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Dimensionality Reduction Using Genetic Algorithms
Michael L. Raymer, William F. Punch, Erik D. Goodman, Leslie A. Kuhn, and Anil K. Jain

Abstract—Pattern recognition generally requires that objects
be described in terms of a set of measurable features. The selec-
tion and quality of the features representing each pattern have a
considerable bearing on the success of subsequent pattern classi-
fication. Feature extraction is the process of deriving new features
from the original features in order to reduce the cost of feature
measurement, increase classifier efficiency, and allow higher clas-
sification accuracy. Many current feature extraction techniques in-
volve linear transformations of the original pattern vectors to new
vectors of lower dimensionality. While this is useful for data visu-
alization and increasing classification efficiency, it does not neces-
sarily reduce the number of features that must be measured since
each new feature may be a linear combination of all of the features
in the original pattern vector. Here, we present a new approach
to feature extraction in which feature selection, feature extraction,
and classifier training are performed simultaneously using a ge-
netic algorithm. The genetic algorithm optimizes a vector of fea-
ture weights, which are used to scale the individual features in the
original pattern vectors in either a linear or a nonlinear fashion.
A masking vector is also employed to perform simultaneous selec-
tion of a subset of the features. We employ this technique in com-
bination with the nearest neighbor classification rule, and com-
pare the results with classical feature selection and extraction tech-
niques, including sequential floating forward feature selection, and
linear discriminant analysis. We also present results for the iden-
tification of favorable water-binding sites on protein surfaces, an
important problem in biochemistry and drug design.

Index Terms—Curse of dimensionality, feature extraction, fea-
ture selection, genetic algorithms, pattern classification.

I. INTRODUCTION

A. Feature Selection and Extraction

I N ATTEMPTING to classify real-world objects or con-
cepts using computational methods, the selection of an

appropriate representation is of considerable importance. For
classical pattern recognition techniques, the patterns are gen-
erally represented as a vector of feature values. The selection
of features can have a considerable impact on the effectiveness
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Fig. 1. Model for a pattern recognition system using feature extraction.
Feedback from the classifier allows the feature extraction module to iteratively
search for a feature vector that provides optimal classification accuracy.

of the resulting classification algorithm [1], [2]. It is not
often known in advance which features will provide the best
discrimination between classes, and it is usually not feasible
to measure and represent all possible features of the objects
being classified. As a result, feature selection and extraction
methods have become important techniques for automated
pattern recognition [1]–[4], exploratory data analysis [5], and
data mining [6].

The main purpose of feature selection is to reduce the
number of features used in classification while maintaining an
acceptable classification accuracy. Less discriminatory features
are eliminated, leaving a subset of the original features which
retains sufficient information to discriminate well among
classes. Feature extraction is a more general method in which
the original set of features is transformed to provide a new
set of features. Fig. 1 shows the role of feature extraction in a
pattern recognition system. The genetic algorithm (GA) feature
extractor presented here utilizes feedback from the classifier to
the feature extractor; hence, we have the feedback loop in the
figure. Most well-known feature extraction methods involve
only a single iteration, and do not include such feedback.

Many classical feature extraction methods perform a linear
transformation of the original feature vectors. Formally, these
linear feature extraction techniques can be stated as follows:
given an pattern matrix ( points in a -dimensional
space), derive an pattern matrix , where

and is a transformation matrix.

1089–778X/00$10.00 © 2000 IEEE
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According to this formalization, the classical methods for
linear feature extraction can be specified according to the
method of deriving the transformation matrix. For unsuper-
vised linear feature extraction, the most common technique is
principal component analysis. For this method, the columns of

consist of the eigenvectors of the covariance matrix
of the given patterns. It can be shown that the new features
produced by principal component analysis are uncorrelated,
and maximize the variance retained from the original feature
set [7]. The corresponding supervised technique is linear
discriminant analysis. In this case, the columns ofare the
eigenvectors corresponding to the nonzero eigenvalues of the
matrix , where is the within-class scatter matrix
and is the between-class scatter matrix for the given set
of patterns. Deriving in this way maximizes the separation
between class means relative to the covariance of the classes
[7]. In the general case, the matrix is chosen to maximize
some criteria, typically related to class separation or classifi-
cation accuracy for a specific classifier. In this view, feature
selection is a special case of linear feature extraction, where
the off-diagonal entries of are zero, and the diagonal entries
are either zero or one.

