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Brief Papers

Dimensionality Reduction Using Genetic Algorithms
Michael L. Raymer, William F. Punch, Erik D. Goodman, Leslie A. Kuhn, and Anil K. Jain

Abstract—Pattern recognition generally requires that objects
be described in terms of a set of measurable features. The selec-
tion and quality of the features representing each pattern have a
considerable bearing on the success of subsequent pattern classi- Feature Feature
fication. Feature extraction is the process of deriving new features Measurement Vector
from the original features in order to reduce the cost of feature
measurement, increase classifier efficiency, and allow higher clas-
sification accuracy. Many current feature extraction techniques in- l

volve linear transformations of the original pattern vectors to new
o New
Classifier | - Feature Feature
Extraction
Vector

vectors of lower dimensionality. While this is useful for data visu-

Object/
Pattern

alization and increasing classification efficiency, it does not neces-

sarily reduce the number of features that must be measured since

each new feature may be a linear combination of all of the features

in the original pattern vector. Here, we present a new approach

to feature extraction in which feature selection, feature extraction,

and classifier training are performed simultaneously using a ge-

netic algorithm. The genetic algorithm optimizes a vector of fea-

ture weights, which are used to scale the individual features in the Classification

original pattern vectors in either a linear or a nonlinear fashion.

A masking vector is also employed to perform simultaneous selec- _ - ] ]

tion of a subset of the features. We employ this technique in com- Fig. 1. Model for a pattern recognition system using feature extraction.

bination with the k nearest neighbor classification rule, and com- Feedback from the classifier allows Fhe featl_Jre extraction n_10du|e to iteratively

. - . h search for a feature vector that provides optimal classification accuracy.

pare the results with classical feature selection and extraction tech-

nigues, including sequential floating forward feature selection, and

linear discriminant analysis. We also present results for the iden- of the resulting classification algorithm [1], [2]. It is not

tification of favorable water-binding sites on protein surfaces, an  4fteny known in advance which features will provide the best

important problem in biochemistry and drug design. C o .
discrimination between classes, and it is usually not feasible

Index Terms—Curse of dimensionality, feature extraction, fea- tg measure and represent all possib|e features of the Objects

ture selection, genetic algorithms, pattern classification. being classified. As a result, feature selection and extraction
methods have become important techniques for automated
|. INTRODUCTION pattern recognition [1]-[4], exploratory data analysis [5], and

data mining [6].

The main purpose of feature selection is to reduce the
N ATTEMPTING to classify real-world objects or con-number of features used in classification while maintaining an
cepts using computational methods, the selection of aoceptable classification accuracy. Less discriminatory features

appropriate representation is of considerable importance. B¢ eliminated, leaving a subset of the original features which
classical pattern recognition techniques, the patterns are gentains sufficient information to discriminate well among
erally represented as a vector of feature values. The selectifisses. Feature extraction is a more general method in which
of features can have a considerable impact on the effectivengss original set of features is transformed to provide a new
set of features. Fig. 1 shows the role of feature extraction in a
pattern recognition system. The genetic algorithm (GA) feature
Manuscript received March 8, 1999; revised October 4, 1999. The work ektractor presented here utilizes feedback from the classifier to
L. A. Kuhn was supported by the National Science Foundation under Grapfe feature extractor: hence, we have the feedback loop in the
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According to this formalization, the classical methods fdrom classification. Additionally, simplification of the final
linear feature extraction can be specified according to ttreee can provide further feature selection [14].
method of deriving the transformation matft For unsuper-
vised linear feature extraction, the most common technique is
principal component analysis. For this method, the columns Bf Pattern Classification Techniques
‘H consist of the eigenvectors of tlex d covariance matrix
of the given patterns. It can be shown that the new featured=€ature extraction can be used in conjunction with nu-
produced by principal component analysis are uncorrelatégerous methods for pattern classification. The well-known
and maximize the variance retained from the original featugéatistical methods can be divided into two general classes.
set [7]. The corresponding supervised technique is lineke parametric methods, including the commonly used naive
discriminant analysis. In this case, the columnstofare the Bayesian classifier [7], assume that the form of the class-con-
eigenvectors corresponding to the nonzero eigenvalues of gigonal density function of the features is known in advance.
matrix 5‘;7153’ where Sy is the within-class scatter matrix For example, it is commonly assumed that the features follow
and Sy is the between-class scatter matrix for the given st multivariate Gaussian distribution. The training data are
of patterns. Deriving in this way maximizes the separationuse‘j to estimate the parameters of these class-conditional
between class means relative to the covariance of the clasd@gsities (€.g., the mean vecferand the covariance matrix
[7]. In the general case, the matri is chosen to maximize > for the Gaussian distribution), and these estimated den-
some criteria, typically related to class separation or classifities are then used to classify test patterns. The nonpara-
cation accuracy for a specific classifier. In this view, featur@etric methods, including Parzen window density estimation
selection is a special case of linear feature extraction, whé#®] and thek nearest neighbor (knn) classifier [16], make

