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Abstract

We describe a methodology for performing variable ranking and selection using support vector
machines (SVMs). The method constructs a series of sparse linear SVMs to generate linear models
that can generalize well, and uses a subset of nonzero weighted variables found by the linear models
to produce a final nonlinear model. The method exploits the fact that a linear SVM (no kernels)
with `1-norm regularization inherently performs variable selection as a side-effect of minimizing
capacity of the SVM model. The distribution of the linear model weights provides a mechanism
for ranking and interpreting the effects of variables. Starplots are used to visualize the magnitude
and variance of the weights for each variable. We illustrate the effectiveness of the methodology
on synthetic data, benchmark problems, and challenging regression problems in drug design. This
method can dramatically reduce the number of variables and outperforms SVMs trained using all
attributes and using the attributes selected according to correlation coefficients. The visualization
of the resulting models is useful for understanding the role of underlying variables.

Keywords: Variable Selection, Dimensionality Reduction, Support Vector Machines, Regression,
Pattern Search, Bootstrap Aggregation, Model Visualization

1. Introduction

Variable selection refers to the problem of selecting input variables that are most predictive of a
given outcome. Appropriate variable selection can enhance the effectiveness and domain inter-
pretability of an inference model. Variable selection problems are found in many supervised and
unsupervised machine learning tasks including classification, regression, time series prediction,
clustering, etc. We shall focus on supervised regression tasks, but the general methodology can
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be extended to any inference task that can be formulated as an`1-norm SVM, such as classifica-
tion and novelty detection (Campbell and Bennett, 2000, Bennett and Bredensteiner, 1997). The
objective of variable selection is two-fold: improving prediction performance (Kittler, 1986) and
enhancing understanding of the underlying concepts in the induction model.

Our variable selection methodology for SVMs was created to address challenging problems in
Quantitative Structural-Activity Relationships (QSAR) analysis. The goal of QSAR analysis is to
predict the bioactivity of molecules. Each molecule has many potential descriptors (300-1000) that
may be highly correlated with each other or irrelevant to the target bioactivity. The bioactivity is
known for only a few molecules (30-200). These issues make model validation challenging and
overfitting easy. The results of the SVMs are somewhat unstable – small changes in the training
and validation data or on model parameters may produce rather different sets of nonzero weighted
attributes (Breneman et al., 2002). Our variable selection and ranking methodology exploits this
instability. Computational costs are not a primary issue in our experiments due to lack of data. Our
method is based on sparse SVMs, so we call the algorithm VS-SSVM for Variable Selection via
Sparse SVMs.

Variable selection is a search problem, with each state in the search space specifying a subset of
the possible attributes of the task. Exhaustive evaluation of all variable subsets is usually intractable.
Genetic algorithms, population-based learning, and related Bayesian methods have been commonly
used as search engines for the variable selection process (Inza et al., 1999, Yang and Honavar, 1997,
Kudo et al., 2000). Particularly for SVMs, a variable selection method was introduced (Weston
et al., 2000) based on finding the variables that minimize bounds on the leave-one-out error for
classification. The search of variable subsets can be efficiently performed by a gradient descent
algorithm. The method, however, was limited to separable classification problems, and thus is
not directly applicable to the regression problems examined in this paper. Guyon et al. proposed
another variable selection method for classification by recursively eliminating the input variables
that decrease the margin the least (Guyon et al., 2002). A generic wrapper approach based on
sensitivity analysis has been applied to kernel SVM regression (SVR) (Embrechts et al., 2001) but
it is more computationally intensive than our proposed approach.

Variable selection methods are often divided along two lines: filter and wrapper methods (Ko-
havi and John, 1997). The filter approach of selecting variables serves as a preprocessing step to
the induction. The main disadvantage of the filter approach is that it totally ignores the effects of
the selected variable subset on the performance of the induction algorithm. The wrapper method
searches through the space of variable subsets using the estimated accuracy from an induction algo-
rithm as the measure of “goodness” for a particular variable subset. Thus, the variable selection is
being “wrapped around” a particular induction algorithm. These methods have encountered some
success with induction tasks, but they can be very computationally expensive for tasks with a large
number of variables.

