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Abstract. Oxidation of organic compounds in the atmo-
sphere produces an immensely complex mixture of prod-
uct species, posing a challenge for both their measurement
in laboratory studies and their inclusion in air quality and
climate models. Mass spectrometry techniques can measure
thousands of these species, giving insight into these chemical
processes, but the datasets themselves are highly complex.
Data reduction techniques that group compounds in a chemi-
cally and kinetically meaningful way provide a route to sim-
plify the chemistry of these systems but have not been sys-
tematically investigated. Here we evaluate three approaches
to reducing the dimensionality of oxidation systems mea-
sured in an environmental chamber: positive matrix factor-
ization (PMF), hierarchical clustering analysis (HCA), and
a parameterization to describe kinetics in terms of multi-
generational chemistry (gamma kinetics parameterization,
GKP). The evaluation is implemented by means of two
datasets: synthetic data consisting of a three-generation ox-
idation system with known rate constants, generation num-
bers, and chemical pathways; and the measured products of
OH-initiated oxidation of a substituted aromatic compound
in a chamber experiment. We find that PMF accounts for
changes in the average composition of all products during
specific periods of time but does not sort compounds into
generations or by another reproducible chemical process.
HCA, on the other hand, can identify major groups of ions
and patterns of behavior and maintains bulk chemical prop-

erties like carbon oxidation state that can be useful for model-
ing. The continuum of kinetic behavior observed in a typical
chamber experiment can be parameterized by fitting species’
time traces to the GKP, which approximates the chemistry
as a linear, first-order kinetic system. The fitted parameters
for each species are the number of reaction steps with OH
needed to produce the species (the generation) and an effec-
tive kinetic rate constant that describes the formation and loss
rates of the species. The thousands of species detected in a
typical laboratory chamber experiment can be organized into
a much smaller number (10–30) of groups, each of which
has a characteristic chemical composition and kinetic behav-
ior. This quantitative relationship between chemical and ki-
netic characteristics, and the significant reduction in the com-
plexity of the system, provides an approach to understanding
broad patterns of behavior in oxidation systems and could
be exploited for mechanism development and atmospheric
chemistry modeling.

1 Introduction

Air quality and climate change are major threats to the qual-
ity of millions of human lives across the globe (IPCC, 2014;
Landrigan et al., 2018). An important scientific component of
both topics is the photooxidation chemistry of organic com-
pounds in the atmosphere, which can lead to the formation
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of ozone and fine particulate matter, both of which can af-
fect the radiative budget of the atmosphere and can harm
human health. A detailed understanding of this chemistry
is necessary to predict and mitigate these effects. However,
this is challenging because of the diversity and number of
species involved. Gas-phase organic compounds emitted di-
rectly into the atmosphere have a wide range of functionality
and reactivity, and oxidation of these precursors by O3, OH,
or NO3 can further functionalize or fragment the molecules.
The number and diversity of the product species increases
with the number of generations of reaction, and key prop-
erties of these product species, such as volatility, reactivity,
and concentration, can vary over orders of magnitude (Gla-
sius and Goldstein, 2016; Goldstein and Galbally, 2007).

This complexity presents several challenges. In order to
fully characterize oxidation of organic compounds, analyti-
cal techniques must be able to detect hundreds to thousands
of individual species and accommodate the diversity of func-
tionality and concentration. Advances in instrumentation, es-
pecially high-resolution time-of-flight chemical ionization
mass spectrometry (CIMS), have enabled the detection of
a large number of oxidation products in chamber and field
experiments. CIMS involves the introduction of a reagent
ion, which then reacts with the analyte, forming product ions
that are detected with mass spectrometry. Chemical selectiv-
ity can be achieved through choice of the reagent ion, and
fast, online measurement of air samples is possible. CIMS
instruments with high mass resolution (maximum FWHM
m/1m > 3000) can unambiguously determine the elemental
composition of most detected ions with m/z less than 200,
and the elemental composition of ions with m/z > 200 can
usually be determined with some certainty (Junninen et al.,
2010). The analytical capability of atmospheric CIMS in-
strumentation is rapidly improving, and modern instruments
can have sensitivities on the order of 10 000 cps ppbv−1 and
a resolution greater than 10000m/1m (Breitenlechner et
al., 2017; Krechmer et al., 2018), allowing the measurement
of hundreds to thousands of species on a rapid time base
(Isaacman-VanWertz et al., 2017; Müller et al., 2012).

While this represents a major advance in our ability to
detect and characterize trace atmospheric chemical com-
ponents, these large datasets can be difficult and time-
consuming to interpret, and it is not clear how the full in-
formation content from thousands of ions can be best used.
Further, secondary ion processes, such as cluster formation
or ion fragmentation, can occur within the mass spectrome-
ter, complicating the mass spectra, and different CIMS tech-
niques have differing chemical specificities that can be hard
to predict. Data analysis techniques are therefore needed to
efficiently reduce the amount of data to more manageable
and interpretable sizes. Further, the interpretation of these
measurements in terms of chemical mechanisms is often not
straightforward. Most laboratory studies use CIMS measure-
ments to support, refute, or suggest new chemical mecha-
nisms; this is typically done by hand, focusing on several

key species of interest. Data analysis techniques that allow
for the extraction of useful chemical and mechanistic infor-
mation from entire mass spectra are valuable and necessary
but have not been systematically explored.

Simplification is also needed to incorporate oxidation
chemistry into climate and air quality models. Large-scale
regional and global models (e.g., chemical transport mod-
els and earth system models) cannot currently incorporate
a high level of chemical detail. Photochemical mechanisms
commonly used to incorporate chemistry into regional and
global models typically include 30–200 species and 100–
400 reactions (Brown-Steiner et al., 2018; Jimenez et al.,
2003), which is much lower than the number of product
species from individual precursors included in explicit chem-
istry mechanisms such as the Master Chemical Mechanism
(300–1000+ product species, e.g., Bloss et al., 2005a; Jenkin
et al., 2003; Saunders et al., 2003) or GECKO-A (∼ 105

species, Aumont et al., 2005). In order to reduce the num-
ber of species in models, volatile organic compounds (VOCs)
are represented by groups, or are lumped, and the choice of
lumping criterion can affect the derived ozone, aerosol, and
product VOC formation values (Jimenez et al., 2003; Zhang
et al., 2012). In gas-phase mechanisms, compounds have
been lumped by degree of unsaturation, emission rates, func-
tional groups, or reactivity towards OH (Brown-Steiner et al.,
2018; Crassier et al., 2000; Houweling et al., 1998; Jimenez
et al., 2003; Gery et al., 1989; Carter, 1990; Stockwell et al.,
1997). Similarly, secondary organic aerosol formation has
been parameterized by lumping organic species by volatil-
ity, O : C ratio, number of carbon and oxygen atoms, or po-
larity and assigning kinetic properties to each group (Cappa
and Wilson, 2012; Donahue et al., 2012; Lane et al., 2008;
Pankow and Barsanti, 2009). Lumping schemes could be im-
proved by using laboratory data to define important groups of
compounds and assign experimentally derived chemical and
kinetic properties to each group to act as a surrogate species.

Several methods have been used to categorize mass spec-
tra and to group compounds. We consider two methods pre-
viously used to reduce the dimensionality of complex atmo-
spheric chemistry measurements, positive matrix factoriza-
tion (PMF) and hierarchical clustering analysis (HCA). Both
methods have seen substantial use in the simplification and
interpretation of field measurements but have seen far less
use in the laboratory, and there has been little exploration of
how they can be used to gain useful chemical or mechanistic
information from laboratory mass spectrometric datasets. We
additionally address a fundamental, underexplored problem
in laboratory chamber studies: how to systematically char-
acterize the kinetics of an oxidation system. The system-
atic characterization is achieved through the gamma kinet-
ics parameterization (GKP) and can be used to group com-
pounds based on similar kinetic properties. The three meth-
ods (PMF, HCA, and GKP) have different mathematics but
the same goals: to identify groups of compounds and re-
place each group with a chemically meaningful surrogate.
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The three methods are evaluated in terms of the following
criteria: whether the resulting surrogates have chemically re-
alistic behavior; whether the surrogates have the same range
of chemical properties as the original dataset; which subjec-
tive choices the researcher needs to make when implement-
ing the method; and what other new information about the
system can be learned. We additionally discuss the extent to
which different methods agree in their identification of major
groups of compounds. The output of these dimensionality-
reduction techniques can be used to quickly analyze and in-
terpret chamber experiments and could be used to reduce the
complexity of chemical mechanisms included in models.