the off-diagonal entries of{ are zero, and the diagonal entrie§0 @ssumptions about the distributions of feature values for
are either zero or one. each class. Rather, the form of the density function is either

erﬁtimated from the training data, as in the Parzen window
ethod, or ignored altogether in the case of the knn method.
nﬁn knn classification, each training pattern is represented in
-dimensional space according to the value of each of its
%tures. The test pattern is then represented in the same space,
d itsk nearest neighbors, for some constanare selected.
ighbors are usually calculated according to Euclidean dis-
ce, although other metrics (e.g., Mahalanobis distance) are
ymetimes used. The class of each of theseighbors is then
ied, and the class with the most “votes” is selected as the
C %ssification of the test pattern. The knn classification rule has
een selected for use in combination with the GA feature ex-

they reduce the number of features considered by the classif%)e},ctor fpr several reasons. The simplicity of th_e knn classifier
do not actually reduce the number of features which m kes it easy to implement. Its nonparametric nature allows

be measured for classification since each extracted featd gsification of a broad range of datasgts, !ncluding those .for
is usually a linear combination of all of the original inpuﬁNh'Ch feature values do not follow a multivariate Gaussian dis-

features. An example of such a transform is canonical “net&butlon.. !Due to t.he use c_)f the Eughdean distance metric, the
discriminant analysis [9]. knn decision rule is sensitive to scaling of the feature values—a

The problem of dimensionality reduction, encompassi cessary prerequisite for use with the GA feature extraction
both feature selection and feature extractic;n has been r{%e hnique described here. Classifiers based on the class-condi-

subject of study in a diverse spectrum of fields. In neurgpnaldistributions of feature values, such as the Bayes classfier,
network pattern classification, feature selection can be e invariant to scaling of the feature values. Finally, the knn

fected using node-pruning techniques [10]. After training fOqj_assifieris well explored in the literature, and has been demon-

a number of epochs, nodes are removed from the netw: ated to have good classification performance on a wide range
' q real-world data sets. The asymptotic error rate of the knn de-

in such a manner that the increase in squared error is minj-, | be sh 1 be bounded by the B
mized. When an input node is pruned, the feature associa ggon rule can be shown 1o be bounded by the Bayes error as
— oo [7, pp. 98-105].

with that node is no longer considered by the classifier. Sirti-
ilar methods have been employed in the use of fuzzy systems

for pattern recognition through the generation and pruning Genetic Algorithms in Feature Selection and Extraction

of fuzzy if-then rules [11], [12]. Some traditional pattern

classification techniques, while not specifically addressed toComputational studies of Darwinian evolution and natural se-
the problem of dimensionality reduction, can provide fedection have led to numerous models for solving optimization
ture selection capability. Tree classifiers [13], for exampl¢l7]-[21]. GA's comprise a subset of these evolution-based op-
typcally partition the training data based on a single fesimization problems techniques focusing on the application of
ture at each tree node. If a particular feature is not testedlection, mutation, and recombination to a population of com-
at any node of the decision tree, it is effectively eliminategeting problem solutions [22], [23]. GA's are parallel, iterative

Feature selection and extraction have many functions
common. Both can be used to project data onto a lo
dimensional space for subsequent visualization, clustering, a
other exploratory data analysis. By reducing the number
features considered by a classifier, both techniques can impr
classification speed and efficiency. Less intuitively, the
techniques can improve classification accuracy by reduci
estimation errors associated with finite sample size effects [
With feature selection, the cost of classification can be reduc®
by limiting the number of features which must be measur
and stored. Some, but not all, feature extraction methods rea
this benefit as well. Many well-known techniques, althoug
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Transformed

optimizers, and have been successfully applied to a broad sg Input Patterns Parioms

trum of optimization problems, including many pattern recog
nition and classification tasks.