Our approach (VS-SSVM) consists largely of two consecutive parts: variable selection and non-
linear induction. The selection of variables serves as a preprocessing step to the final kernel SVR
induction. The variable selection itself is performed by wrapping around linear SVMs (no kernels)
with sparse norm regularization. Such sparse linear SVMs are constructed to both identify variable
subsets and assess their relevance in a computationally cheaper way compared with a direct wrap
around nonlinear SVMs. However, the variable selection by linear SVMs and the final nonlinear
SVM inference are tightly coupled since they both employ the same loss function. Our method is
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similar in spirit to the Least Absolute Shrinkage and Selection Operator (LASSO) method (Tibshi-
rani, 1996) but is specifically targeted to SVR with theε-insensitive loss function.

This article is organized as follows. In Section 2, we review sparse SVMs with`1-norm reg-
ularization, specifically, the sparseν-SVR. Section 3 provides details on the VS-SSVM algorithm
based on sparse linear SVMs. Sections 4 and 5 compare VS-SSVM with stepwise dimensionality
reduction and correlation coefficient ranking methods on synthetic data and Boston Housing data.
Model visualization is also explored in Section 5 to reveal domain insights. Computational results
on real-life QSAR data are included in Section 6.

2. Sparse Support Vector Machines

In this section, we investigate sparse SVMs. Consider the regression problem as finding a function
f ∗ ∈ F = { f : R

n→ R} that minimizes the regularized risk functional (Boser et al., 1992, Vapnik,
1995, Smola, 1998):R[ f ] := P[ f ]+C1

` ∑`
i=1 L(yi , f (xi)), whereL(·) is a loss function. Usually theε-

insensitive lossLε(y, f (x)) = max{|y− f (x)|−ε,0} is used in SVR.P[·] is a regularization operator
andC is called the regularization parameter. For linear functions,f (x) = w′x+b, the regularization
operator in classic SVMs is the squared`2-norm of the normal vectorw. Nonlinear functions are
produced by mappingx to Φ(x) in a feature space via the kernel functionk and constructing linear
functions in the feature space. A linear function in feature space corresponds to a nonlinear function
in the original input space. The optimal solutionw to SVMs can be expressed as a support vector
expansionw = ∑αiΦ(xi). Thus, the regression function can be equivalently expressed as a kernel
expansionf (x) = ∑αiΦ(xi)′Φ(x) + b = ∑αik(xi ,x) + b. Classic SVMs are quadratic programs
(QPs) in terms ofα.

Solving QPs is typically computationally more expensive than solving linear programs (LPs).
SVMs can be transformed into LPs as in Bennett (1999), Breiman (1999) and Smola et al. (1999).
This is achieved by regularizing with a sparse norm, e.g. the`1-norm. This technique is also used
in basis pursuit (Chen et al., 1995), parsimonious least norm approximation (Bradley et al., 1998),
and LASSO (Tibshirani, 1996). Instead of choosing the “flattest” function as in classic SVR, we
directly apply thè 1-norm to the coefficient vectorα in the kernel expansion off . The regularized
risk functional is then specified as

R[ f ] :=
`

∑
i=1

|αi |+C
1
`

`

∑
i=1

Lε(yi , f (xi)). (1)

This is referred to as a “sparse” SVM because the optimal solutionw is usually constructed based
on fewer training examplesxi than in classic SVMs and thus the functionf requires fewer kernel
entriesk(xi ,x).