2 Methods

2.1 Data collection

We use two datasets: a synthetic dataset describing a simple
multigenerational kinetic system and measurements of the
OH-initiated oxidation of 1,2,4-trimethylbenzene in an envi-
ronmental chamber. The synthetic dataset is useful for eval-
uating the various dimensionality-reduction schemes used
here, because the reaction rate constants and generation of
each species are known exactly. The chamber data demon-
strate the application of the data reduction techniques to a
real-world system measured with online mass spectrometry.

2.1.1 Synthetic dataset

A schematic of the simple synthetic kinetic system is shown
in Fig. 1. The precursor molecule A reacts with OH to pro-
duce first-generation species (B), which in turn react with
OH to produce second-generation (C) and third-generation
species (D). Only reactions with OH are considered. The
system includes three pathways with differing yields, and
each pathway includes a product with a fast, a slow, and an
intermediate OH rate constant. The different rate constants
(randomly generated) and yields simulate a range of product
behavior. To enable PMF measurements, artificial noise was
added to the synthetic data. The noise is normally distributed
with a standard deviation proportional to the square root of
the signal. The proportionality constant, based on a typical
proton-transfer-reaction mass spectrometer (PTR-MS) sen-
sitivity of 10 000 counts ppb−1 s−1, was chosen to generate
signal-to-noise ratios between 10 and 100, a reasonable range
for chamber experiments.

2.1.2 Chamber oxidation of 1,2,4-trimethylbenzene

An oxidation experiment was conducted in the MIT environ-
mental chamber, which consists of a 7.5 m3 PFA enclosure.
The chamber conditions were controlled at 20 ◦C and 2 %
relative humidity. The chamber is illuminated by forty-eight
40 W black lights with a 300–400 nm spectrum peaking at
350 nm. During experiments the chamber maintains a con-

Figure 1. Schematic of reaction pathways with OH (a) of syn-
thetic data and time series shown with linear and log concentra-
tion (b, c). Arrows represent a reaction with OH. Reaction rate
constants with OH are written above the arrows (units are in
10−11 cm3 molecule−3 s−1). Precursor species A reacts at a rate of
5 × 10−11 cm3 molecule−3 s−1 with yields of 0.6, 0.3, and 0.1 for
the three pathways, respectively. Products of pathways 1, 2, and 3
are drawn with solid, short-dash, and long-dash lines, respectively,
and the first-, second-, and third-generation products are drawn in
red, yellow, and blue. The total OH exposure is equal to 24 h at an
average OH concentration of 1.5 × 106 molecule cm−3.

stant volume, and clean air is continuously added at a rate
equal to the instrument sample flow (15 L min−1). Additional
details of chamber operation have been previously reported
(Hunter et al., 2014).

Dry ammonium sulfate seed (which provide a surface area
onto which low-volatility vapors can condense) was first
added to the chamber to reach a number concentration of
5.7×104 cm−3 (19.7 µg m−3). Nitrous acid (HONO, the OH
precursor) was added by bubbling clean air through a drop-
wise addition of H2SO4 to NaNO2 to reach a concentration
of 45 ppbv in the chamber. Several parts per billion by vol-
ume of an unreactive tracer, hexafluorobenzene, were added
to provide a measure of chamber dilution. A total of 3 µL
of neat 1,2,4-trimethylbenzene (Sigma-Aldrich) was added
by injection into a 70 ◦C heated inlet with a flow rate of
15 L min−1, resulting in an initial concentration of 69 ppbv
in the chamber. The reagents were allowed to mix for 15 min
and then the experiment was initiated by turning on lights
to photolyze nitrous acid and generate OH. Measurements
were conducted for 7 h. During this time three additional
aliquots of nitrous acid (27, 10, and 18 ppbv) were added
at regularly spaced intervals to roughly maintain the OH
concentration. The OH concentration was determined by fit-
ting a double-exponential function to the measured decrease
of 1,2,4-trimethylbenzene, including a known dilution term
(determined from hexafluorobenzene dilution) and an OH
reaction term. A total atmospheric-equivalent exposure of
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16.5 h (assuming an average atmospheric OH concentration
of 1.5 × 106 molecule cm−3) was achieved.

CO and formaldehyde were measured by tunable infrared
laser differential absorption spectroscopy (TILDAS, Aero-
dyne Research Inc.). Other gas-phase organic species were
measured by chemical ionization, followed by analysis with
high-resolution time-of-flight (HR-ToF) mass spectrometry.
Three chemical ionization mass spectrometry (CIMS) tech-
niques were used: I− reagent ion, H3O+ reagent ion, and
NH+

4 reagent ion. The I− CIMS instrument is from Aero-
dyne Research Inc. and is described by Lee et al. (2014).
H3O+ and NH+

4 CIMS involved proton-transfer-reaction
mass spectrometers with switchable reagent ion chemistry
(PTR3-H3O+ and PTR3-NH+

4 , Ionicon Analytik). The PTR3
H3O+ CIMS and NH+

4 CIMS techniques are described by
Breitenlechner et al. (2017) and Zaytsev et al. (2019), re-
spectively. H3O+ CIMS was also carried out using a sec-
ond proton-transfer-reaction mass spectrometer (Vocus-2R-
PTR, TOFWERK AG), which is described by Krechmer et
al. (2018). Total organic aerosol mass was measured us-
ing a high-resolution time-of-flight aerosol mass spectrom-
eter (AMS) from Aerodyne Research Inc. (DeCarlo et al.,
2006), calibrated with ammonium nitrate and assuming a
collection efficiency of 1. Organic aerosol accounted for ap-
proximately 2 % of the secondary carbon, and individual ion
measurements from the AMS are not considered separately.
The TILDAS was calibrated directly for CO and formalde-
hyde. The Vocus-2R-PTR was calibrated directly for 1,2,4-
trimethylbenzene and acetone. The PTR3 H3O+ CIMS was
calibrated directly for 15 individual species and an average
calibration factor was applied to other species. The PTR3-
NH+

4 and I−CIMS were calibrated using a combination of
direct calibration and collision-induced dissociation (Lopez-
Hilfiker et al., 2016; Zaytsev et al., 2019). We note however
that the calibration of each instrument does not affect any
results presented in this work, since the analysis techniques
used examine the time-dependent behavior, and not the ab-
solute concentrations, of the measured species.

Sampling from the chamber to CIMS instruments was de-
signed to reduce inlet losses of compounds as much as possi-
ble, within the physical constraints of the chamber. Each in-
strument used a 0.1875 in. (3/16′′) ID PFA Teflon line of 1 m
or less in length, with a flow of 2 L min−1. Inlets extended
10 cm into the chamber and no metal fittings were used. The
PTR instruments additionally have instrument inlets and ion-
molecule-reaction chambers that minimize gas contact with
walls (Breitenlechner et al., 2017; Krechmer et al., 2018).
In this study, CIMS inlet (including chamber and instrument
inlet) loss timescales were 15 s or less for test compounds
with saturation concentrations between 102 and 107 µg m3,
and therefore wall interactions for these species are unlikely
to affect the observed kinetics, which occur over tens of min-
utes (Krechmer et al., 2016).

Chamber background for each measurement was deter-
mined from measurements taken prior to precursor injection,

which are subtracted from each chamber measurement re-
ported. All measurements were also corrected for dilution by
normalizing to the hexafluorobenzene tracer (for gas-phase
data) or to measured (NH4)2SO4 aerosol seed (for particle-
phase data, which also correct for wall loss and AMS collec-
tion efficiency).

Between 1000 and 3000 peaks with variability above back-
ground were observed in the mass spectra from each CIMS
instrument; these include chemically relevant ions related
to oxidation products, as well as other ion signals from
sources such as instrument ion sources, the hexafluoroben-
zene dilution tracer, tubing and inlets, and interferences from
large neighboring peaks in the mass spectrum (Cubison and
Jimenez, 2015). Two data-processing steps were used to
identify the chemically relevant ions.