The problem of dimensionality reduction is well suited tc| g
formulation as an optimization problem. Given a setdedi-
mensional input patterns, the task of the GA is to find a tran
formed set of patterns in an-dimensional spacgén < d) that
maximizes a set of optimization criteria. Typically, the trans
formed patterns are evaluated based upon both their dimensi "7 Accuracy of classifier using transformed
ality, and either class separation or the classification accura patterns from matrix ;

Fig. 2 shows the structure of a GA-based feature extractor using

classification accuracy as an evaluation criterion. The GA maifig. 2. GA-based feature extractor using an objective function based on

tains a population of competing feature transformation matic&Eiealcn aceuracy. Each vansiormation mati rom the @A population
To evaluate each matrix in this population, the input patterns amg: fitness of the matrix is based on the classification accuracy attained on the
multiplied by the matrix, producing a set of transformed patteritignsformed patterns.

which are then sent to a classifier. The available samples are di-
vided into a training set, used to train the classifier, and a testing

B=AH, —3- | Classifier

set, used to evaluate classification accuracy. The accuracy ob- ‘ 0 ‘ ! ‘ 0 [ l ! l ! J

tained is then returned to the GA as a measure of the quality of = d bits I

the transformation matrix used to obtain the set of transformed { i Feature2is included in the classifier.
patterns. Using this information, the GA searches for a trans- P Feature 1 is not included in the classifier.

formation that minimizes the dimensionality of the transforme

d
. Lo e Fig. 3. d-dimensional binary vector, comprising a single member of the GA
patterns while maximizing classification accuracy. population for GA-based feature selection.

A direct approach to using GA's for feature selection was in-
troduced by Siedlecki and Sklansky [24]. In their work, a GA
is used to find an optimal binary vector, where each bit is asso- O Class 1
ciated with a feature (Fig. 3). If thi&h bit of this vector equals O O Class 2
1, then theth feature is allowed to participate in classification; 0 A Class 3
if the bit is a 0, then the corresponding feature does not partici- o ? Test pattern
pate. Each resulting subset of features is evaluated according to A
its classification accuracy on a set of testing data using a nearest
neighbor classifier.

This technique was later expanded to allow linear feature ex-
traction, by Punctet al. [25] and independently by Kelly and
Davis [26]. The single bit associated with each feature is ex-
panded to a real-valued coefficient, allowing independent linear
scaling of each feature, while maintaining the ability to remove O
features from consideration by assigning a weight of zero. Given H
a set of feature vectors of the forfd = {x1, 2, -- -, z4}, the 5 g
GA produces a transformed set of vectors of the fokih =
{wiz1, waza - - wazq} Wherew; is a weight associated with
featurei. Each feature value is first normalized, then scaled by Scale Extended
the associated weight prior to training, testing, and classifica- (b)
tion. This linear scaling of features prior to classification allows
a lassie o discrininate more fnely along feature axes wifl, & Ciet s oty S, 2 Q0 I
larger scale factors. A knn classifier is used to evaluate e izontal axis incree?ses the distance between .patterns which differ in feature
set of feature weights. The effects of linear feature weightingallowing the knn to discriminate more finely along this dimension. Here, the
on the knn classification rule are visualized in Fig. 4. Pattereediction of the unknown changes from class 2 to class 3 as a result of scaling.
plotted in feature space are spread out along feature axes with

higher weight values, and compressed along features with lowgkor on the chromosome [6]. If the mask value for a given fea-
weight values. The value éffor the knn classifier is fixed and (e s zero, the feature is not considered for classification. If the
determined empirically prior to feature extraction. This GA/knf a5k value is one, the feature is scaled according to the associ-
feature extraction technique has been applied for predicting fgsq weight value, and is included in the classifier. The inclusion
vprable vyater—blndmg sitesin pro';ems, an |mportant problem § the mask vector allows the GA to more rapidly sample fea-
biochemistry related to drug binding and design [27]. ture subsets while simultaneously optimizing scale factors for
The GA feature extraction technique has been expandeddatures included in the classifier. An additional improvement
include a binary masking vector along with the feature weigkpecific to the knn classifier was the inclusion of the value of