Feature selection and extraction have many functions in
common. Both can be used to project data onto a lower
dimensional space for subsequent visualization, clustering, and
other exploratory data analysis. By reducing the number of
features considered by a classifier, both techniques can improve
classification speed and efficiency. Less intuitively, these
techniques can improve classification accuracy by reducing
estimation errors associated with finite sample size effects [8].
With feature selection, the cost of classification can be reduced
by limiting the number of features which must be measured
and stored. Some, but not all, feature extraction methods realize
this benefit as well. Many well-known techniques, although
they reduce the number of features considered by the classifier,
do not actually reduce the number of features which must
be measured for classification since each extracted feature
is usually a linear combination of all of the original input
features. An example of such a transform is canonical linear
discriminant analysis [9].

The problem of dimensionality reduction, encompassing
both feature selection and feature extraction, has been the
subject of study in a diverse spectrum of fields. In neural
network pattern classification, feature selection can be ef-
fected using node-pruning techniques [10]. After training for
a number of epochs, nodes are removed from the network
in such a manner that the increase in squared error is mini-
mized. When an input node is pruned, the feature associated
with that node is no longer considered by the classifier. Sim-
ilar methods have been employed in the use of fuzzy systems
for pattern recognition through the generation and pruning
of fuzzy if–then rules [11], [12]. Some traditional pattern
classification techniques, while not specifically addressed to
the problem of dimensionality reduction, can provide fea-
ture selection capability. Tree classifiers [13], for example,
typcally partition the training data based on a single fea-
ture at each tree node. If a particular feature is not tested
at any node of the decision tree, it is effectively eliminated

from classification. Additionally, simplification of the final
tree can provide further feature selection [14].

B. Pattern Classification Techniques

Feature extraction can be used in conjunction with nu-
merous methods for pattern classification. The well-known
statistical methods can be divided into two general classes.
The parametric methods, including the commonly used naive
Bayesian classifier [7], assume that the form of the class-con-
ditional density function of the features is known in advance.
For example, it is commonly assumed that the features follow
a multivariate Gaussian distribution. The training data are
used to estimate the parameters of these class-conditional
densities (e.g., the mean vectorand the covariance matrix

for the Gaussian distribution), and these estimated den-
sities are then used to classify test patterns. The nonpara-
metric methods, including Parzen window density estimation
[15] and the nearest neighbor (knn) classifier [16], make
no assumptions about the distributions of feature values for
each class. Rather, the form of the density function is either
estimated from the training data, as in the Parzen window
method, or ignored altogether in the case of the knn method.

In knn classification, each training pattern is represented in
a -dimensional space according to the value of each of its
features. The test pattern is then represented in the same space,
and its nearest neighbors, for some constant, are selected.
Neighbors are usually calculated according to Euclidean dis-
tance, although other metrics (e.g., Mahalanobis distance) are
sometimes used. The class of each of theseneighbors is then
tallied, and the class with the most “votes” is selected as the
classification of the test pattern. The knn classification rule has
been selected for use in combination with the GA feature ex-
tractor for several reasons. The simplicity of the knn classifier
makes it easy to implement. Its nonparametric nature allows
classification of a broad range of datasets, including those for
which feature values do not follow a multivariate Gaussian dis-
tribution. Due to the use of the Euclidean distance metric, the
knn decision rule is sensitive to scaling of the feature values—a
necessary prerequisite for use with the GA feature extraction
technique described here. Classifiers based on the class-condi-
tional distributions of feature values, such as the Bayes classfier,
are invariant to scaling of the feature values. Finally, the knn
classifier is well explored in the literature, and has been demon-
strated to have good classification performance on a wide range
of real-world data sets. The asymptotic error rate of the knn de-
cision rule can be shown to be bounded by the Bayes error as

[7, pp. 98–105].