First, the elemental formulas of all ions were determined.
With the resolution of the instruments used here (maximum
∼ 10000m/1m for Vocus-2R-PTR and PTR3; ∼ 3000 for
I−CIMS), elemental composition can become ambiguous at
high m/z values. We first assigned all unambiguous peaks,
where only one reasonable formula within 10 ppm of the
peak was possible, beginning with the largest peaks in or-
der to identify and exclude isotopes. Then, we used trends
observed in Kendrick mass defect plots to suggest formu-
las for species expected at higher masses. Remaining peaks
(< 1 % of instrument signal) were assigned the formula with
the nearest mass that included C, H, N, and O; had nine or
fewer carbon atoms; and had positive, integer double-bond
equivalency (again, beginning with the largest peaks and ex-
cluding isotopes). A mass defect plot showing unambiguous
ions, and the complete set of ions, is shown in Fig. S1 in the
Supplement.

Second, chemically relevant ions were separated from all
other ion signals using hierarchical clustering. Chemically
relevant ions are those which result from oxidation prod-
ucts. They are enhanced above background during the oxida-
tion experiment and do not have sudden, stepwise changes,
which would indicate an instrument interference. A differ-
ence mass spectrum, which compares the average signal of
each ion before chemistry is initiated to the average signal
during oxidation, is a simple way to identify relevant ions
but can be misleading for ions with low signal-to-noise ratios
or variability unrelated to oxidation chemistry. Hierarchical
clustering provides an alternative method, involving the sys-
tematic examination of the time-dependent behavior of all
measured species. Chemically relevant ions exhibit a time
dependence that is consistent with chemical kinetics (for-
mation of the product, often followed by reactive loss) that
is different from that of ions not resulting from oxidation.
These two classes are clustered separately from each other,
enabling the straightforward selection of only chemically rel-
evant ions. The hierarchical clustering algorithm is described
in Sect. 2.2.2. An example for the PTR3 H3O+ mode instru-
ment is shown in Fig. S2. This approach was used to identify
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chemically relevant ions and to exclude all background ions
from each CIMS instrument.

Compounds that were measured by more than one instru-
ment, identified as having the same elemental composition
(after correction for any reagent ion chemistry) and similar
time-series behavior (Pearson’s R > 0.9), were included only
once in the dataset with all product species. When select-
ing compounds measured by more than one instrument, data
from PTR-MS instruments, which have the smallest calibra-
tion uncertainties, were used first, followed by I− CIMS and
NH+

4 CIMS. In the final combined dataset, approximately
half the carbon in oxidation products was measured by PTR-
MS, with about 15 % measured each by I− CIMS, NH+

4
CIMS, and TILDAS, and an additional 2 % by AMS. We
recognize that there is a great deal of uncertainty associated
with calibrating CIMS instrumentation and identifying de-
tected ions. This is an active area of research that we do not
attempt to address fully here. Calibration and identification
of species measured by more than one instrument do not af-
fect the major conclusions of this paper.

2.2 Implementation of data simplification tools

2.2.1 Positive matrix factorization (PMF)

In atmospheric chemistry, PMF analysis typically involves
representing a time series of mass spectra (or other chemical
measurements), recorded as a matrix of m measurements by
t time points, as a linear sum of factors (Paatero, 1997; Ul-
brich et al., 2009; Zhang et al., 2011). Each factor is fixed in
chemical composition but varies in intensity over time.

PMF analysis of ambient air measurements has in many
situations been shown to be robust and meaningful and has
contributed greatly to our understanding of atmospheric and
aerosol chemistry. PMF is frequently used for source appor-
tionment and characterization of organic aerosol in field stud-
ies, for example, to sort aerosol as more or less oxidized or
from a specific source such as biomass burning (Zhang et al.,
2011). PMF is also frequently applied to VOC measurements
in field studies. In this application, each factor indicates a
particular VOC class (which can be associated with a spe-
cific source) and its magnitude, which is a powerful tool to
support regulation.

Some aspects of atmospheric chemistry can complicate
PMF analysis. Oxidation chemistry during transport from the
source to the measurement location can change the chemical
composition, causing a single source to appear as several fac-
tors, or causing oxidized species from several sources to be
grouped together, and adding substantial uncertainty to the
derived source profiles (Sauvage et al., 2009; Wang et al.,
2013; Yuan et al., 2012). Factors including oxidation prod-
ucts, described as secondary or long-lived species, or that re-
quire correction for photochemistry have been reported in a
number of studies from diverse locations (e.g., Abeleira et
al., 2017; Sarkar et al., 2017; Shao et al., 2016; Stojić et al.,

2015), but the interpretation of such factors within the con-
text of a continually evolving system is unclear.

Finally, PMF has been applied to measurements of oxidiz-
ing chemical systems to greatly reduce the complexity of the
dataset and identify key shifts in chemistry, including aerosol
in laboratory experiments (e.g., Craven et al., 2012; Forten-
berry et al., 2018), VOCs in chamber experiments (Rosati et
al., 2019), and gas-phase highly oxidized molecules in field
studies (Massoli et al., 2018; Yan et al., 2016). Therefore, it
is important to understand whether PMF analysis of an ox-
idizing system returns chemically distinct, reproducible fac-
tors that correspond to a physical or chemical aspect of the
system.

The algorithm was implemented using the PMF Evalua-
tion Tool v2.08 (Ulbrich et al., 2009) using the PMF2 algo-
rithm (Paatero, 2007). We chose this implementation because
it is widely used in atmospheric science and has been opti-
mized for atmospheric chemistry data. Briefly, the algorithm
takes as input an m×n matrix of measured data M , contain-
ing n measured compounds at m time points, and a matrix
of estimated error (1 standard deviation, σ ) for each point in
the measured data matrix. The solution for a given number of
factors p is given as an m×p matrix G of factor time series,
a p × n matrix F of factor profiles, and a matrix E that con-
tains the residual (M − GF). F and G are iteratively adjusted
to minimize the quality-of-fit parameter Q:

Q =

m
∑

i=1

n
∑

j=1

(

eij/σij

)2
,

where eij is the residual between the measurement and the
PMF reconstruction of compound j at time point i, and σij

is the estimated error of that measurement.
The factors and their profiles are constrained to be non-

negative. The measured data matrix M for the synthetic
dataset was constructed using all 10 species (precursor plus
nine products) with artificial noise. The measured data ma-
trix M for the chamber dataset was constructed using all
measured product species (defined as all chemically relevant
ions from CIMS instruments plus total organic aerosol, CO,
and formaldehyde), after background subtraction, dilution
correction, and calibration in units of parts-per-billion car-
bon (ppbC). Duplicate measurements of individual species
from multiple instruments were excluded. Although cali-
brated data are used here, because PMF operates on the unit-
less quality-of-fit parameter Q, the results are not sensitive to
calibration, only to the signal-to-noise ratio of the individual
measurements.

Because the precursor compound (1,2,4-
trimethylbenzene) has an average intensity an order of
magnitude larger than any other species, and therefore a
very high signal-to-noise ratio, if it is included in M, the
quality-of-fit parameter Q and the resulting solution are
dominated by the precursor. As this is not of interest, the
precursor was also excluded in PMF analysis. Data were
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interpolated to 500 points evenly spaced with respect to OH
exposure (0–16.5 atmospheric-equivalent hours).

The matrix of estimated errors for the synthetic dataset
was taken as the standard deviation used to generate the ar-
tificial noise. The matrix of estimated errors for the chamber
dataset was generated by smoothing the data using a run-
ning 20 min linear best fit and subtracting these smoothed
data from the original measurement. The standard deviation
of the residual within a 20 min window was determined for
each time point. Signal-to-noise ratios for both synthetic and
chamber data are shown in Fig. S3. The overall relationship
between the standard deviation determined for chamber data
and the measured concentration is reasonable (Fig. S4).

Rotational forcing, which examines linear combinations of
possible solutions using the parameter fPeak, was explored
through fPeak values between −1 and 1. The selected fPeak
was chosen to avoid factor time series with multiple maxima,
which are not physically realistic in the chamber system. So-
lutions were also explored using different random initializa-
tion values, or seeds. No significant differences were found
between solutions with random seed values 1–10.

When PMF is used to reduce the complexity of a dataset,
the number of factors must be chosen by the researcher, a
choice that is inherently subjective. Solutions were explored
with 1 to 10 factors for the synthetic dataset and the chamber
data.