Feature 2

Feature 1

(a)

[m]
a
o0
0]
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k on the GA chromosome. This modification allows the GA t& was stored on the chromosome and optimized simultaneously
cooptimize the feature weights ahdralue for better classifica- with the feature weights. For a Bayes classifier, if the prior prob-
tion accuracy. abilities for each class were not known, they could be stored on

In a recent study of current feature selection techniques, J#ie chromosome and similarly optimized during feature extrac-
and Zongker [1] evaluated the performance of 15 feature gmn.
lection algorithms in terms of classification error and run time For the experiments presented here, the objective function
on a two-class, 20-dimensional, multivariate Gaussian data sminsisted of the classification performance obtained by a knn
Their findings demonstrated that the sequential floating forwaathssifier, using the value &f provided by the GA. In order to
selection algorithm (SFFS) of Pudit al. [28] dominated the prevent any initial bias due to the natural ranges of values for
other methods for these data, obtaining feature selection tiee original features, input feature values were normalized over
sults comparable to the optimal branch-and-bound algorithire range [1.0, 10.0] as follows:
while requiring less computation time. Further tests of the SFFS
technique in combination with a knn classifier were then per- ) Tij — kglﬁl}ﬂ (k,5)
formed to observe the behavior of the knn classification rule as  %:,; = N ~*9 ] +1

= - > max (rx ;) min (x ;)

additional features were provided to the classifier. The results k=1--n k=1l--n
showed that classification accuracy initially improved as addi- . . . .
tional features were introduced, bu){ eventL)J/aIIypreached a m{ierez,; is the;th feature of theth patterny; ; is the corre-
imal value, and began to decline with the introduction of furth@ipondlng normalized feature, ands the total number of pat-
features. Because of this unimodal behavior, the selection of &> ) . )
optimal number of features is straightforward when using the_Prlor to each GA expenment, the knn classifier was trained
SEES method in combination with a knn classifier. with a set of patterns with an equal number of samples of each

Since the GA/knn algorithm is a hybrid method, combininglass‘,A second set of patt.erns, disjoint to the trainin_g set, was
feature extraction with classifier training and tuning, wi et aside to serve as a tuning set. To evaluate a particular set of

present experimental results for the algorithm, both in terms \H]EIgh'[S, the GA scaled the training and tuning set feature values

classification performance and feature selection performan@&.cord'ng to the weight set, and classified the tuning set with

Classification accuracy is compared with published results fg}e weighted knn classifier. The performance of the weight set

several commonly employed pattern classification aIgorithm\gfas determined according to the classification accuracy on the

while feature-selection performance is compared with the SF ing set, the balancg Inaccuracy among classes, the ”“T“ber of
algorithm in combination with a knn classifier correct votes cast during knn classification, and the parsimony

oftheweight set (the number of features eliminated from classi-
fication by masking). Since the particular GA engine used min-
Il. METHODS imizes the objective function [29], the following error function
A. The GA Feature Extractor was used to evaluate each weight®et

There are three major design decisions to consider when i”lérror(w)
plementing a GA to solve a particular problem. A representation
for candidate solutions must be chosen and encoded on the GA
chromosome, an objective function must be specified to eval- + Clote (NO. Of incorrect votes)
uate the quality of each candidate solution, and finally, the GA + Cha (difference in accuracy between classes)
run parameters must be specified, including which genetic op-
erators to use and their frequencies of operation. For the GRereCpied, Crask, Cvotes aNdCha are the antifitness func-
feature extractor, the organization of the chromosome was faitlgn coefficients, set as shown in Table I.
straightforward. A weight vector consisting of a single real value The prediction and voting terms both directed the search
for each feature was followed by a masking vector consisting wiward weight sets that achieved better prediction results. The
one or more binary mask bits for each feature. When a singleting term served to smooth the fithess landscape, which
mask bit was used, a zero indicated that the feature was totbeded to have a discrete stepwise character when only the
omitted from consideration during classification, while a oneumber of incorrect predictions was considered; smoothing
indicated that the feature should be included. At times, it wélse objective function allowed the GA to optimize the weight
desirable to use more than one masking bit per feature sirsgts more efficiently. The masking term drove the GA toward
each of these bits had a strong impact on the interpretationnebre parsimonious solutions—that is, those solutions that
the chromosome. The importance of these single bits can cadessified using the fewest features. Finally, the balance term
discontinuities in the objective function, making optimizatioserved to avoid disparities in accuracy among classes. The
more difficult for the GA. To mitigate this effect, additionalrelative importance of these various objectives was controlled
masking bits were used; a feature was then included in classifir adjustments to the coefficients associated with each fitness
cation only if the majority of the masking bits associated witterm. The values for the objective function coefficients, as well
that feature were set to one. Finally, some classifier-specific ias the standard GA run parameters (rate of crossover, rate of
formation was also stored on the chromosome to be optimizeditation, population size, etc.), were determined empirically
along with the feature weights. For example, when a knn clas#irough a set of preliminary experiments. Table | shows the GA
fier was used to evaluate feature extraction results, the valugwh parameters and fitness coefficients chosen after preliminary