C. Genetic Algorithms in Feature Selection and Extraction

Computational studies of Darwinian evolution and natural se-
lection have led to numerous models for solving optimization
[17]–[21]. GA’s comprise a subset of these evolution-based op-
timization problems techniques focusing on the application of
selection, mutation, and recombination to a population of com-
peting problem solutions [22], [23]. GA’s are parallel, iterative
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optimizers, and have been successfully applied to a broad spec-
trum of optimization problems, including many pattern recog-
nition and classification tasks.

The problem of dimensionality reduction is well suited to
formulation as an optimization problem. Given a set of-di-
mensional input patterns, the task of the GA is to find a trans-
formed set of patterns in an-dimensional space that
maximizes a set of optimization criteria. Typically, the trans-
formed patterns are evaluated based upon both their dimension-
ality, and either class separation or the classification accuracy.
Fig. 2 shows the structure of a GA-based feature extractor using
classification accuracy as an evaluation criterion. The GA main-
tains a population of competing feature transformation matrices.
To evaluate each matrix in this population, the input patterns are
multiplied by the matrix, producing a set of transformed patterns
which are then sent to a classifier. The available samples are di-
vided into a training set, used to train the classifier, and a testing
set, used to evaluate classification accuracy. The accuracy ob-
tained is then returned to the GA as a measure of the quality of
the transformation matrix used to obtain the set of transformed
patterns. Using this information, the GA searches for a trans-
formation that minimizes the dimensionality of the transformed
patterns while maximizing classification accuracy.

A direct approach to using GA’s for feature selection was in-
troduced by Siedlecki and Sklansky [24]. In their work, a GA
is used to find an optimal binary vector, where each bit is asso-
ciated with a feature (Fig. 3). If theth bit of this vector equals
1, then the th feature is allowed to participate in classification;
if the bit is a 0, then the corresponding feature does not partici-
pate. Each resulting subset of features is evaluated according to
its classification accuracy on a set of testing data using a nearest
neighbor classifier.

This technique was later expanded to allow linear feature ex-
traction, by Punchet al. [25] and independently by Kelly and
Davis [26]. The single bit associated with each feature is ex-
panded to a real-valued coefficient, allowing independent linear
scaling of each feature, while maintaining the ability to remove
features from consideration by assigning a weight of zero. Given
a set of feature vectors of the form , the
GA produces a transformed set of vectors of the form

where is a weight associated with
feature . Each feature value is first normalized, then scaled by
the associated weight prior to training, testing, and classifica-
tion. This linear scaling of features prior to classification allows
a classifier to discriminate more finely along feature axes with
larger scale factors. A knn classifier is used to evaluate each
set of feature weights. The effects of linear feature weighting
on the knn classification rule are visualized in Fig. 4. Patterns
plotted in feature space are spread out along feature axes with
higher weight values, and compressed along features with lower
weight values. The value of for the knn classifier is fixed and
determined empirically prior to feature extraction. This GA/knn
feature extraction technique has been applied for predicting fa-
vorable water-binding sites in proteins, an important problem in
biochemistry related to drug binding and design [27].

The GA feature extraction technique has been expanded to
include a binary masking vector along with the feature weight

Fig. 2. GA-based feature extractor using an objective function based on
classification accuracy. Each transformation matrix from the GA population
is used to transform the input patterns, which are then passed to a classifier.
The fitness of the matrix is based on the classification accuracy attained on the
transformed patterns.

Fig. 3. d-dimensional binary vector, comprising a single member of the GA
population for GA-based feature selection.

Fig. 4. Effect of scaling feature axes onk (k = 5) nearest neighbor
classification. (a) Original data. (b) Scaled data. Extension of the scale of the
horizontal axis increases the distance between patterns which differ in feature
1, allowing the knn to discriminate more finely along this dimension. Here, the
prediction of the unknown changes from class 2 to class 3 as a result of scaling.

vector on the chromosome [6]. If the mask value for a given fea-
ture is zero, the feature is not considered for classification. If the
mask value is one, the feature is scaled according to the associ-
ated weight value, and is included in the classifier. The inclusion
of the mask vector allows the GA to more rapidly sample fea-
ture subsets while simultaneously optimizing scale factors for
features included in the classifier. An additional improvement
specific to the knn classifier was the inclusion of the value of
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on the GA chromosome. This modification allows the GA to
cooptimize the feature weights andvalue for better classifica-
tion accuracy.