2.2.2 Hierarchical clustering analysis (HCA)

A second technique is to group or cluster individual mea-
surements based on the similarity of their behavior over time.
While a measurement of a single chemical species can con-
tribute to more than one PMF factor, it can belong to only one
cluster. Several approaches to clustering exist. The approach
we consider here is agglomerative hierarchical clustering,
which describes the degree of similarity between any two
measurements and can be used to sort species into categories
of behavior (Bar-Joseph et al., 2001; Müllner, 2011). Hier-
archical clustering analysis (HCA) has been used to group
aerosol particles based on the similarity between individ-
ual mass spectra determined by aerosol mass spectrometers
(Marcolli et al., 2006; Murphy et al., 2003; Rebotier and
Prather, 2007), describe time series of thermally desorbed
organics measured by CIMS (Sánchez-López et al., 2014,
2016), and recently to determine the appropriate number of
PMF factors used to analyze PTR-MS data from chamber
studies (Rosati et al., 2019). To our knowledge it has not yet
been used to group compounds with similar time-varying be-
haviors to understand chemical transformation in an oxida-
tion system. In this work we show how this technique can be
implemented and assess its ability to reduce the complexity
of a dataset while maintaining chemical information.

Agglomerative hierarchical clustering sorts measurements
by similar time-series behavior and displays the relative sim-
ilarity between measurements. First, all measurements were

normalized so that the time-series behavior could be directly
compared despite differences in absolute concentrations or
detection efficiencies. Data are noisy, and noise can con-
tribute to the absolute highest point in a time series. To
account for this, we normalized data to the average of the
10 points surrounding the highest point in each time series.
Then, the distance between each pair of measurements A

and B was determined. The distance describes the dissimi-
larity between any two time-series measurements: two iden-
tical time series have a distance of zero, and measurements
with different time-series behavior have larger distance val-
ues. Distance was calculated by summing the differences be-
tween the normalized measurement intensities A and B over
all time points t :

dAB =
∑

t
abs(At − Bt ).

Other distance metrics are possible, including using a corre-
lation coefficient or the sum of squared residuals. This par-
ticular approach was chosen because it resulted in the group-
ing that was most reproducible and understandable as well as
least sensitive to outlier points in the time series.

The algorithm begins with the distances between all origi-
nal measurements. The pair of measurements s and t with the
lowest distance value is found, and these two measurements
are assigned to a new cluster u. The two original measure-
ments s and t are removed from the set, and the new cluster u

is added. Then, the distances between the new cluster u and
all the remaining measurements are determined. The algo-
rithm then iteratively searches for the next smallest distance
value and combines the pair into a new cluster. As the algo-
rithm iterates, new clusters can be formed from two original
measurements, from an original measurement and a cluster,
or from two clusters. The distance between the new cluster
u and any other measurement or cluster in the set v is cal-
culated as the average of the distances between each of the
n individual members of u and m individual members of v,
over all points i in cluster u and points j in cluster v:

duv =
∑

i,j

d(ui,vj )

m × n
.

The algorithm continues until only one cluster re-
mains. Clustering was implemented using the open-source
scipy.cluster.hierarchy.linkage package (SciPy.org, 2018).
The relationships between each of the different measure-
ments and clusters are visualized using a dendrogram.

Compounds must be grouped into a specific number of
clusters in order to use HCA to define surrogate species. The
average chemical and kinetic properties of each cluster can
be used to define a surrogate species. As with the number
of factors from PMF, the number of clusters is subjectively
chosen by the researcher. The clusters could be selected by
hand or by choosing a threshold for distance dAB to automat-
ically define clusters. We chose to use a threshold to define
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the number of clusters and considered several different val-
ues of thresholds that result in different numbers of clusters.
The effect of threshold value on the interpretation of the data
is discussed in Sect. 3.2.

2.2.3 Gamma kinetics parameterization (GKP)

To date, bulk characterization of oxidation products in photo-
chemical chamber experiments has largely focused on their
chemical composition and not their reactivity or mechanis-
tic relationship. A few studies have derived kinetic informa-
tion from time-series data (Smith et al., 2009; Wilson et al.,
2012), but this has been limited to aerosol-aging experiments
and not to atmospheric oxidation generally. A chamber oxi-
dation experiment with speciated mass spectrometric mea-
surements also contains a great deal of kinetic information,
because the rates of formation and decay of each species
are measured. In this work we show how the kinetic behav-
ior of any particular measurement can be parameterized us-
ing a simple function, the gamma kinetics parameterization
(GKP), which describes a system of first-order linear multi-
step reactions. The function returns parameters that describe
generation number (how many OH addition steps are needed
on average to create the molecule) and reactivity (the relative
rates of formation and decay), which are shown to correlate
with key chemical characteristics. Grouping by similar ki-
netic parameters suggests a new, experimentally derived ap-
proach to lumping mechanisms.

A multigeneration reaction system can be described as a
linear system of first-order reactions:

X0
k0
−→ X1

k1
−→ X2

k2
−→ . . .Xm

km
−→ Xm+1

km+1
−−−→ . . ., (1)

where ki is the rate constant and m is the number of reactions
needed to produce species Xm (i.e., the generation number).
When all ki’s are equal, the series of differential equations
that describe the kinetics of Eq. (1) can be solved analyti-
cally, with the time dependence of any compound Xm de-
scribed by

[Xm](t) = a(kt)me−kt , (2)

where a is a scaling factor that depends on both instrument
sensitivity and stoichiometric yield (Smith et al., 2009; Wil-
son et al., 2012; Zhou and Zhuang, 2007). This function is
related to the probability density function of the gamma dis-
tribution, a continuous probability distribution that has been
previously used in chemistry to characterize protein kinetics
(Pogliani et al., 1996; Zhou and Zhuang, 2007).

Oxidation reactions in a chamber experiment can be pa-
rameterized as a linear system of reactions, but the reactions
between organic compounds and OH are bimolecular. This
can be adjusted to a pseudo-first-order system by consider-
ing the integrated OH exposure [OH]1t =

∫ t

0 [OH]dt instead
of reaction time t . In this case, the observed behavior of an

Figure 2. Illustration of the relationships between the different GKP
parameters (m, k, and a) and the time dependence of a given species,
using synthetic data. (a) Parameterizations with different generation
m. In the subpanel, the traces with m =2 and m =3 have been scaled
to allow comparison of the curvature, which differs with generation.
(b) Parameterizations with different rate constant k. Increasing k

does not change the shape of the curve but causes the maximum to
occur at lower OH exposures. (c) Parameterizations with different
scaling constant a, which changes neither curvature nor location of
the maximum but only the height of the curve.

organic compound X that reacts with OH in the chamber can
be parameterized by

[Xm](t) = a(k[OH]1t)me−k[OH]1t , (3)

where k is the second-order rate constant (units of
cm3 molecule−1 s−1), m is the number of reactions with
OH needed to produce the compound (generation num-
ber), and [OH]1t is the integrated OH exposure (units of
molecule s cm−3). This parameterization is exact in the situ-
ation where all rate constants k in the system are equal and
is an approximation otherwise, in which k is an effective rate
constant representing the overall rate of reactions in the path-
way.

Figure 2 illustrates how the parameters a, k, and m relate to
the shape of the function described in Eq. (3). The parameter
m (Fig. 2a) returns the generation number and is determined
by the curvature of [X] as [OH]1t → 0 (Zhou and Zhuang,
2007).

Equation (3) can be fit to time-dependent concentration (or
ion intensity) data to return a, k, and m. The fitted value of
m can be affected by noise or by fitting to a time step that is
too long (Zhou and Zhuang, 2007). The optimum time step
depends on the signal-to-noise ratio of the data and the com-
pound’s reaction rate but can be determined empirically. The
fit can also be improved by integrating the data with respect
to OH exposure over the experimental time period and fit-
ting the integrated form of Eq. (3), which reduces random
Gaussian noise (Sect. S1 in the Supplement). When all rate
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Figure 3. Results from PMF analysis of the synthetic dataset, show-
ing the four-factor solution. (a) Total intensity of synthetic data
compared to stacked time series of PMF factors. (b) Profiles of PMF
factors, illustrating that factors do not correspond to individual gen-
erations. The shaded background corresponds to generation: precur-
sor (black), first generation (red), second generation (yellow), and
third generation (blue). The color of the mass spectra corresponds
to panel (a). Solutions with different numbers of factors are given
in the Supplement.

constants within a reaction sequence are not identical (which
is typically the case), there is no direct analytical relationship
between the effective rate constant k (Fig. 2b) and the indi-
vidual rate constants in the pathway. However, the effective
rate constant k provides a rough measure of the reactivity of
the compound and its precursors. A higher effective k indi-
cates higher formation and/or reaction rates and is affected
by rate-limiting steps. The scaling constant a (Fig. 2c) en-
sures that the returned values of k and m are insensitive to
instrument calibration and stoichiometric yields.