= Cpred (no. of incorrect predictions)
4 Chask (NO. of unmasked features)
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TABLE | of the GA feature extractor in combination with a knn classi-
GA RUN PARAMETERS, CROSSOVER RATE fier. Classification error for the GA/knn on these data sets was
IS EXPRESSED ASEXPECTED NUMBER OF CROSSOVERS PERNDIVIDUAL PER g . .
GENERATION: MUTATION RATE IS EXPRESSED ASEXPECTED NUMBER compared to that of several common classification techniques,
OF MUTATIONS PERBIT PER GENERATION as reported by Weiss and Kapouleas [33], [34] in a comparative
- study of various commonly used classification algorithms. Ad-
Fitness constants GA parameters o . .
Corea 20.0 Crossover tate 0.80 d|t|qnally, th_e effe_ctweness of the GA feature extractor in pro-
Cmask 1.0 Mutation rate  0.001 ducing parsimonious feature sets was evaluated and compared
Coote 2.0 Population size 200 with that of the SFFS feature selection method for each data set.
Chat 5.0 Generations 200

Further results are given for a particulary difficult data
set from biochemistry involoving the classification of water

experimentation was completed. The run length was limited raolecules bound to proteins. The effectiveness of the GA/knn

200 generations after noting that the population demonstraf@§ this problem has been explored in some detail [6], [27].
convergence by this time in all of the preliminary experimentd}€re, We compare these results with those of the SFFS feature
selection method in combination with a knn classifier.

B. Bootstrap Testing A. Published Data Sets

For each GA experiment, the available data were broken intorp o g a teature extractor in combination with a knn classi-

three disjoint sets: training, tuning, and testing. The trainir]e%r was tested on two medical data sets from the University of

a.rgjd ttum.ng ?etzgv eLetustEd (t;)Atramc;[he k_r;)n c;:lassnjer ?ndop@élifornia, Irvine repository of machine learning data sets [35].
vide tuning feedback to the LA, as described previously. ONCeryq gyt medical data set consisted of the results of 21 clin-

theb_GA ;utn v;/_as CO”:E Ie:)ed,tthe_tehstt setztfwas d ubse?h to Gp:rf_l(f @i tests for a set of patients tested for thyroid dysfunction [36].
unbiased testing on the best weight set Tound by the - HMie training set consisted of 3772 cases from the year 1985,

hoquut testing was done using a variant of the bootstrap 'Sile the test set consisted of 3428 cases from 1986. The goal
technique [301-{32]. For each weight sef 100 bootstrap tests of the classifier was to determine, based upon the test results

were executed. For each bootstrap fest {1, 2, - - -, 100}, a §rovided, whether or not a patient should be diagnosed as hy-

rand_]?m bootsétrap;_élt; \_/\k/)a?_sele;:ted fr(I)m th_fthIdIOUt set utS|_|r_1 othyroid. The number of samples in the two classes was highly
aunriormrandom distribution of sSamplies with replacement. balanced in this data. The training set contained 3487 nega-

weighted knn classifier was tested on this bootstrap set, and & (nonhypothyroid) cases and 284 positive cases. Likewise,

accuracy for each clagsacc(c, w, b;), as well as the total ac- the testing set consisted of 3177 negative samples and 250 pos-
curacyacctq. (w, b;) were computed as follows:

itive.
Ipred(c, w, b;) Nobs(c, b;)| The second medical Qata setwas from a publishgd study [37]
acc(e, w, b;) = lobs(c, by)| on the assessment of eight laboratory tests to confirm the diag-
Z pred( ’ bz) be(e. b)) nosis of acute appendicitis. 85 of the 106 patients had confirmed
pred(e, w, b;) Nobs(c, b; appendicitis.
acciot(w, b;) = ceC . :
o |b;] B. Biochemistry Data