The classic SVR approach has two hyper-parametersC and ε. The tube parameterε can be
difficult to select as one does not know beforehand how accurately the function will fit. Theν-SVR
(Schölkopf et al., 2000, Smola et al., 1999) was developed to automatically adjust the tube size,ε,
by using a parameterν ∈ (0,1]. The parameterν provides an upper bound on the fraction of error
examples and a lower bound on the fraction of support vectors. To form theν-SVR LP, we rewrite
α j = uj − vj whereuj , vj ≥ 0. The solution has eitheruj or vj equal to 0, depending on the sign
of α j , so |α j | = uj + vj . Let the training data be(xi ,yi), i = 1, · · · , ` wherexi ∈ R

n with the jth
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component ofxi denoted asxi j , j = 1, · · · ,n. The LP is formulated in variablesu, v, b, ε, ξ andη as

min
`

∑
j=1

(uj +vj)+C
1
`

`

∑
i=1

(ξi + ηi)+Cνε

such that yi−
`

∑
j=1

(uj −vj)k(xi ,x j)−b≤ ε+ ξi, i = 1, . . . , `,

`

∑
j=1

(uj −vj)k(xi ,x j)+b−yi ≤ ε+ ηi, i = 1, . . . , `,

uj , vj , ξi, ηi , ε≥ 0, i, j = 1, . . . , `.

(2)

LP (2) provides the basis of both our variable selection and modeling methods. To select variables
effectively, we employ a sparse linear SVR which is formulated from LP (2) simply by replacing
k(xi ,x j) by xi j with index i running over examples and indexj running over variables. The optimal
solution is then given byw = u− v. To construct the final nonlinear model, we use the sparse

nonlinear SVR LP(2) with a nonlinear kernel such as the RBF kernelk(x,z) = exp
(−||x−z||2

σ2

)
. The

optimal solution is then given byα = u−v.

3. The VS-SSVM Algorithm

We briefly describe the VS-SSVM algorithm in this section. The VS-SSVM algorithm consists of 5
essential components: 1. A linear model with sparsew constructed by solving a linear SVM LP to
obtain a subset of variables nonzero-weighted in the linear model; 2. An efficient search for optimal
hyper-parametersC andν in the linear SVM LP using “pattern search”; 3. The use of bagging to
reduce the variability of variable selection; 4. A method for discarding the least significant variables
by comparing them to “random” variables; 5. A nonlinear regression model created by training and
bagging the LPs (2) with RBF kernels on the final subset of variables selected. We shall explain the
various components in more detail in this section.1 Pseudocode for the first four steps is given in
Algorithm 1 in the appendix. Algorithm 2 in the appendix describes the final nonlinear regression
modeling algorithm. In Section 5, we describe how further filtering of variables can be achieved by
visualizing the bagged solutions and applying rules to the bagged models.

Sparse linear models:Sparse linear models are constructed using the following LP:

min
n

∑
j=1

(uj +vj)+C
1
`

`

∑
i=1

(ξi + ηi)+Cνε

such that yi −
n
∑
j=1

(uj −vj)xi j −b≤ ε+ ξi, i = 1, . . . , `,

n
∑
j=1

(uj −vj)xi j +b−yi ≤ ε+ ηi, i = 1, . . . , `,

uj , vj , ξi, ηi , ε≥ 0, i = 1, . . . , `, j = 1, . . . ,n.

(3)

Let w = u− v be the solution to the linear SVR LP (3). The magnitude and sign of the compo-
nentwj indicates the effect of thejth variable on the model. Ifwj > 0, the variable contributes
to y; if wj < 0, the variable reducesy. The `1-norm of w inherently enforces sparseness of the
solution. Roughly speaking, the vectors further from the coordinate axes are “larger” with re-
spect to thè 1-norm than with respect tòp-norms withp > 1. For example, consider the vectors

1. More details are available at the websitehttp://www.rpi.edu/˜bennek/featsele.html
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(1,0) and(1/
√