Compounds can be grouped by similar k and m in order to
reduce the complexity of the dataset. The k, m, and average
chemical properties of the group can be used to define a sur-
rogate species. The choice of the number of groups and the
method of grouping are subjective. GKP could be used alone,
by binning compounds by similar k and m, or it could be
used in combination with another analysis technique, such as
HCA. Several approaches to using GKP to define surrogate
species are discussed in Sect. 3.3.2.

3 Results and discussion

3.1 PMF

3.1.1 PMF of synthetic data

A set of PMF solutions for the synthetic data, including 2–
10 factors, is shown in the Supplement (Fig. S5). The qual-
ity of the PMF reconstruction can be evaluated in two ways:
the residual between the PMF reconstruction and the origi-
nal data (lower residual indicates better agreement), and the
normalized mutual information (NMI) (Vinh et al., 2010) be-
tween PMF factors and photochemical generation. The PMF
residual is high for the 2-factor solution (13 % on average)
and low for 3- to 10-factor solutions (less than 5 %).

The normalized mutual information metric describes the
correlation between PMF factors and generation. A value of
0 means no correlation, and a value of 1 indicates that gen-
erations are perfectly assigned to distinct factors. Because
species can be assigned to multiple factors, we used the rel-
ative intensities of each generation in each factor as input to
the NMI calculation. For instance, if PMF factor 2 accounted
for 66 % of the total integrated intensity of first-generation
product B1, 97 % of the intensity of B2, and 12 % of the in-
tensity of B3, we assigned a value of 1.75 for first-generation
products to factor 2. The mutual information describes the
probability that products of a particular generation are as-
signed to the same cluster. Mutual information must be nor-
malized so that it can be compared between solutions with
different numbers of factors or clusters. As the normalization
factor, we used the arithmetic average of the generation and
factor entropy, which is a quantity that describes the size and
diversity of values in the two classification schemes (genera-
tion and PMF factor).

NMI values are provided in Table 1. For purposes of com-
parison, Table 1 also includes the NMI values calculated
from hierarchical clustering analysis. HCA of the synthetic
dataset is described in Sect. 3.2.1. Because there are only 10
species in the synthetic dataset, a solution with 10 groups,
each of which contains a single species, has no correlation
between generation and groups, and the NMI is zero.

Figure 3 shows the four-factor solution. The four PMF fac-
tors are able to reconstruct the total signal with excellent
agreement, but they do not correspond to the four original
generations of compounds (precursor plus three product gen-
erations). There is some relationship between early-, middle-
, and late-generation species and the PMF factors (indicated
by nonzero NMI values), but regardless of the selected ro-
tational forcing, all PMF factors contain species from more
than one generation. For instance, because both C1 and D2
are long-lived species, they are correlated over the time pe-
riod of the experiment and so are assigned to the same factor.
More importantly, many species are included in two or more
PMF factors, despite being formed by only one pathway.
Eight to 10 factors (approximately the number of species in
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Table 1. Synthetic data. Normalized mutual information index
quantifying the correlation between PMF factor or HCA cluster and
photochemical generation.

Number of groups PMF HCA
(PMF factors NMI NMI
or HCA clusters)

2 0.402 0.397
3 0.381 0.467
4 0.436 0.521
5 0.427 0.683
6 0.442 0.745
7 0.761 0.835
8 0.733 0.799
9 0.679 0.756
10 0 0

the dataset) are needed to separate generations, which is not
a useful simplification of the dataset (which is made up of
only 10 species).

3.1.2 PMF of chamber data

Figure 4 illustrates positive matrix factorization of cham-
ber data, including 463 individual calibrated product species
from CIMS, optical, and AMS instruments; these exclude the
precursor and overlapped species and are corrected for back-
ground and dilution. A three-factor, a four-factor, and a six-
factor solution are shown. Additional solutions are shown in
Fig. S6. In each of the solutions, a linear combination of PMF
factors can reconstruct the measured intensity with negligible
residual (also called reconstruction error) (within 10 ppbC,
or about 2 %, for each solution, regardless of aging time).
Each solution includes factors that peak in intensity at early,
middle, and late times. There are no factors that retain a con-
sistent time series or chemical profile between solutions with
different numbers of factors, and in fact the time series do not
have shapes consistent with chemical kinetics. Rather, each
solution includes factors that peak in intensity at roughly reg-
ularly spaced intervals, apportioning the time series into dis-
crete pieces (Fig. 4a). This suggests that the PMF factors are
not chemically meaningful, even though the data are fit with
low residual.

As in the PMF solution of the synthetic dataset, most
species appear in the profiles of more than one factor
(Fig. 4b). The time series of acetone (from calibrated m/z 59
C3H6OH+ measured by PTR-MS), a species with a large sig-
nal and a long lifetime against OH, is shown in Fig. 4c as an
example. As oxidative aging progresses, acetone and other
long-lived species, including butadione, acetic acid, and CO,
are successively assigned to later-peaking factors, although
mechanisms suggest that compounds such as butadione are
formed in the first one to two generations of reaction (Bloss
et al., 2005a; Jenkin et al., 2003; Li and Wang, 2014). Relat-

edly, two compounds that are formed in the same generation
but exhibit different reactivity are not necessarily assigned to
the same factor.

The chemical composition of each PMF profile can be
summarized by calculating the average carbon oxidation
state and average number of carbon atoms per molecule in
the factor (Fig. 5). The contribution of each species to the av-
erage is weighted by its intensity in the factor profile. As the
precursor species becomes more oxygenated and fragments
to smaller product species, the average composition moves
towards CO and CO2, which are in Fig. 5b (Kroll et al.,
2011). This trajectory is observed from early- to late-peaking
PMF factors, as expected. Regardless of the number of fac-
tors chosen for the solution, the average chemical composi-
tion of each factor falls within the same range of oxidation
state and molecular size. The various PMF factors appear to
show the average composition of the mixture during early,
moderate, and high OH exposures. This is consistent with
the time series of PMF factors, which appear at discrete in-
tervals (Fig. 4), and with the calculated average compositions
of the mixture at specific time periods, which fall within the
range of the PMF factors (Fig. 5). In other words, solutions
with a larger number of factors do not add new groups of
species not represented by solutions with a smaller number
of factors, even though the PMF residuals are low.

We conclude that, in chamber experiments such as the one
considered here, the PMF factors generally cannot be at-
tributed to distinct chemical groups, oxidation generations,
or chemical processes. Surrogate species derived from PMF
factors do not have chemically realistic behavior or the same
range of chemical properties as the original dataset. The in-
formation about the system that can be determined from PMF
factors is the average composition during specific time pe-
riods of the experiment. The researcher must subjectively
choose the number of factors. These factors are not chem-
ically robust, and this should be considered when compar-
ing PMF factors between oxidation experiments or chemi-
cal systems. PMF is certainly well suited for cases in which
groups of compounds have distinct and constant composition
(Ulbrich et al., 2009), such as field measurements near fresh
emission sources and/or when using instruments that classify
mixtures into a small number of types (e.g., the AMS). How-
ever, in a chamber oxidation experiment there are instead
continuous, dynamic changes in composition as a function of
time. Species created in the same oxidation generation often
do not have similar time-series behavior, given differences in
reactivity of different cogenerated species. This could be a
useful first-level simplification of the data but suggests that
PMF factors derived from chamber experiments cannot be
used as surrogates for groups of reaction products within 3-
D models because surrogate species should have a chemical
behavior that emulates real species.
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Figure 4. Positive matrix factorization of chamber data, showing solutions with three, four, and six factors. (a) Time series of PMF factors.
(b) Compositional profiles of factors, shown as combined mass spectra from all instruments with CO, CH2O, and CIMS measurements at
their exact molecular masses and OA shown with a molecular mass of −1. (c) Apportionment of the concentration of acetone (a long-lived
oxidation product signal) across all factors. Within each column, the assigned color of each factor is consistent. As in the PMF analysis of
the synthetic dataset (Fig. 3), factors do not correspond to generations, and long-lived species (such as acetone) are assigned to successively
later peaking factors over the course of the time series.

3.2 HCA

Hierarchical clustering can be used to identify major chemi-
cal groups in processed data. This could be used to reduce the
complexity of a dataset by analyzing the chemical properties
of the clusters rather than individual species.