The most extensive application of our GA feature extraction
{echnique has been made in the field of biochemistry. Under-
standing protein—water interactions is important & novo
drug design, database screening for drug leads, ligand docking,
and understanding protein structure and function. An important
rt of this question that has not been fully explored is the iden-

wherepred(c, w, b;) is the set of samples it; predicted to
belong to class by the weighted knn classifier using the weigh
setw, obs(c, b;) is the set of patterns ity observed to belong
to classe (that is, the true members of clagsandC is the set
of all classes. B
weFrle?i!ﬁ;ﬁfé;?fhéop%ggfrfgﬁi t(()afs :ﬁ ;c\),;eailg%;/ (sagtv\\//vea:ghetvsaﬁ E_cation of regions on the surface of a protein that are favor-

e acoring o mean bootstap accuret )] and var o1 01 1€ BP0 of wele olecule, and derstandng e
ance of bootstrap accuragi..(w)], computed as follows: GA feature extraction technique for this problem has yielded

100 progress in two areas: a classifier has been developed which can
acc(w) = Z acCior(w, b;)/100 identify likely water-binding sites on the protein surface [27],
i=1 and a set of features sufficient to make this classification has

100 100 2 been identified [38].
100 Z accyor (w, b;)? — <Z accor (W, bi)> The data set for the classification of water molecules consists
Viee(w) = i=1 i=1 ' of eight physical and chemical features describing the protein
ace 100 * 99 environments of water molecules from 30 pairs of crystallo-
graphic protein structures taken from the Brookhaven Protein
Data Bank [39], [40]. The eight features used to characterize
each water molecule are described in Table Il. For each protein,
Several data sets which have been used for classifier benahstructure of the protein bound to another molecule and a
marking were employed for testing the classification accurasyructure of the free (unbound) protein were obtained and

I1l. TRAINING AND TESTING DATA
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TABLE I
PHYSICAL AND CHEMICAL FEATURESUSED TO REPRESENTPROTEIN-BOUND WATER MOLECULES

Tag Name Description

ADN Atomic Density The number of protein atoms within 3.5A of the water
molecule.

AHP Atomic Hydrophilicity A measure of the propensity of neighboring atom types to
bind water molecules in other protein environments. For
more details see [27,41].

BVAL B-value The crystallographic temperature factor of the water
molecule. A measure of thermal mobility.

HBDP  H-bonds to protein The number of hydrogen bonds between the water molecule
and neighboring protein atoms.

HBDW  H-bonds to water The number of hydrogen bonds between the water molecule
and other water molecules.

MOB Mobility A normalized measure of thermal mobility [42].

ABVAL Average B-value of protein The average B-value of all protein atoms within 3.5A of the

atom neighbors water molecule.
NBVAL Net B-value of protein atom The sum of the B-values of all protein atoms within 3.54.
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neighbors

superimposed. The water molecules in the free structure were TABLE Il

divided into two classes: those that were conserved in tﬁéSULTS OFVARIOUS CLASSIFIERS ONHYPOTHYROID DATA, AS REPORTED BY
) WEISS IN COMPARISON WITH THOSE OF THEGA FEATURE EXTRACTOR

bound structure (conserved water molecules), and those that

were found only in the free structure (nonconserved water Method Accuracy  Accuracy
molecules). The goal of the GA/knn classifier was to find (training) (testing)
inimal t of iahted feat that ided imal GA Feature Extractor  98.5% 98.4%
a minimal set of weighted features that provided maxima Linear Discriminant 93.8% 93.8%
classification accuracy for distinguishing conserved from Quadratic Discriminant  89.7% 88.4%
nonconserved water molecules. The data set consisted of 5542 Nearest Neighbor 100% 95.3%
water molecules, 3405 of which were conserved and 2137 of Bayes (independent) 97.1% 96.1%
. Bayes (2nd order) 97.7% 92.4%
which were nonconserved. Neural Net (Back prop) 99.5% 98.5%
Predictive Value Max. 99.8% 99.3%
CART Tree 99.8% 99.4%
IV. RESULTS AND DISCUSSION
A. Tests on Medical Data TABLE IV