2,1/
√

2). For the`2-norm,‖(1,0)‖2 = ‖(1/
√

2,1/
√

2)‖2 = 1, but for thè 1-norm,
1 = ‖(1,0)‖1 < ‖(1/

√
2,1/
√

2)‖1 =
√

2. The degree of sparsity of the solutionw depends on the
regularization parameterC and the tube parameterν in LP(3).

Pattern search: Since the hyper-parameters play a crucial role in our variable selection ap-
proach, we optimize them using a pattern search approach. This optimization is automatically
performed based on validation set results by applying the derivative-free pattern search method
(Dennis and Torczon, 1994) in theC-ν search space. For each choice ofC-ν, LP (3) generates a
linear model based on the training data. Then the resulting model is applied to the validation data

and evaluated using the statisticQ2 = ∑(yi−ŷi)2

∑(yi−ȳ)2 , the mean squared error scaled by the variance of

the response, where ˆyi is the prediction ofyi for the ith validation example and ¯y is the mean of the
actual responses. The pattern search method optimizes this validationQ2 over theC-ν space. A
good range for the hyper-parameters may be problem-specific, but we prefer to a generic approach
applicable to most datasets. Hence a reasonably large range is adopted to produce theC-ν space,
specifically,C∈ [e−2 = 0.1353,e10 = 22026] andν ∈ [0.02,0.6].

The pattern search algorithm is embedded in Algorithm 1 as a sub-routine. Each iteration of
a pattern search algorithm starts with a center (initially randomly chosen), samples other points
around the center in the search space, and calculates objective values of each neighboring point
until it finds a point with objective value less than that of the center. The algorithm then moves
the center to the new minimizer. If all the points around the center fail to bring a decrease to
the objective, the search step (used to determine the neighboring points) is reduced by half. This
search continues until the search step gets sufficiently small, thus ensuring convergence to a local
minimizer. For a full explanation of pattern search for SVR see Momma and Bennett (2002).

Variability reduction: The optimal weight vectorsw for LP (3) exhibit considerable variance
due to local minima in the pattern search, the small dataset size, and changes in validation data. Dif-
ferent partitions of data may produce very different answers. No individual model can be considered
completely reliable, especially for QSAR data. Thus “bootstrap aggregation” or “bagging” is used
to make the procedure more stable (Breiman, 1996). In our experiments, models were constructed
based onT = 20 random partitions to produce distinct weight vectors. There are several schemes
to combine models. We took the superset of nonzero weighted variables obtained in any of the 20
different partitions – the “bagged” subset of the variables. Bagging can augment the performance
of various individual models due to the reduced variance of the “bagged” model (Breiman, 1996).
For problems with large variance, regression based on the average usually outperforms any single
model. We use bagging for both variable selection and nonlinear SVR modeling.

Discarding least significant variables:Sparsity of the linear model eliminates many variables
in every bootstrap, but it is possible that in any given bootstrap irrelevant variables are included.
Thus, we also eliminate variables by introducing random gauge variables. The intuition is that if
an independent variable has even less significance than a random variable which is barely related
to the response, then it may be safely deleted. The VS-SSVM Algorithm 1 first augments the data
with normally distributed random variables (mean 0 and standard deviation 1). Random variables
following other distributions can also be employed. See Stoppiglia and Dreyfus (2003) for a more
thorough discussion of this issue. Based on the previous empirical results by Embrechts et al.
(2001), we added 3 random variables with sample correlations to the response less than 0.13 in
magnitude. The weightsw for these random variables provide clues for thresholding the selection
of variables based on the average of the weights on the 3 variables across all the bootstraps. Only
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variables with average weight greater than this average will be selected. The selection of variables
can be further refined. We leave the explanation of our scheme for model visualization and further
filtering of the variables until Section 5.