In a recent study of current feature selection techniques, Jain
and Zongker [1] evaluated the performance of 15 feature se-
lection algorithms in terms of classification error and run time
on a two-class, 20-dimensional, multivariate Gaussian data set.
Their findings demonstrated that the sequential floating forward
selection algorithm (SFFS) of Pudilet al. [28] dominated the
other methods for these data, obtaining feature selection re-
sults comparable to the optimal branch-and-bound algorithm
while requiring less computation time. Further tests of the SFFS
technique in combination with a knn classifier were then per-
formed to observe the behavior of the knn classification rule as
additional features were provided to the classifier. The results
showed that classification accuracy initially improved as addi-
tional features were introduced, but eventually reached a max-
imal value, and began to decline with the introduction of further
features. Because of this unimodal behavior, the selection of an
optimal number of features is straightforward when using the
SFFS method in combination with a knn classifier.

Since the GA/knn algorithm is a hybrid method, combining
feature extraction with classifier training and tuning, we
present experimental results for the algorithm, both in terms of
classification performance and feature selection performance.
Classification accuracy is compared with published results for
several commonly employed pattern classification algorithms,
while feature-selection performance is compared with the SFFS
algorithm in combination with a knn classifier.

II. M ETHODS

A. The GA Feature Extractor

There are three major design decisions to consider when im-
plementing a GA to solve a particular problem. A representation
for candidate solutions must be chosen and encoded on the GA
chromosome, an objective function must be specified to eval-
uate the quality of each candidate solution, and finally, the GA
run parameters must be specified, including which genetic op-
erators to use and their frequencies of operation. For the GA
feature extractor, the organization of the chromosome was fairly
straightforward. A weight vector consisting of a single real value
for each feature was followed by a masking vector consisting of
one or more binary mask bits for each feature. When a single
mask bit was used, a zero indicated that the feature was to be
omitted from consideration during classification, while a one
indicated that the feature should be included. At times, it was
desirable to use more than one masking bit per feature since
each of these bits had a strong impact on the interpretation of
the chromosome. The importance of these single bits can cause
discontinuities in the objective function, making optimization
more difficult for the GA. To mitigate this effect, additional
masking bits were used; a feature was then included in classifi-
cation only if the majority of the masking bits associated with
that feature were set to one. Finally, some classifier-specific in-
formation was also stored on the chromosome to be optimized
along with the feature weights. For example, when a knn classi-
fier was used to evaluate feature extraction results, the value of

was stored on the chromosome and optimized simultaneously
with the feature weights. For a Bayes classifier, if the prior prob-
abilities for each class were not known, they could be stored on
the chromosome and similarly optimized during feature extrac-
tion.

For the experiments presented here, the objective function
consisted of the classification performance obtained by a knn
classifier, using the value of provided by the GA. In order to
prevent any initial bias due to the natural ranges of values for
the original features, input feature values were normalized over
the range [1.0, 10.0] as follows:

where is the th feature of theth pattern, is the corre-
sponding normalized feature, andis the total number of pat-
terns.

Prior to each GA experiment, the knn classifier was trained
with a set of patterns with an equal number of samples of each
class. A second set of patterns, disjoint to the training set, was
set aside to serve as a tuning set. To evaluate a particular set of
weights, the GA scaled the training and tuning set feature values
according to the weight set, and classified the tuning set with
the weighted knn classifier. The performance of the weight set
was determined according to the classification accuracy on the
tuning set, the balance in accuracy among classes, the number of
correct votes cast during knn classification, and the parsimony
oftheweight set (the number of features eliminated from classi-
fication by masking). Since the particular GA engine used min-
imizes the objective function [29], the following error function
was used to evaluate each weight set:

error (no. of incorrect predictions)

(no. of unmasked features)

(no. of incorrect votes)

(difference in accuracy between classes)

where , and are the antifitness func-
tion coefficients, set as shown in Table I.