3.2.1 HCA of synthetic data

An example of the use of HCA to cluster chemical species
within complex oxidation mixtures is shown in Fig. 6 using
the synthetic dataset. Species D1 and D3, with very similar
time-series behavior, are the two most closely related com-
pounds and are assigned to cluster D∗. The next two most
similar groups are species D2 and cluster D∗, which are as-
signed to a new, higher-level cluster. Species are clustered
together until all have been grouped into a single cluster.

In this example with simulated data, HCA generally clus-
ters together compounds of a similar generation, though not
perfectly. HCA clusters together compounds that have sim-
ilar time-series behavior, and time-series behavior is deter-
mined not only by generation, but also by formation and re-
action rate constants. For example, species B1, B2, and C2

all have fast formation and reaction rates, resulting in simi-
lar time series. HCA groups these three species together. The
algorithm further suggests that the first-generation products
B1 and B2 are much more similar to one another than they
are to the second-generation product C2.

The ability of HCA to separate compounds of different
generations was quantified by the normalized mutual infor-
mation (NMI). NMI values are provided in Table 1. For all
solutions with more than two clusters (or factors), NMI val-
ues for HCA are higher than those of PMF, indicating that
HCA more successfully sorts compounds by generation.

The results of HCA applied to synthetic data indicate sev-
eral strengths and weaknesses of the HCA algorithm. Most
importantly, the algorithm provides a clear way to visualize
the behavior and relationships between all measurements in
a dataset. The precursor compound can be included in the
analysis, because data are normalized and the high intensity
of the precursor does not skew the results. Compounds with
similar kinetic properties are mostly grouped together, but
some generational miscategorization still occurs. It may be
difficult to use HCA to separate compounds which have dif-
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Figure 5. Average carbon oxidation state and number of carbon
atoms per molecule in each PMF factor from analysis of chamber
data for solutions with three, four, and six factors. Also noted is the
average composition of the mixture during low (1 h atmospheric-
equivalent aging), medium (8–9 h), and high (15–16 h) OH expo-
sures. Factors cover a relatively small region in this chemical space,
which is unaffected by the number of factors chosen for the solu-
tion.

ferent generation numbers but similar formation and reaction
rates.

HCA can be used to simplify the dataset by replacing clus-
ters of compounds with surrogates. If the surrogate time-
series behavior is determined by averaging the time series of
the individual members of the cluster, then the surrogate will
have chemically realistic behavior. As noted previously, the
researcher must subjectively choose the number of clusters.

3.2.2 HCA of chamber data

There are some significant differences between the synthetic
dataset and real-world datasets collected from chamber ex-
periments. Most importantly, the actual chamber experiment
includes many more species (10 species in the synthetic sys-
tem compared to thousands of detected ion masses and hun-
dreds of measured species in the chamber experiment). The
real chamber dataset includes many nonmeaningful mea-
surements whose time series have no structure. Additionally,
many species in the real-world dataset have much more sim-
ilar time-series behavior to one another than any two of the
species in the synthetic system. Conversely, there are also
distinct outliers in the real-world dataset, whose time-series
behavior does not resemble any other compound. HCA effec-
tively separates meaningful from nonmeaningful measure-
ments, groups together very similar compounds, and high-
lights outliers.

A diagram showing the hierarchical distance between all
species measured in the chamber study is shown in Fig. 7.
This dataset includes measured, calibrated, and background-
subtracted species from all instruments and excludes over-
laps. We use calibrated data here, but an advantage of this

Figure 6. Hierarchical clustering procedure applied to synthetic
data. First-, second-, and third-generation species are shown in red,
yellow, and blue, respectively, and the precursor is shown in black.
(a) Time series data. (b) Time series of species C1 and D2 normal-
ized between 0 and 1. The gray shaded area is integrated to give the
distance between the two time series. (c) Matrix showing the rela-
tive distance between each pair of species. (d) Hierarchical cluster
relationship; D1 and D3 are the most similar species and so are the
first to be clustered together (forming a new cluster D∗).

method is that it is insensitive to calibration: data are nor-
malized, and only relative behavior is important. In Fig. 7a,
individual species are arrayed across the bottom, and their
accumulation into clusters is denoted by gray lines linking
species and clusters. As with PMF, the user must choose
the number of groups (factors or clusters) in the solution.
Here we have selected a maximum threshold relative distance
that places the precursor, 1,2,4-trimethylbenzene, in a clus-
ter separate from all product species. The individual clusters
that fall below this threshold are distinguished by color in
Fig. 7a. The resulting groups include 10 individual species
that do not fall into a cluster (including the precursor, 1,2,4-
trimethylbenzene) and nine clusters that incorporate at least
two species. Figure 7b shows the time series of a selection
of these clusters (all time series are included in Fig. S7).
The cluster average was determined by summing the indi-
vidual species contributors to the cluster, weighted by parts-
per-billion carbon.

The chemical properties of each cluster, described as av-
erage oxidation state and average number of carbon atoms
per molecule, are shown in Fig. 8. Clusters lie on a diag-
onal trajectory between the precursor and highly oxidized,
small molecules (CO and CO2), and clusters that peak ear-
lier in time appear closer to the precursor. This indicates that

www.atmos-chem-phys.net/20/1021/2020/ Atmos. Chem. Phys., 20, 1021–1041, 2020



1032 A. R. Koss et al.: Dimensionality-reduction techniques for complex mass spectrometric datasets

Figure 7. (a) Hierarchical cluster relationship of all measured
species from the chamber experiment. Clusters are colored at a
relative distance cutoff (gray dashed line) that separates 1,2,4-
trimethylbenzene from all other products, with gray lines showing
linkages between species and clusters. The individual clusters are
distinguished by different colors. (b) Time series of eight example
clusters. The x axis in each plot is OH exposure, and the y axis is the
normalized intensity. The cluster average is shown by a thick col-
ored line, and individual species contributors are shown as thinner
gray lines. Colors correspond to those in panel (a).

Figure 8. Average oxidation state and number of carbon atoms per
molecule for each cluster determined from HCA of chamber data.
The individual clusters are distinguished by color, and the color
scheme is the same as in Fig. 7. The contribution of each species
to the cluster average is weighted by parts-per-billion carbon (aver-
aged over the entire experiment). The marker area is proportional to
the averaged concentration (parts-per-billion carbon) of all species
in the cluster, with the marker size of the precursor (red) decreased
by a factor of 2 for legibility. Clusters cover a substantially wider
area of chemical space than PMF factors (Fig. 5).

Figure 9. Best fit of the gamma kinetic parameterization to syn-
thetic data (GKP, Eq. 3). (a) Time series of synthetic data (colored
lines) and best fit (black lines). First-generation species are shown
in red, second-generation species in yellow, and third-generation
species in blue. The relative rate constants are indicated by short ar-
rows (slow rate constant) or long arrows (fast rate constant). (b) Fit-
ted generation compared to actual generation. The colors corre-
spond to the generations shown in panel (a). (c) Effective rate con-
stant compared to the average of the rate constants in the pathway
that produces each particular species. Pathways that include slow
steps are shown with open circles.

species with similar time-series behavior have similar chem-
ical properties. Compared to the chemical properties of the
PMF factors (Fig. 5), the clusters lie along the same diagonal
trajectory but are substantially more varied in terms of av-
erage carbon number and oxidation state and cover a wider
range of chemical space. As the threshold for separating clus-
ters is lowered, resulting in more clusters with fewer species
per cluster, a wider range of chemical properties is observed
(Fig. S8). This is in contrast to PMF analysis, in which in-
creasing numbers of factors does not increase the range of
chemical properties (Fig. 5). As shown in Sect. 2.2.1, in-
creasing the number of PMF factors provided the average
composition of the mixture at more time points. HCA does
not always separate generations perfectly (as can be seen in
Table 1 and Fig. 6d), but the generational mixing is not as
severe as with PMF and can be reduced by choosing a lower
threshold for separating clusters.

