each method
when the embedding dimensionality r is chosen by 5-fold cross validation (Stone, 1974; Wahba,
1990); for the USPS-eo and USPS-sl data sets, we used 20-fold cross validation since this was
more accurate. For each data set, the best method and comparable ones based on the t-test at
the significance level 5% are indicated by ‘◦’. The table shows that overall LFDA has excellent
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Figure 7: Mean misclassification rates by a one-nearest-neighbor method as functions of the dimen-
sionality of the embedding space. For each dimension, the best method and comparable
ones based on the t-test at the significance level 5% are marked by ‘◦’.

1049



SUGIYAMA

Data set LFDA EUCLID FDA
∗banana ◦13.7±0.8 ◦13.6±0.8 ◦13.6±0.8

breast-cancer 34.7±4.3 ◦32.7±4.8 ◦32.9±4.5
diabetes 32.0±2.5 ◦30.1±2.1 ◦30.6±2.2

flare-solar ◦39.2±5.0 ◦39.2±5.1 ◦39.0±4.9
german ◦29.9±2.8 ◦29.5±2.5 30.5±2.8
heart ◦21.9±3.7 23.2±3.7 24.0±3.7
image ◦3.2±0.8 ◦3.4±0.5 6.5±1.7

ringnorm ◦21.1±1.3 35.0±1.4 31.2±1.6
splice ◦16.9±0.9 28.9±1.5 33.7±1.5
∗thyroid ◦4.6±2.6 ◦4.4±2.2 5.3±2.5
titanic ◦33.1±11.9 ◦33.0±11.9 ◦33.1±11.9

twonorm ◦3.5±0.4 6.7±0.7 5.0±0.7
∗waveform ◦12.5±1.0 15.8±0.7 17.6±1.4
∗USPS-eo 9.0±0.8 ◦3.6±0.7 15.1±2.4
∗USPS-sl 12.9±1.2 ◦3.8±0.8 13.3±2.9

Table 4: Means and standard deviations of the misclassification rate. The LFDA results are copied
from Table 3. ‘EUCLID’ denotes a naive one-nearest-neighbor classification without di-
mensionality reduction. ‘FDA’ denotes a naive one-nearest-neighbor classification after
the samples are projected onto a one-dimensional FDA subspace.

performance. LDI and MCML also work quite well, but they tend to perform rather poorly for the
multimodal data sets specified by ‘∗’. NCA also works well, but it does not compare favorably with
LFDA. Note that NCA with random initialization was slightly worse; therefore our heuristic to use
the LFDA results for initialization would be reasonable. LPP and PCA perform well, despite the
fact that they are unsupervised dimensionality reduction methods. In particular, PCA has excellent
performance for the USPS data sets since the projection onto the two-dimensional PCA subspace
already gives reasonably separate embedding (He and Niyogi, 2004).

The computation time of each method summed over 9 data sets for which NCA is tested is
described in the bottom of Table 3. For better comparison, we normalized the values by the com-
putation time of LFDA. This shows that LFDA is much faster than NCA and MCML,6 and is
comparable to LDI, LPP, and PCA.

The misclassification rates by a naive one-nearest-neighbor classification without dimensional-
ity reduction (‘EUCLID’) are described in Table 4. The table shows that, on the whole, the per-
formance of LFDA is comparable to EUCLID. This implies that the use of LFDA is advantageous
when the dimensionality of the original data is very high since the computation time in the test phase
can be reduced. Table 4 also includes the misclassification rates by a naive one-nearest-neighbor
classification after the samples are projected onto a one-dimensional FDA subspace, showing that
LFDA tends to outperform FDA.

6. In our implementation of MCML, we used a constant step size for the gradient descent. The computation time could
be improved if, for example, an Armijo like step size rule (Bertsekas, 1976) is employed.
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Based on the above simulation results, we conclude that the proposed LFDA is a promising
dimensionality reduction technique also in classification scenarios.