The prediction and voting terms both directed the search
toward weight sets that achieved better prediction results. The
voting term served to smooth the fitness landscape, which
tended to have a discrete stepwise character when only the
number of incorrect predictions was considered; smoothing
the objective function allowed the GA to optimize the weight
sets more efficiently. The masking term drove the GA toward
more parsimonious solutions—that is, those solutions that
classified using the fewest features. Finally, the balance term
served to avoid disparities in accuracy among classes. The
relative importance of these various objectives was controlled
by adjustments to the coefficients associated with each fitness
term. The values for the objective function coefficients, as well
as the standard GA run parameters (rate of crossover, rate of
mutation, population size, etc.), were determined empirically
through a set of preliminary experiments. Table I shows the GA
run parameters and fitness coefficients chosen after preliminary
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TABLE I
GA RUN PARAMETERS; CROSSOVERRATE

IS EXPRESSED ASEXPECTEDNUMBER OF CROSSOVERS PERINDIVIDUAL PER

GENERATION; MUTATION RATE IS EXPRESSED ASEXPECTED NUMBER

OF MUTATIONS PERBIT PER GENERATION

experimentation was completed. The run length was limited to
200 generations after noting that the population demonstrated
convergence by this time in all of the preliminary experiments.

B. Bootstrap Testing

For each GA experiment, the available data were broken into
three disjoint sets: training, tuning, and testing. The training
and tuning sets were used to train the knn classifier and pro-
vide tuning feedback to the GA, as described previously. Once
the GA run was completed, the test set was used to perform
unbiased testing on the best weight set found by the GA. The
holdout testing was done using a variant of the bootstrap test
technique [30]–[32]. For each weight set, 100 bootstrap tests
were executed. For each bootstrap test , a
random bootstrap set was selected from the holdout set using
a uniform random distribution of samples with replacement. The
weighted knn classifier was tested on this bootstrap set, and the
accuracy for each class , as well as the total ac-
curacy were computed as follows:

where is the set of samples in predicted to
belong to class by the weighted knn classifier using the weight
set is the set of patterns in observed to belong
to class (that is, the true members of class), and is the set
of all classes.

Finally, after the 100 bootstrap tests for a given weight set
were completed, the performance of the weight set was evalu-
ated according to mean bootstrap accuracy and vari-
ance of bootstrap accuracy , computed as follows:

III. T RAINING AND TESTING DATA

Several data sets which have been used for classifier bench-
marking were employed for testing the classification accuracy

of the GA feature extractor in combination with a knn classi-
fier. Classification error for the GA/knn on these data sets was
compared to that of several common classification techniques,
as reported by Weiss and Kapouleas [33], [34] in a comparative
study of various commonly used classification algorithms. Ad-
ditionally, the effectiveness of the GA feature extractor in pro-
ducing parsimonious feature sets was evaluated and compared
with that of the SFFS feature selection method for each data set.

Further results are given for a particulary difficult data
set from biochemistry involoving the classification of water
molecules bound to proteins. The effectiveness of the GA/knn
for this problem has been explored in some detail [6], [27].
Here, we compare these results with those of the SFFS feature
selection method in combination with a knn classifier.

A. Published Data Sets

The GA feature extractor in combination with a knn classi-
fier was tested on two medical data sets from the University of
California, Irvine repository of machine learning data sets [35].

The first medical data set consisted of the results of 21 clin-
ical tests for a set of patients tested for thyroid dysfunction [36].
The training set consisted of 3772 cases from the year 1985,
while the test set consisted of 3428 cases from 1986. The goal
of the classifier was to determine, based upon the test results
provided, whether or not a patient should be diagnosed as hy-
pothyroid. The number of samples in the two classes was highly
unbalanced in this data. The training set contained 3487 nega-
tive (nonhypothyroid) cases and 284 positive cases. Likewise,
the testing set consisted of 3177 negative samples and 250 pos-
itive.

The second medical data set was from a published study [37]
on the assessment of eight laboratory tests to confirm the diag-
nosis of acute appendicitis. 85 of the 106 patients had confirmed
appendicitis.