The surrogate species derived from HCA clusters have
chemically realistic behavior and have a similar range of
chemical properties to the original dataset. As with PMF, the
choice of the number of clusters is subjective. In addition to
defining surrogate species, HCA can be used to visualize the

Atmos. Chem. Phys., 20, 1021–1041, 2020 www.atmos-chem-phys.net/20/1021/2020/



A. R. Koss et al.: Dimensionality-reduction techniques for complex mass spectrometric datasets 1033

Figure 10. Measured species from chamber experiment (red) and GKP best fit (black). Data in panels (a), (c), and (e) are from Vocus-2R-
PTR; in panels (b) and (d) from PTR3-H3O+; in panels (f), (g), and (i) from I− CIMS; and in panel (h) from TILDAS. The data gaps in
panels (f), (g), and (i) arise from the I−CIMS instrument measuring particle-phase composition, measurements that are not considered in this
work.

range of behavior and degree of similarity between all com-
pounds in a dataset. The clustering algorithm is thus a viable
approach for describing a continuum of kinetic behavior and
chemical properties.

3.3 GKP

3.3.1 GKP fit to synthetic data

The gamma kinetics parameterization (GKP, Eq. 3) provides
a method for determining kinetic and mechanistic informa-
tion from chamber experiments. The parameterization re-
turns an effective rate constant k and generation number
m. To investigate the extent to which fitting kinetic data to
Eq. (3) yields reasonable values for rate constants (k) and
generation number (m), we first apply the parameterization
to the synthetic dataset described in Sect. 2.1.2, which has
known rates and generation numbers. Figure 9a shows the
time series of synthetic data and the parameterized best fit,
using the integrated signal as described in Sect. S1. The pa-
rameterization can reproduce a range of kinetic behavior,
even in situations where the formation and loss rate con-
stants km are very different (for which the assumption of uni-
form reactivities is poor). Figure 9b shows the fitted genera-
tion compared to the actual generation. The actual generation

numbers are correctly returned in all cases (with errors within
12 %). Figure 9c shows the parameterized k compared to ac-
tual pathway-average km rate constants in the pathway. The
effective rate constant k cannot be calculated directly from
the actual km in the system but is rather a best-fit value in the
approximation of equal km. The returned values of k are in
the same range as the actual km and are larger for pathways
that generally involve faster rate constants. The average rate
constant in a particular pathway and the fitted effective rate
constant k are similar, except when the pathway includes a
very slow step. In this case the fitted value of k is closer to
that of the rate-limiting step (Fig. 9c). We conclude that the
fit parameters m and k are reasonable, physically meaningful
values that provide information on the kinetics of the system.

3.3.2 GKP fit to chamber data

The GKP was applied to the chamber data, with the time de-
pendence of all measured compounds fit to Eq. (3). More
than 95 % of measured compounds are fit with a correlation
coefficient R2 of 0.9 or higher, meaning the function gener-
ally describes the kinetic behavior of species measured in ox-
idation systems well. Examples of fitted chamber measure-
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Figure 11. Parameterized rate constant and generation number for
463 species detected during the chamber experiment OH-initiated
oxidation of trimethylbenzene. The marker area corresponds to
log(ppb carbon) of detected species, averaged over the duration of
the experiment. Fast-reacting species, defined as having an effective
rate constant at least 75 % that of the precursor, are highlighted as
black bars in the histogram of m. These tend to center on integer
values of generation number.

ments are shown in Fig. 10. In some cases, noninteger values
of m are returned, which may occur for several reasons.

First, noise can contribute to uncertainty in m. At low gen-
erations (m = 1–2), the standard deviation of the fit is about
0.1, and at high generations (m ≥ 3) it is somewhat higher,
with standard deviation up to 0.8 (Fig. S9). Especially for
measurements with low signal-to-noise ratios and limited
data near the beginning of the experiment, m may not be fit
with high precision. For example, the fits using m = 3 and
m = 5 to C5H6O6 (Fig. 10i) are not significantly worse than
m = 4.

Second, the generation number can be distorted if the com-
pound is produced by or reacts significantly via channels
other than OH reaction (e.g., by ozone reaction, NO3 rad-
ical reaction, or photolysis), in which case the assumption
of linear, first-order kinetics with respect to OH exposure is
not necessarily applicable. For example, C6H8O2 (Fig. 10c)
may correspond to 3,4-dimethyl-2(5H)-furanone (Bloss et
al., 2005b), which reacts with O3 under experimental con-
ditions at a comparable rate to OH, or an unsaturated dike-
tone (Li and Wang, 2014), which has a high photolysis rate.
In Fig. 10b and c, the curves are also distorted due to repeat
injections of HONO, which abruptly changes the NO con-
centration in the experiment and clearly affects the reaction
of these compounds. Any of these processes can distort the

shape of the curve, making it more difficult to fit m correctly.
Because m is related to the slow (rate-limiting) steps in a
mechanism, specifically OH additions, it is not affected by
faster radical chemistry such as autoxidation and intramolec-
ular arrangements.

Finally, if the compound is produced by more than one
pathway with a differing number of reaction steps, such as
butadione (Fig. 10d), the resulting generation parameter is
noninteger. This is also demonstrated using a synthetic sys-
tem in Fig. S10.

In addition, if physical (nonchemical) processes have a
major influence on species concentrations, and occur on the
same timescale as the chemical reaction, they may impact
the fitted kinetic parameters. In particular, delays caused by
strong interactions of gas-phase compounds with surfaces
(chamber walls or instrument inlets) can shift the fitted m to
higher values and the fitted k towards the time constant of the
surface interaction. As noted above, the timescales of surface
equilibration processes in the present experiments are < 15 s,
which is much shorter than the timescales of the chemical
changes observed. Thus, such processes are unlikely to affect
the analysis of the present chamber results but could intro-
duce substantial errors if they occur over longer timescales
or are competing against much more rapid chemical trans-
formations. GKP analysis is therefore only valid when the
equilibration times of such processes are short compared to
the timescales of the chemical processes being studied.

The fitted values of k and m for all species are shown in
Fig. 11. The returned k’s fall within 1 order of magnitude
of the OH rate constant of the precursor species (kTMB =

3.2 × 10−11 cm−3 molecule−1 s−1). Most m’s are between 1
and 2, meaning most measured compounds are produced af-
ter one or two reaction steps (assuming OH is the dominant
oxidant). When the data are restricted to fast-reacting com-
pounds, major modes at integer values of m are observed
(black bars in Fig. 11). However, when all compounds are
considered, major modes at integer values are not observed,
which suggests that many compounds are formed by more
than one pathway and/or have significant reactions with O3

or another oxidant. The generation numbers of compounds
with m≧ = 4 are less certain due to data gaps, limited ex-
perimental duration, and low signal-to-noise ratio in the fits.
Higher-generation (m > 2) compounds are uniformly the fast-
reacting (high k) species. Conversely, no species are ob-
served with high m (> 2) and low k. This area of the diagram
corresponds to slow-forming, slow-reacting species that are
created after multiple OH additions; such species are unlikely
to be formed at observable concentrations within the time-
frame of the experiment. Were the experiment to be run at
higher OH exposures, it is possible that these species would
be observed as well.

The kinetic parameters derived from fitting the gamma
distribution are correlated with individual species’ chemical
composition. Figure 12 shows that species that involve the
fastest reactions (high values of the effective rate constant,
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Figure 12. Relationships of kinetic parameters (from the GKP of chamber data) with key chemical properties of reactive species. (a) Gener-
ation (m) and rate (k) values of 1,2,4-trimethylbenzene precursor and products, colored by number of carbon atoms. (b) Same as (a) but with
k and m colored by carbon oxidation state. The marker area corresponds to log(ppb carbon). The early-generation and fast-reacting products
tend to have higher numbers of carbon atoms and are less oxidized, while later-generation and slow-reacting products tend to be smaller and
more oxidized.

k) and earliest formation (lowest values of m) tend to be
large and relatively unoxidized, with oxidation states simi-
lar to that of the 1,2,4-trimethylbenzene precursor. Species
that form or react slowly (low values of k) or that form in
later generations (higher values of m) tend to be smaller and
more oxidized.

3.3.3 Clustering of GKP results

The GKP can be used not only to describe individual species,
but also to group compounds and reduce the complexity of
the system. If compounds are grouped by similar k and m,
compounds in the group will have similar chemical compo-
sition and similar kinetic behavior, and the chemical and ki-
netic properties of the groups will include a range of vari-
ability similar to the individual species. Here we test three
methods of using GKP to group compounds: (1) fitting the
GKP to time series of HCA-derived clusters, (2) using HCA
to cluster compounds based on their GKP-derived time series
(based on fitted values k and m), and (3) using fixed bins to
group compounds based on k and m. Groups derived from
PMF analysis cannot be fit with the GKP because the factor
time series are not consistent with chemical kinetics.