Nonlinear SVR models: After the final set of variables is selected, we employ Algorithm 2
in the appendix to construct the nonlinear SVR model. Nonlinear models were constructed based
on T = 10 partitions and then averaged to produce the final model. We focus on evaluating the
performance of the variable selection method more than optimizing the predictor. Hence a simple
grid search was used in nonlinear SVR modeling to select hyper-parameters rather than pattern
search in each fold of the bagging. In the grid search, we considered only the RBF kernels with
parameterσ2 equal to 8, 100, 150, 250, 500, 1000, 3000, 5000, and 10000. The parameterC was
chosen from values between 10 and 20000 with 100 as the increment within 1000 and 1000 as the
increment from 1000 to 20000, and the parameterν from 0.1, 0.15, 0.2, 0.3, and 0.5.

4. Computational Analysis of VS-SSVM

We evaluated the computational effectiveness of VS-SSVM on synthetic data and the benchmark
Boston Housing problem (Harrison and Rubinfeld, 1978). Our goal was to examine whether VS-
SSVM can improve generalization. The LPs (2) and (3) formulated on training data were both
solved using CPLEX version 6.6 (ILOG, 1999).

We compared VS-SSVM with a widely used method, “stepwise regression” wrapped around
Generalized Linear Models (GLM) (Miller, 1990). For fair comparison, the GLM models were also
bagged. Hence 20 different GLM models were generated using Splus 2000 (Venables and Ripley,
1994, McCullagh and Nelder, 1983) based on different bootstrapped samples, and the resulting
models were bagged. The bagged models performed at least as well as single models, so only the
bagged results are presented here. In each trial, half of the examples were held out for test and
the other half were used in training. VS-SSVM and stepwise regression were run on the training
data. The training data were further divided to create a validation set in each fold of the bagging
scheme. The final models were applied to the hold-out test data in order to compute the testQ2.
This procedure was repeated 20 times on different training-test splits of the data for both methods.

The synthetic data set was randomly generated with solution pre-specified as follows: there
are 12 independent variables and 1 response variable. The first 5 variables,x1, . . . ,x5, were drawn
independently and identically distributed from the standard normal distribution. The 6th variable
wasx6 = x1 + 1 which is correlated tox1. The 7th variable wasx7 = x2x3 which relates to both
x2 and x3. Five additional standard normally distributed variables were also generated, and had
nothing to do with the dependenty. We call them noise variablesNV1 to NV5. They was calculated
asy = x1 +2x2 +3x3 +x2

4 +ex5. We generated 200 examples.
Table 1(left) shows that VS-SSVM consistently selected all the desired variablesx1 to x5, and

discarded most of the irrelevant attributesNVi. Since the randomly-generated attributesNVi can be
correlated with the response by chance, they can not always be eliminated. Thresholding based on
the maximum weight rather than the average weight on the random variables added in Algorithm 1
can eliminate allNVs, but this may also remove relevant variables. VS-SSVM selected exactly
one ofx1 andx1 + 1 in each fold since either could be used to represent the function, but taking
the superset over all folds brought both variables into the selected set. Fortunately, such highly
correlated variables can be directly filtered as in Section 5. For nonlinear SVR, it is better to have
many variables than too few, and correlated variables can be beneficial when noise is presented.
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Table 1: A comparison of selected variable subsets by VS-SSVM (left) and stepwise (right) within
20 trials. The variablesx1,x2,x3 were selected in all trials by both methods.NV1 ∼ NV5

means all 5 noise variables.