B. Biochemistry Data

The most extensive application of our GA feature extraction
technique has been made in the field of biochemistry. Under-
standing protein–water interactions is important forde novo
drug design, database screening for drug leads, ligand docking,
and understanding protein structure and function. An important
part of this question that has not been fully explored is the iden-
tification of regions on the surface of a protein that are favor-
able for the binding of water molecules, and understanding the
features that produce these favorable sites. Application of the
GA feature extraction technique for this problem has yielded
progress in two areas: a classifier has been developed which can
identify likely water-binding sites on the protein surface [27],
and a set of features sufficient to make this classification has
been identified [38].

The data set for the classification of water molecules consists
of eight physical and chemical features describing the protein
environments of water molecules from 30 pairs of crystallo-
graphic protein structures taken from the Brookhaven Protein
Data Bank [39], [40]. The eight features used to characterize
each water molecule are described in Table II. For each protein,
a structure of the protein bound to another molecule and a
structure of the free (unbound) protein were obtained and
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TABLE II
PHYSICAL AND CHEMICAL FEATURESUSED TOREPRESENTPROTEIN-BOUND WATER MOLECULES

superimposed. The water molecules in the free structure were
divided into two classes: those that were conserved in the
bound structure (conserved water molecules), and those that
were found only in the free structure (nonconserved water
molecules). The goal of the GA/knn classifier was to find
a minimal set of weighted features that provided maximal
classification accuracy for distinguishing conserved from
nonconserved water molecules. The data set consisted of 5542
water molecules, 3405 of which were conserved and 2137 of
which were nonconserved.

IV. RESULTS AND DISCUSSION

A. Tests on Medical Data

For the thyroid data, the sequential floating forward selection
method achieved good classification results. The best accuracy
obtained by the knn/SFFS algorithm during feature selection
was 97.99%, using 6 of the 21 available features. 100 bootstrap
tests on this feature set yielded a mean bootstrap accuracy of
98.06%, with a standard deviation of 0.6032%. This accuracy
is similar to those obtained by the various methods reported by
Weiss and Kapouleas [33], [34] (Table III). The GA feature ex-
tractor combined with a knn classifier obtained a similar accu-
racy, 98.48%, using only 3 of the available 21 features, and a
value of 87. 100 bootstrap tests for this set of feature weights
yielded a mean bootstrap accuracy of 98.40%, with a standard
deviation of 0.6256%. Features and feature weights obtained by
the SFFS algorithm and the GA feature extractor are shown in
Table IV.

For the appendicitis data, floating forward selection was
again applied with knn classifiers using odd values offrom
1 to 99. The best result was obtained for . The best
predictive accuracy during selection was 88.46% using three
of the seven available features. Bootstrap testing for 100 trials
using the best feature set found by SFFS yielded a mean
predictive accuracy of 91.44% with a standard deviation of
3.94%. The results reported by Weiss for this data, as well as
the results for the GA feature extractor, are shown in Table V.
The GA feature extractor achieved a slightly higher accuracy
than SFFS during extraction: 90.38% using two of seven

TABLE III
RESULTS OFVARIOUS CLASSIFIERS ONHYPOTHYROID DATA, AS REPORTED BY

WEISS, IN COMPARISON WITH THOSE OF THEGA FEATURE EXTRACTOR

TABLE IV
FEATURE SELECTION AND WEIGHTS FORSFFSAND GA FEATURE

EXTRACTION ON THYROID DATA

weighted features and . In bootstrap testing, however, the
mean bootstrap accuracy over 100 trials proved to be similar to
that of SFFS—90.60% with a standard deviation of 4.21% The
features selected by each algorithm are shown in Table VI.

B. Classification of Protein-Bound Water Molecules

For the identification of favorable water binding sites on
protein surfaces, the knn required significantly more evalu-
ation time than for the medical data, due to the large sizes
of the water-binding data sets employed. A typical GA ex-
periment for these data required 60–70 h wall-clock time
on a Sparc20-612 workstation. As a result, fewer experi-
ments were conducted for water binding site prediction than
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TABLE V
RESULTSREPORTED BYWEISS, AND THOSE OF THEGA FEATURE EXTRACTOR,