Results from each approach, showing both kinetic charac-
teristics (k and m) and chemical properties (oxidation state
and carbon number) of each group, are given in Fig. 13,
which includes an overview and comparison of grouped
species derived from PMF (Fig. 13a), HCA (Fig. 13b), and
GKP (Fig. 13c and d). Figure 13b shows results from apply-
ing the GKP to HCA data. For each of the nine HCA clusters
(described in Sect. 3.2.2), the GKP was fit to the cluster’s
average time series, determined from a carbon-weighted av-
erage of the time series of all individual species in the clus-
ter. This provided values of k and m for each cluster. (For
the 10 species that did not fit into any cluster, the k and

m of these were determined as well.) Figure 13c shows the
reversed approach, the application of HCA to GKP results.
Here, the time series of each individual species was fit with
GKP, and the distances between the time series of the best
fits were determined and used as input into the HCA algo-
rithm. The k and m of the resulting cluster were calculated
by averaging the k and m of the individual compounds in the
cluster, weighted by parts-per-billion carbon. A potential ad-
vantage of this approach is that the GKP fitting reduces the
noise of the signals used in HCA analysis, possibly allowing
for more precise determinations of clusters. Finally, shown in
Fig. 13d are results from an alternate approach for grouping
compounds by GKP parameters (k and m), binning all the
species by their values of k and m. This is analogous to the
2-D volatility basis set developed by Donahue et al. (2011,
2012), which bins species based on saturation mass concen-
tration and O : C ratio.

Surrogate species defined by GKP have by definition ki-
netically realistic behavior. The resulting groups of com-
pounds have a range of chemical properties similar to that of
the original dataset, regardless of whether they are grouped
using HCA or grouped by similar k and m. The method of
grouping is subjective, as is the choice of the number of clus-
ters (if HCA is used) or the number of bins (if compounds are
grouped by similar k and m). A particular strength of GKP is
the resulting kinetic characterization of each compound. The
effective rate constant and generation number provide new
information that can be used to assess proposed mechanisms
or to guide the reactive behavior of surrogate species in a
model.

3.4 Comparison of PMF, HCA, and GKP

A comparison of compound groups derived from PMF, HCA,
and GKP is also shown in Fig. 13. Included in this figure are
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Figure 13. Overall comparison of groups derived from PMF, HCA, and GKP of chamber data. The columns show, from left to right, the
results of (a) PMF, (b) HCA, (c) GKP best fits grouped using HCA, and (d) measurements grouped by GKP fit parameters. The rows show,
from top to bottom, (1) the average carbon oxidation state and number of carbon atoms per molecule for each group, (2) the time series of
the six groups containing the most carbon, (3) the mass spectra of those six groups, and (4) the rate constant and generation number of each
group. Within each column, each chemical group is assigned a specific color. This color scheme is the same for each plot within a column.
The marker area is proportional to the averaged concentration (ppb carbon) of all species in the group, with the marker size of the precursor
(red) decreased by a factor of 2 for legibility. The marker area scheme is consistent across all plots. PMF factors do not have kinetically
realistic time series; therefore, there is no plot a4.

the chemical properties (oxidation state vs. number of car-
bon atoms), time series, mass spectra, and kinetic properties
(k vs m) of the compound groups. For each technique, so-
lutions with different numbers of groups are possible. Fig-
ure 13 shows the solution discussed most extensively in the
text: the six-factor solution for PMF; the HCA solution with

nine major clusters; and the two GKP solutions discussed in
Sect. 3.3.3, which have seven major clusters and 25 bins, re-
spectively. For clarity, the time series and mass spectra for
only six groups derived from HCA and GKP are shown.
These six groups contain cumulatively about 80 % of the to-
tal product carbon in the system.
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In all cases, the majority of the carbon can be represented
by a manageable number of groups. The relationship be-
tween oxidation state and number of carbon per molecule is
similar, regardless of the grouping technique. The PMF fac-
tors have a smaller range of chemical properties than chemi-
cal groupings derived from HCA or GKP. The range of chem-
ical properties is similar for HCA and GKP. The time se-
ries of PMF factors are clearly different from those of HCA-
and GKP-derived groups and have non-kinetically realistic
shapes with sharp maxima.

The PMF factors each contain many more compounds than
the groups derived from HCA or GKP. Many of the same
compounds are consistently grouped together by HCA and
GKP, regardless of whether HCA, HCA of GKP, or binning
of GKP is used. Additionally, the range of kinetic properties
and the locations of major compound groups in kinetic space
are similar between the HCA and GKP approaches. This re-
producibility suggests that these are chemically meaningful
compound groupings. Some groups derived from HCA or
GKP contain only a single species. These could be chem-
ically important compounds whose unique behavior should
be considered when modeling the system; conversely, they
could be measurement outliers which should be discarded.
The interpretation of these species is subjective.

Regardless, the combination of fitting using the GKP and
grouping based on kinetic behavior may provide a viable ap-
proach for greatly simplifying the time-dependent behavior
of complex mixtures of reaction products in a laboratory ox-
idation system.

4 Conclusions

Hundreds to thousands of individual chemical species can be
produced in a typical organic photooxidation chamber ex-
periment. This chemical complexity presents a number of
analytical challenges, including organizing and processing
large mass spectrometric datasets, identifying major groups
of compounds, providing kinetic and mechanistic informa-
tion, and simplifying the chemistry in a way that can be im-
plemented in large-scale regional and global models.

In this paper, we evaluated three methods to simplify a
description of atmospheric chemistry in chamber studies.
The methods explored include positive matrix factorization
(PMF), which represents data as a linear sum of factors; hier-
archical clustering analysis (HCA), which describes the sim-
ilarity of species in terms of their time-series behavior; and
the gamma kinetics parameterization (GKP), which charac-
terizes species in terms of the effective rate constant and gen-
eration. All three approaches require a subjective choice of
the number of compound groups.

Because PMF is so widely used in atmospheric chemistry
to characterize organic aerosol and for source apportionment
in field studies, it is important to understand how oxidation
systems are described by PMF. We found that PMF analy-

sis of the chamber experiment described here did not sort
species into clear generations, since different species formed
in a single generation can exhibit highly variable reactivi-
ties. Oxidized factors appearing in PMF analysis of chamber
studies, and in ambient air, may be able to reproduce obser-
vations as a linear sum of a fresh factor and a highly aged
factor with low residual, but these factors do not necessar-
ily represent distinct chemical groups. This is because PMF
assumes constant factor composition, which is useful when
distinguishing fresh emission sources but does not apply to
evolving oxidation systems.

Hierarchical clustering, which also does not depend on
calibration, can be used to quickly identify major groups
of ions and patterns of behavior. The derived clusters main-
tain more chemical information (including average oxidation
state and molecular size) than do PMF factors. HCA is there-
fore useful to identify chemically meaningful ions in mass
spectrometry data and to group compounds into a smaller
number of groups with consistent chemical characteristics.

A continuum of kinetic behavior is observed and can be
described using the gamma kinetics parameterization of in-
dividual species (or clusters of species). The parameteriza-
tion is derived from first-order kinetics and thus provides a
physically meaningful fit to the kinetics of the species. The
two returned parameters, effective rate constant and gener-
ation number, correlate with oxidation state and molecular
size. The parameterization provides a way to derive mecha-
nistic information from an oxidation system, in addition to
describing chemical composition.

Future directions of this work include evaluation of mech-
anisms, mechanism development, and applications to lump-
ing schemes in models. The current analysis is based on two
systems, a synthetic system and a chamber experiment, and
more work is needed to see how these analysis approaches
perform with other systems. The gamma kinetics parameter-
ization can be used to support complex chemical mechanisms
by determining whether the experimentally determined gen-
eration and rate constants are consistent with a proposed
pathway or mechanism. Further, with well-calibrated, high-
quality laboratory data, it may be possible to derive yields,
formation rate constants, and reaction rate constants sepa-
rately, which would be invaluable in model and mechanism
development. Finally, HCA-derived clusters, or groups of
compounds with a similar effective rate constant and gener-
ation, could be used as surrogates or lumps in aerosol or air
quality models as an experimentally supported way of sim-
plifying a complex system.

Data availability. Data are available through the Kroll group publi-
cations website, http://krollgroup.mit.edu/publications.html (Kroll,
2020). Both datasets (chamber data and the synthetic dataset) are in-
cluded in this repository as comma-separated-value (csv) files avail-
able for public download.
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