6. Conclusions

We discussed the problem of supervised dimensionality reduction. FDA (Fisher, 1936; Fukunaga,
1990; Duda et al., 2001) works well for this purpose, given that data samples in each class are uni-
modal Gaussian. However, samples in a class are often multimodal in practice, for example, when
multi-class classification problems are solved by a set of two-class ‘one-versus-rest’ problems. LPP
(He and Niyogi, 2004) can work well in dimensionality reduction of multimodal data. However, it
is an unsupervised method and does not necessarily useful in supervised dimensionality reduction
scenarios. In this paper, we proposed a new method called LFDA, which effectively combines the
ideas of FDA and LPP. LFDA allows us to reduce the dimensionality of multimodal labeled data
appropriately by maximizing between-class separability and preserving the within-class local struc-
ture at the same time. The derivation of LFDA is based on a novel pairwise interpretation of FDA
(see Section 3.1). The original FDA provides a meaningful result only when the dimensionality of
the embedding space is smaller than the number of classes because of the rank deficiency of the
between-class scatter matrix. On the other hand, LFDA does not share this limitation and can be
employed for dimensionality reduction into any dimensional spaces (see Section 3.3). This is a
significant improvement over the original FDA.

As discussed in Section 3.3, the LFDA criterion is invariant under linear transformations. This
means that the range of the transformation matrix can be uniquely determined, but the distance
metric in the embedding space cannot be determined. In this paper, we determined the distance
metric in a heuristic manner. Although this normalization scheme is shown to be reasonable in
experiments, there is still room for further improvement. An important future direction is to develop
a computationally efficient method of determining the distance metric of the embedding space,
for example, following the lines of Goldberger et al. (2005), Globerson and Roweis (2006), and
Weinberger et al. (2006).

We showed in Section 3.4 that a non-linear variant of LFDA can be obtained by employing the
kernel trick. FDA, LPP, and MCML can also be kernelized similarly (Baudat and Anouar, 2000;
Mika et al., 2003; Belkin and Niyogi, 2003; He and Niyogi, 2004; Globerson and Roweis, 2006).
As shown in these papers, the performance of the kernelized methods heavily depend on the choice
of the family and parameters of kernel functions. Therefore, how to optimally determine the kernel
function for supervised dimensionality reduction needs to be explored.

The performance of LFDA depends on the choice of the affinity matrix. In this paper, we simply
employed a standard definition as it is (see Appendix D.4). Although this standard choice appeared
to be reasonable in experiments, it is important to find the optimal way to define the affinity matrix
in the context of supervised dimensionality reduction.

MDA (Hastie and Tibshirani, 1996b) provides a solid probabilistic framework for supervised
dimensionality reduction with multimodality (see Section 4.2). On the other hand, LFDA still lacks
a probabilistic interpretation. An interesting future direction is to analyze the behavior of LFDA in
terms of density models.
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Appendix A. Proof of Lemma 1

It follows from Eq. (1) that

S(w) =
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∑̀
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∑
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which yields Eq. (5). Let S(m) be the mixture scatter matrix (Fukunaga, 1990):

S(m) ≡ S(w) +S(b)

=
n

∑
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(xi−µ)(xi−µ)>.

Then we have
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which yields Eq. (6).

Appendix B. Interpretation of FDA

In Section 3.1, we claimed that FDA tries to keep data pairs in the same class ‘close’ and data pairs
in different classes ‘apart’. Here we show this claim more formally.
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For
vi, j ≡ T>(xi− x j),

let us investigate the change in the Fisher criterion (3) when vi, j yields αvi, j with α > 0. Note that
there does not generally exist a transformation T ′ that keeps all vi, j and only changes a particular
pair. For this reason, the following analysis may be regarded as comparing the values of the Fisher
criterion for two different data sets. This analysis will give an insight into what kind of transforma-
tion matrices the Fisher criterion favors.