Times Variable subsets
6 x4, x5, x1 +1, NV2

3 x4, x5, x1 +1, NV1, NV5

3 x5, x1 +1
2 x4, x5, x1 +1, x2x3, NV5

1 x4, x5

1 x4, x5, x1 +1, NV5

1 x5, NV2

1 x5, x1 +1, NV1, NV5

1 x5, x1 +1, NV2, NV3, NV5

1 x4, x5,x1 +1, NV1∼ NV5

Times Variable subsets
2 x4, x5, x2x3, NV1, NV5

2 x4, x5, NV1, NV5

2 x4, x5, NV1, NV5

2 x5, x2x3, NV2, NV4, NV5

2 x5, NV1, NV2, NV4, NV5

1 x4, x5, NV2, NV3, NV4

1 x4, x5, NV2, NV4, NV5

1 x4, x5, NV5

1 x4, x5, x2x3, NV4, NV5

1 x4, x5, NV1, NV2, NV4, NV5

1 x5, NV2, NV5

1 x5, NV2, NV3, NV4

1 x5, x2x3

1 x5, x2x3, NV2

1 x5, NV3, NV5

The results for stepwise regression are summarized in Table 1(right). The Splus GLM modeling
was constructed for the Gaussian family. We experimented with the quadratic form of GLM but
it constructed a function of many nuisance variables likeNV2

2 . Therefore GLM was restricted to
linear models. Note thatx1+1 never appeared in the model, so stepwise regression seemed to handle
linearly-correlated variables better than VS-SSVM. However, it was likely to pick the nonlinearly-
interrelated variablex2x3 and the irrelevant variablesNVs. Moreover it missed the desired variable
x4 more times than did VS-SSVM. The stepwise regression method is computationally expensive
for problems with many attributes. The Splus GLM modeling could not be applied to the QSAR
problems in Section 6 since these problems have fewer sample points than variables.

VS-SSVM generalized better than stepwise regression. Figure 1 depicts the observed versus
the predicted responses of the test examples over all 20 trials on synthetic data for VS-SSVM and
GLM. Each point is represented by a vertical bar with the middle point representing the mean and the
length of the bar drawn according to the standard deviation of predictions for that point. VS-SSVM
obtains a testQ2 of .0332± .0027 and stepwise GLM achieves aQ2 of .1287± .0065. Recall that
Q2 is proportional to the mean squared error so smaller values are better. The squared correlation
coefficient,r2, between the observed and predicted responses is also provided in the figures, and
the largerr2, the better. Figure 2 summarizes the results on the Boston Housing Data, for which all
variables were selected by VS-SSVM and stepwise regression in most of the 20 trials.
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Figure 1:On synthetic data;left: VS-SSVM result;right: stepwise regression result.
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Figure 2:On Boston Housing data;left: VS-SSVM result;right: stepwise regression result.

5. Model Visualization

Model visualization can be used to interpret the results of the VS-SSVM. Recall that even within
a single trial, VS-SSVM produces different linear models using different partitions/bootstraps of
data. The final variable subset is the aggregate of these models. Examining the distribution of the
weights on each variable in different bootstrap models can yield valuable insights into the relation-
ship between the independent and response variables. Visualization techniques such as starplots,
histograms, and stackplots can enhance understanding of the role of the variables (Fayyad et al.,
2001).

We constructed a starplot for each variable. The starplot consists of a sequence of equi-angular
spokes (radials). Each spoke represents the variable’s weight in a different bootstrap model. We did
20 bootstraps, so there are 20 spokes. The spokes are ordered ascendingly by the||w|| corresponding
to each bootstrap. Thew for each bootstrap is normalized such that for each component,|wj | ∈ [0,1].
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Figure 3: Starplots forleft: the synthetic data andright: the Boston Housing data. Dotted and solid boxes
contain non-positive and non-negative weighted variables.

A line connecting the spokes gives the starplot its name. The relative size and shape of starplots
allow one to quickly assess relationships beyond simple mean and variance across the bootstraps.

Figure 3(left) is a representative starplot for the synthetic data. The starplots within the dashed
box represent those variables with negative weightsw. The starplots within the solid box represent
variables with positive weights. The remaining variables have weights that flip signs. The stars are
ordered according to the average weight for each variable on different bootstraps. Variablex3 was
the most positively-linearly related to the response, andx2 the second, which reflects the truth as
y = x1 + 2x2 + 3x3 + x2

4 + ex5. By only fitting linear functions, VS-SSVM may not always detect
nonlinearly-related variables correctly. In our experiments, it did detect the nonlinear variablesx4

andx5. Note that sincex2
4 is part of the true model, the sign ofx4 is negative, showing that the

linear model focuses on correcting the negative values ofx4. The NV2 has no clear relation with
the response since the weights forNV2 flip signs among different models. The strategy of removing
variables with flipping signs can further refine variable selection.