FEATURE SELECTION AND WEIGHTS FORSFFSAND GA FEATURE

For the thyroid data, the sequential floating forward selection EXTRACTION ON THYROID DATA

method achieved good classification results. The best accuracv

obtained by the knn/SFFS algorithm during feature selectii _Method AGE  MALE OTHY QTHY OMED SICK
. . “GA 0.00 0.00 5.95 0.00 0.00 0.00
was 97.99%, using 6 of the 21 available features. 100 bootsti sggs 0 0 1 0 0 0
tests on this feature set yielded a mean bootstrap accurac PREG SURG 1131 QPO QPER  LITH
98.06%, with a standard deviation of 0.6032%. This accura GA 0.00 78.67  0.00 0.00 0.00 0.00
. L . . SFFS 0 1 1 0 0 0
is similar to those obtained by the various methods reported TUM  GOIT HPIT  PSY TSH T3
Weiss and Kapouleas [33], [34] (Table Ill). The GA feature e» &% 500 000 500 0.60 9004 000
tractor combined with a knn classifier obtained a similar acc  SFFS 0 0 0 1 1 0
racy, 98.48%, using only 3 of the available 21 features, ahd ¢ - OTTg 3‘4U g'g(l)
value of 87. 100 bootstrap tests for this set of feature weigt gppg 0'0 1’00 o

yielded a mean bootstrap accuracy of 98.40%, with a standara
deviation of 0.6256%. Features and feature weights obtained by

the SFFS algorithm and the GA feature extractor are shownWgighted features arid= 7. In bootstrap testing, however, the
Table IV. mean bootstrap accuracy over 100 trials proved to be similar to

For the appendicitis data, floating forward selection wdbat of SFFS—90.60% with a standard deviation of 4.21% The

again applied with knn classifiers using odd values; dfom features selected by each algorithm are shown in Table VI.
1 to 99. The best result was obtained for= 7. The best
predictive accuracy during selection was 88.46% using thrBe
of the seven available features. Bootstrap testing for 100 trialsFor the identification of favorable water binding sites on
using the best feature set found by SFFS yielded a meamtein surfaces, the knn required significantly more evalu-
predictive accuracy of 91.44% with a standard deviation afion time than for the medical data, due to the large sizes
3.94%. The results reported by Weiss for this data, as well asthe water-binding data sets employed. A typical GA ex-
the results for the GA feature extractor, are shown in Table periment for these data required 60—70 h wall-clock time
The GA feature extractor achieved a slightly higher accuraop a Sparc20-612 workstation. As a result, fewer experi-
than SFFS during extraction: 90.38% using two of sevanents were conducted for water binding site prediction than

Classification of Protein-Bound Water Molecules
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TABLE V TABLE ViII
RESULTSREPORTED BYWEISS AND THOSE OF THEGA FEATURE EXTRACTOR, FEATURE WEIGHTS, k& VALUE, AND MEAN BOOTSTRAPACCURACY (ACC) FOR
ON APPENDICITISDATA THE BEST TWO WEIGHT SETS AND FEATURE SUBSETSFOUND USING THE GA
FEATURE EXTRACTOR AND SFFS FEATURE SELECTION IN COMBINATION
Method Accuracy  Accuracy WITH A k& NEARESTNEIGHBOR CLASSIFIER
(training) (testing)
GA Feature Extractor ~ 90.4% 90.6% Method %k | Acc ADN AP BVAL HEBDP
Linear Discriminant 88.7% 86.8% GA/knn 65 | 64.20 0.00 _ 0.00 0.413 0.135
Quadratic Discriminant  79.3% 73.6% GA/knn 29 | 63.62 0.00 0.00 0.667 0.00
Nearest Neighbor 100% 82.1% SFFS/knn 65 | 63.21 0.00 1.00 1.00 0.00
Bayes (independent) 88.7% 83.0% Method k HBDW MOB ABVAL NBVAL
Bayes (2nd order) 95.3% 81.1% GA/knn 65 0.137 0.315 0.00 0.00
Neural Net (Back prop) 90.0% 85.8% GA/knn 29 0.00 0.333 0.00 0.00
Predictive Value Max.  91.5% 89.6% SFFS/knn 65 0.00 1.00 0.00 0.00
CART Tree 90.0% 84.9%