Let

W ≡ T>S(w)T ,

B≡ T>S(b)T ,

W α ≡W −βW (w)
i, j vi, jv

>
i, j,

Bα ≡ B−βW (b)
i, j vi, jv

>
i, j,

β≡
1−α2

2
.

Note that W α and Bα correspond to the within-class and between-class scatter matrices for αvi, j,
respectively. We assume that W and W α are positive definite and B and Bα are positive semi-
definite. Then the values of the Fisher criterion (3) for vi, j and αvi, j are expressed as tr

(
W−1B

)
and

tr
(
W−1

α Bα
)
, respectively.

The standard matrix inversion lemma (e.g., Albert, 1972) yields

W−1 = (W α +βW (w)
i, j vi, jv

>
i, j)
−1

= W−1
α −

W−1
α vi, j(W−1

α vi, j)
>

(βW (w)
i, j )−1 + 〈W−1

α vi, j,vi, j〉
.

If yi = y j, we have W (w)
i, j > 0 and W (b)

i, j < 0. Then we have

tr
(
W−1B

)
= tr

(
(W α +βW (w)

i, j vi, jv
>
i, j)
−1(Bα +βW (b)

i, j vi, jv
>
i, j)
)

= tr
(
W−1

α Bα
)
+βW (b)

i, j 〈W
−1
α vi, j,vi, j〉

−
〈BαW−1

α vi, j,W−1
α vi, j〉+βW (b)

i, j 〈W
−1
α vi, j,vi, j〉

2

(βW (w)
i, j )−1 + 〈W−1

α vi, j,vi, j〉
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(
W−1

α Bα
)
−
〈BαW−1

α vi, j,W−1
α vi, j〉−W (b)

i, j W (w)
i, j

−1
〈W−1

α vi, j,vi, j〉

(βW (w)
i, j )−1 + 〈W−1

α vi, j,vi, j〉
. (30)

If α < 1, we have β > 0 since α > 0 by definition. Therefore, Eq. (30) yields

tr
(
W−1

α Bα
)

> tr
(
W−1B

)
,

where we used the facts that W α is positive definite and Bα is positive semi-definite. This implies
that the value of the Fisher criterion increases if a data pair in the same class is made close.
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Similarly, if yi 6= y j, we have W (w)
i, j = 0 and W (b)

i, j > 0. Then we have

tr
(
W−1

α Bα
)

= tr
(
(W −βW (w)

i, j vi, jv
>
i, j)
−1(B−βW (b)

i, j vi, jvi, j)
)

= tr
(
W−1B

)
−βW (b)

i, j 〈W
−1vi, j,vi, j〉. (31)

If α > 1, we have β < 0 and hence Eq. (31) yields

tr
(
W−1

α Bα
)

> tr
(
W−1B

)
.

This implies that the value of the Fisher criterion increases if a pair of samples in different classes
are separated from each other.

Appendix C. Efficient Computation of T LFDA

As shown in Eq. (15), the LFDA transformation matrix T LFDA can be computed analytically using
the generalized eigenvectors and generalized eigenvalues of the following generalized eigenvalue
problem.

S̃
(b)

ϕ̃ = λ̃S̃
(w)

ϕ̃.

Given S̃
(b)

and S̃
(w)

, the computational complexity of calculating T LFDA is O(rd2). Here, we provide

an efficient computing method of S̃
(b)

and S̃
(w)

.

Let S̃
(m)

be the local mixture scatter matrix defined by

S̃
(m)
≡ S̃

(b)
+ S̃

(w)
.

From Eqs. (9)–(11), we can immediately show that S̃
(m)

is expressed in the following pairwise form.

S̃
(m)

=
1
2

n

∑
i, j=1

W̃ (m)
i, j (xi− x j)(xi− x j)

>,

where W̃
(m)

is the n-dimensional matrix with (i, j)-th element being

W̃ (m)
i, j ≡

{
Ai, j/n if yi = y j,

1/n if yi 6= y j.