The variables with flipping signs do not always coincide with the variables that are least corre-
lated with the response. On the synthetic data the correlation coefficientsr of the variables and the
response are:

x1 x2 x3 x4 x5 x1 +1 NV2

0.233 0.498 0.711 -0.077 0.506 0.233 -0.080

Removing all variables withr less than 0.08 in magnitude would also deletex4.
The size and shape of the starplots provide information about the models. The starplots for

variablex1 and x1 + 1 are complementary, which means if a bootstrap model selectsx1, it does
not includex1 +1. The starplots help spot such complementary behavior in models. Hence highly
correlated variables can be further filtered.

VS-SSVM with model visualization can be valuable even on datasets where variable selection
does not eliminate variables. For example, on the Boston Housing data, VS-SSVM does not drop
any variables. However, the weights produced by VS-SSVM can help understand the role and the
relative importance of the variables in the model. The starplots based on the entire Boston Housing
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data are given in Figure 3(right). They are drawn in the same way as for the synthetic data. For
instance, the RM (average number of rooms per dwelling) is the most positively related to the
housing price, which reflects that the number of rooms is important for determining the housing
price and the more rooms the house has, the higher the price. The INDUS (proportion of non-retail
business acres per town) appears not to affect the housing price significantly in the linear modeling
since the corresponding weights flip signs.

6. Generalization Testing on QSAR Datasets

VS-SSVM was also tested on challenging real-life QSAR data. The QSAR data were created
in the ongoing NSF-funded Drug Design and Semi-supervised Learning (DDASSL) project (See
http://www.drugmining.com ). Leave-one-out cross-validation was performed for QSAR data.
As described in Section 3, variables were selected separately for each left-out point. We used ex-
actly the same group of examples for both experiments with and without variable selection.

Table 2: A summary of data and reduced data.
# of Original Preproc. 1st VS 2nd VS

Dataset Obs. # of Vars. # of Vars. # of Vars # of Vars
Aquasol 197 640 525 118 57
Blood/Brain Barrier 62 694 569 64 51
Cancer 46 769 362 73 34
Cholecystokinin 66 626 350 93 69
HIV 64 620 561 53 17
Caco2 27 715 713 79 41

Table 2 summarizes the datasets. Variables with a range greater than 4 standard deviations
were removed (a common practice in commercial analytical tools used in chemometrics). This
very primitive form of variable filtering rarely hurts and usually improves the results. The resulting
numbers of variables are in the 3rd column of Table 2. VS-SSVM greatly reduced the number of
attributes as shown in columns 4 and 5 of Table 2 while improving generalization (see Table 3).
Column 5 (Table 2) gives the results obtained by iteratively applying VS-SSVM to the original or
reduced data until no variables have weights that flip signs.

Table 3 gives a comparison of the results based on all attributes versus those selected by one
iteration of VS-SSVM. We compared VS-SSVM to the correlation coefficient ranking method. The
ranking method chose theq variables most correlated to the response. The numberq was chosen
to be the same number of variables selected by VS-SSVM. After the variables were selected, Algo-
rithm 2 was used to construct the final nonlinear model. Table 4 presents the results for VS-SSVM
after iteratively removing variables with flipping signs versus the results for the correlation coeffi-
cient ranking. The squared correlation coefficient between the actual and predicted responses (1 is
the best) and leave-one-outQ2 (0 is the best) are reported. The standard deviation ofQ2, Std(Q2),
is computed as the standard deviation of the squared errors on the test data scaled by the variance
of the actual response. By cross referencing with Table 3, Table 4 shows that the ranking scheme
by correlation coefficients failed to improve the generalization performance. The significance of the
differences was assessed using a pairedt-test. We calculated the mean of the errorε = |y− ŷ| and
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Table 3: The experimental results on full datasets and reduced datasets obtained by VS-SSVM. The
1st VS-SSVM means to run VS-SSVM once on the full data.