ON APPENDICITISDATA

TABLE VI
FEATURE SELECTION AND WEIGHTS FORSFFSAND GA FEATURE EXTRACTION

ON APPENDICITISDATA

for the two medical data sets. After the initial experiments
to determine run parameters were completed, 21 GA runs
were conducted with random initial populations. The weight
sets in the final population of each run were then evalu-
ated in terms of prediction accuracy and the dimensionality
of the resulting feature set. The mean bootstrap accuracy
for the best weight set from each run was evaluated over
100 bootstrap tests. The best weight set found by the GA
achieved a mean bootstrap accuracy of 64.20%, with a stan-
dard deviation of 1.42% using four of the available eight
features. The second-best performing weight set achieved a
mean bootstrap accuracy of 63.32% using only two of the
eight features [38]. The value for the knn rule, which
was also optimized by the GA, ranged from 17 to 77 for
the top five weight sets. The SFFS feature selection algo-
rithm was tested in conjunction with a knn classifier for
various values of ranging from 1 to 65. The best classi-
fication accuracy was attained at , and utilized three
of the eight features. The mean bootstrap accuracy over 100
trials for this feature subset was 63.21%, with a standard
deviation of 2.19%. Table VII compares the feature subsets
found by GA/knn and SFFS/knn. The distributions of feature
values for the two classes overlap significantly in pairwise
two-dimensional marginal feature plots for these data, and
linear discriminant analysis yielded a classification accuracy
of only 49.7%, approximately equivalent to random class as-
signment.

C. Discussion

The integrated feature extraction and classification
approach described has proved effective on these three
disparate data sets. For the thyroid data, the GA–knn was
more effective than all but two of the approaches, but re-
quired only three of the features to make the classification.
The GA–knn obtained a classification accuracy within 1%
of the best technique reported. For the appendicitis data,
the GA–knn showed the best classification performance
among of all the techniques, and required only two of

TABLE VII
FEATURE WEIGHTS, k VALUE, AND MEAN BOOTSTRAPACCURACY (ACC) FOR

THE BESTTWO WEIGHT SETS AND FEATURE SUBSETSFOUND USING THE GA
FEATURE EXTRACTOR AND SFFS FEATURE SELECTION IN COMBINATION

WITH A k NEARESTNEIGHBOR CLASSIFIER

the seven features. Thus, the approach is both accurate, in
comparison to other techniques, and parsimonious in the
number of features required to achieve that accuracy.

The problem of predicting the binding of water molecules
to proteins is difficult because of the highly overlapping dis-
tributions of the features, as indicated by the linear discrimi-
nant results. However, the unbiased accuracy was better than
63% for this difficult problem using the GA–knn approach,
even when the number of features considered by the classi-
fier was reduced from seven to as few as two. The GA ap-
proach exceeded the SFFS feature selection method slightly,
both in terms of classification accuracy and feature subset
parsimony.

A key advantage of the GA feature extraction technique
is that it combines various benefits of feature selection and
extraction into a single method. As with feature extraction,
the original features are transformed to produce a new set of
features. Although linear coefficients were used in the ex-
periments presented here, the relationship between the input
and output features need not be linear. This transformation
of features can be used with feedback from the classifier
to produce better classification accuracy. Additionally, since
each output feature of the GA feature extractor is based
only on a single input feature, the relationships between the
original features and the transformed features remain explicit,
and easy to identify and analyze. Analysis of the features
that prove sufficient for classification can lead to a deeper
understanding of the data, allowing feature extraction to be
used in exploratory data analysis and data mining. This ca-
pability was of primary importance in classifying the water
conservation data, where the goal was more biochemical—to
obtain a better understanding of the features that lead to con-
served water binding—than statistical in nature.

While the knn classifier performed well in combination
with the GA feature extractor, other classification techniques
may alsoprove effective in providing feedback to the GA.
If, for example, a Bayesian classification rule were used in
place of the knn rule, the GA might be used to simulta-
neously optimize the feature weights and thea priori class
distributions. A more general form of feature extraction may
be achieved by directly representing the entire transformation
matrix on the chromosome. This would allow the GA to
explore the space of all possible linear transformations of
the original data. It remains to be investigated whether the
ability of the GA to perform arbitrary transformations would



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 2, JULY 2000 171

lead to better classification accuracy or would be offset by
the increase in the size of the search space to be explored.
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