the seven features. Thus, the approach is both accurate, in

TABLE VI . X . . .
FEATURE SELECTION AND WEIGHTS FORSFFSAND GA FEATURE ExTRACTION ~ COMparison to other teqhnlques, a.nd parsimonious in the
ON APPENDICITISDATA number of features required to achieve that accuracy.
GA 4368 000 000 2139 000 0.00 0.00 The prob!em'().f predicting the blndln'g of water mqleculgs
SFFS 0 0 1 1 1 0 0 to proteins is difficult because of the highly overlapping dis-

tributions of the features, as indicated by the linear discrimi-

] o ) nant results. However, the unbiased accuracy was better than
for the two medical data sets. After the initial experimentg3o, for this difficult problem using the GA-knn approach,

to determine run parameters were completed, 21 GA rUggen when the number of features considered by the classi-
were conducted with random initial populations. The weighfer was reduced from seven to as few as two. The GA ap-
sets in the final population of each run were then evalygioach exceeded the SFFS feature selection method slightly,
ated in terms of prediction accuracy and the dimensionaligsth in terms of classification accuracy and feature subset
of the resulting feature set. The mean bootstrap accurggyisimony.
for the best weight set from each run was evaluated overp key advantage of the GA feature extraction technique
100 bootstrap tests. The best weight set found by the Gé\that it combines various benefits of feature selection and
achieved a mean bootstrap accuracy of 64.20%, with a St@Rraction into a single method. As with feature extraction,
dard deviation of 1.42% using four of the available eighte original features are transformed to produce a new set of
features. The second-best performing weight set achievedegtyres. Although linear coefficients were used in the ex-
mean bootstrap accuracy of 63.32% using only two of theiments presented here, the relationship between the input
eight features [38]. The: value for the knn rule, which anq output features need not be linear. This transformation
was also optimized by the GA, ranged from 17 t0 77 10t features can be used with feedback from the classifier
the top five weight sets. The SFFS feature selection alg@y produce better classification accuracy. Additionally, since
rithm was tested in conjunction with a knn classifier f0pach output feature of the GA feature extractor is based
various values oft ranging from 1 to 65. The best classinjy on a single input feature, the relationships between the
fication accuracy was attained &t= 65, and utilized three qriginal features and the transformed features remain explicit,
of the eight features. The mean bootstrap accuracy over 14} easy to identify and analyze. Analysis of the features
trials for this feature subset was 63.21%, with a standagght prove sufficient for classification can lead to a deeper
deviation of 2.19%. Table VIl compares the feature subsgffderstanding of the data, allowing feature extraction to be
found by GA/knn and SFFS/knn. The distributions of featurgseq in exploratory data analysis and data mining. This ca-
values for the two classes overlap significantly in pairwisgapility was of primary importance in classifying the water
two-dimensional marginal feature plots for these data, ag@nservation data, where the goal was more biochemical—to
linear discriminant ane_1Iy5|s y|elde_d a classification accuragyain a better understanding of the features that lead to con-
of only 49.7%, approximately equivalent to random class agapyed water binding—than statistical in nature.
signment. While the knn classifier performed well in combination
with the GA feature extractor, other classification techniques
C. Discussion may alsoprove effective in providing feedback to the GA.

The integrated feature extraction and classificatioh for example, a Bayesian classification rule were used in
approach described has proved effective on these thRdace of the knn rule, the GA might be used to simulta-
disparate data sets. For the thyroid data, the GA—knn wagously optimize the feature weights and thepriori class
more effective than all but two of the approaches, but rélistributions. A more general form of feature extraction may
quired only three of the features to make the classificatiobe achieved by directly representing the entire transformation
The GA-knn obtained a classification accuracy within 1%atrix 7 on the chromosome. This would allow the GA to
of the best technique reported. For the appendicitis daexplore the space of all possible linear transformations of
the GA-knn showed the best classification performantke original data. It remains to be investigated whether the
among of all the techniques, and required only two dbility of the GA to perform arbitrary transformations would
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lead to better classification accuracy or would be offset by20] J. Reed, R. Toombs, and N. A. Barricelli, “Simulation of biological evo-

the increase in the size of the search space to be explored.
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