Since

S̃
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=
1
2

n

∑
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i, j (xix

>
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>
j − xix
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xix
>
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∑
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i, j xix

>
j ,

S̃
(m)

can be expressed in a matrix form as

S̃
(m)

= XL̃
(m)

X>, (32)
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where
L̃

(m)
≡ D̃

(m)
−W̃

(m)
, (33)

and D̃
(m)

is the n-dimensional diagonal matrix with i-th diagonal element being

D̃(m)
i,i ≡

n

∑
j=1

W̃ (m)
i, j .

Similarly, S̃
(w)

can be expressed in a matrix form as

S̃
(w)

= XL̃
(w)

X>, (34)

where
L̃

(w)
≡ D̃

(w)
−W̃

(w)
, (35)

and D̃
(w)

is the n-dimensional diagonal matrix with i-th diagonal element being

D̃(w)
i,i ≡

n

∑
j=1

W̃ (w)
i, j .

L̃
(m)

and L̃
(w)

are n-dimensional matrices and could be very high dimensional. However, L̃
(w)

can be made block-diagonal if the samples {xi}
n
i=1 are sorted according to the labels {yi}

n
i=1. Fur-

thermore, diagonal sub-matrices of L̃
(w)

can be sparse if the affinity matrix A is sparsely defined

(see Appendix D for detail). Therefore, directly calculating S̃
(w)

by Eq. (34) may be already com-
putationally efficient.

On the other hand, computing S̃
(m)

directly by Eq. (32) is not so efficient since W̃
(m)

is dense.

This problem can be alleviated as follows. W̃
(m)

can be decomposed as

W̃
(m)

=
1
n

1n1>n +W̃
(m1)

+W̃
(m2)

,

where 1n is the n-dimensional vector with all ones and W̃
(m1) and W̃

(m2) are the n-dimensional
matrices with (i, j)-th element being

W̃ (m1)
i, j ≡

{
Ai, j/n if yi = y j,

0 if yi 6= y j,

W̃ (m2)
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{
−1/n if yi = y j,

0 if yi 6= y j.

Then S̃
(m)

can be expressed as
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X>−
1
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X1n(X1n)
>−XW̃
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where the diagonal matrix D̃
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is expressed in terms of W̃
(m1) as

D̃(m)
i,i = 1−

nyi

n
+
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j=1

W̃ (m1)
i, j .
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Note that nyi in the above equation is the number of samples in the class which the sample xi

belongs to. W̃
(m2) is a constant block-diagonal matrix if the samples {xi}

n
i=1 are sorted according

to the labels {yi}
n
i=1. Therefore, XW̃

(m2)X> in the right-hand side of Eq. (36) can be computed

efficiently. Similarly, W̃
(m1) can also be made block-diagonal, so XW̃

(m1)X> in the right-hand side
of Eq. (36) may also be computed efficiently; if the affinity matrix A is sparse, the computational
efficiency can be further improved. The first two terms in the right-hand side of Eq. (36) can also

be computed efficiently. Therefore, computing S̃
(m)

by Eq. (36) may be more efficient than directly

by Eq. (32). Finally, we can compute S̃
(b)

efficiently by using S̃
(m)

as

S̃
(b)

= S̃
(m)
− S̃

(w)
.

To further improve computational efficiency, the affinity matrix A may be computed in a class-
wise manner since we do not need the affinity values for sample pairs in different classes. This
speeds up the nearest neighbor search which is often carried out when defining A (see Appendix D).
The nearest neighbor search itself could also be a bottleneck, but this may be eased by incorporat-
ing the prior knowledge of the data structure or by approximation (see Saul and Roweis, 2003, and
references therein).

The above efficient implementation of LFDA is summarized as a pseudo code in Figure 2.

Appendix D. Definitions of Affinity Matrix

Here, we briefly review typical choices of the affinity matrix A.

D.1 Heat Kernel

A standard choice of the affinity matrix A is

Ai, j = exp

(
−
‖xi− x j‖

2

σ2

)
, (37)

where σ (> 0) is a tuning parameter which controls the ‘decay’ of the affinity (e.g., Belkin and
Niyogi, 2003).

D.2 Euclidean Neighbor

The heat kernel gives a non-sparse affinity matrix. It would be computationally advantageous if the
affinity matrix is made sparse. A sparse affinity matrix can be obtained by assigning positive affinity
values only to neighboring samples. More specifically, xi and x j are said to be neighbors if

‖xi− x j‖ ≤ ε,

where ε (> 0) is a tuning parameter. Then Ai, j is defined by Eq. (37) for two neighboring samples
and Ai, j = 0 for non-neighbors (Tenenbaum et al., 2000).

This definition includes two tuning parameters (ε and σ), which are rather troublesome to de-
termine in practice. To ease the problem, we may simply let Ai, j = 1 if xi and x j are neighbors and
Ai, j = 0 otherwise. This corresponds to setting σ = ∞.
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D.3 Nearest Neighbor

Tuning the distance threshold ε is practically rather cumbersome since the relation between the
number of neighbors and the value of ε is not intuitively clear. Another option to determine the
neighbors is to directly specify the number of neighbors (Roweis and Saul, 2000; Tenenbaum et al.,
2000). Let NN(K)

i be the set of K nearest neighbor samples of xi under the Euclidean distance, where

K is a tuning parameter. If x j ∈ NN(K)
i or xi ∈ NN(K)

j , xi and x j are regarded as neighbors; otherwise
they are regarded as non-neighbors. Then the affinity matrix is defined by the heat kernel or in the
simple zero-one manner.

D.4 Local Scaling

A drawback of the above definitions could be that the affinity is computed globally in the same way.
The density of data samples may be different depending on regions. Therefore, it would be more
appropriate to take the local scaling of the data into account. Following this idea, Zelnik-Manor and
Perona (2005) proposed defining the affinity matrix as

Ai, j = exp

(
−
‖xi− x j‖

2

σiσ j

)
.

σi represents the local scaling of the data samples around xi, which is determined by

σi = ‖xi− x(K)
i ‖,

where x(K)
i is the K-th nearest neighbor of xi. The parameter K is a tuning parameter, but Zelnik-

Manor and Perona (2005) demonstrated that K = 7 works well on the whole. This would be a
convenient heuristic for those who do not have any subjective/prior preferences. We employed the
local scaling method with this heuristic all through the paper.

For computational efficiency, we may further sparsify the above affinity matrix based on, for
example, the nearest neighbor idea, although this is not tested in this paper.

Appendix E. Pairwise Expression of S
(b)

A pairwise expression of S
(b)

can be derived as
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S
(b)

=
n

∑
k=1

1

n[k]

c

∑̀
=1

n[k]
` (µ[k]

` −µ[k])(µ[k]
` −µ[k])>

=
n

∑
k=1

1

n[k]

(
c

∑̀
=1

n[k]
` µ[k]

` µ[k]
`

>
−n[k]µ[k]µ[k]>

)

=
n

∑
k=1

1

n[k]

(
c

∑̀
=1

n[k]
` µ[k]

` µ[k]
`

>
−

n

∑
i=1

Ai,kxix
>
i +

n

∑
i=1

Ai,kxix
>
i −n[k]µ[k]µ[k]>

)

=
1
2

n

∑
k=1

1

n[k]

(
−

c

∑̀
=1

1

n[k]
`

∑
i, j:yi=y j=`

Ai,kA j,k(xi− x j)(xi− x j)
>

+
1

n[k]

n

∑
i, j=1

Ai,kA j,k(xi− x j)(xi− x j)
>

)

=
1
2

n

∑
i, j=1

W
(b)
i, j (xi− x j)(xi− x j)

>,

which yields Eqs. (19) and (20).
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