Full Data 1st VS-SSVM reduced data
Dataset r2 Q2 Std(Q2) r2 Q2 Std(Q2)
Aquasol 0.918 0.082 0.006 0.9290.071 0.018
Blood/Brain Barrier 0.693 0.310 0.079 0.7190.286 0.074
Cancer 0.507 0.500 0.171 0.7790.223 0.102
Cholecystokinin 0.616 0.404 0.087 0.6730.332 0.068
HIV 0.551 0.458 0.086 0.652 0.357 0.066
Caco2 0.693 0.326 0.083 0.7360.300 0.069

Table 4: The comparison of VS-SSVM by iteratively eliminating “flipped” variables and the corre-
lation coefficient ranking.

2nd VS-SSVM corr. coef. rank
Dataset r2 Q2 Std(Q2) r2 Q2 Std(Q2)
Aquasol 0.936 0.065 0.010 0.908 0.092 0.006
Blood/Brain Barrier 0.718 0.283 0.076 0.693 0.300 0.017
Cancer 0.836 0.164 0.035 0.820 0.185 0.020
Cholecystokinin 0.643 0.370 0.073 0.6500.350 0.020
HIV 0.612 0.396 0.087 0.592 0.415 0.025
Caco2 0.725 0.293 0.074 0.672 0.351 0.046

performed the pairedt-test on the squared errorsε2. The results are shown in Table 5. The absolute
errors for modeling with full data and with variable reduction are denoted asε f andεr respectively.

From all these tables we conclude that VS-SSVM is effective at reducing the dimensionality
on QSAR problems. The first phase of VS-SSVM significantly reduced the number of variables

Table 5: The experimental results for the pairedt-test.
Dataset meanε f meanεr t-statistic p-value
Aquasol 0.489 0.458 0.469 0.640
Blood/Brain Barrier 0.331 0.305 1.334 0.187
Cancer 0.431 0.292 2.506 0.016
Cholecystokinin 0.728 0.698 0.577 0.566
HIV 0.721 0.609 2.446 0.017
Caco2 0.643 0.636 0.052 0.959
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and further reductions were achieved by iteratively feeding QSAR data to VS-SSVM and removing
variables with flipping signs in the linear models. VS-SSVM either produced significantly better (3
of the 6 problems by Table 5) or no worse generalization accuracy using dramatically fewer vari-
ables. The most significant improvements were obtained on the Cancer and HIV data. Plots of the
actual versus predicted responses for Cancer data in Figure 4 illustrate the improved generalization
obtained by VS-SSVM.

7. Conclusions and Discussion

The key components of our variable selection approach are first, exploiting the inherent selection
of variables done by the sparse linear SVM LP(3), second, aggregation of many sparse models
to overcome the unreliability of any single model, and third, visualization or analysis of bagged
models to discover trends. In this research, we only investigated a sparse SVM regression algorithm,
but any sparse modeling process can serve a similar function. We focused on starplots for model
visualization, but other visualization methods can also be applied and may be more informative. For
instance, we found parallel coordinate plots of variable weights versus bootstraps to be valuable.
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Figure 4:Left: Cancer full data;right: Cancer with variable selection.

VS-SSVM proved to be very effective on problems in drug design. The number of variables was
dramatically reduced while maintaining or even improving the generalization ability. This method
outperforms SVMs trained using all the attributes and the attributes selected by correlation ranking.
Chemists have found model visualization to be useful both for guiding the modeling process and
for interpreting the effects of the descriptors used in the models (Song et al., 2002). Through model
visualization, we discovered the simple rule of eliminating variables with weights that flip signs in
distinct individual models. Automating this rule proved to be a valuable heuristic for further refining
variable selection.

VS-SSVM is not a general methodology suitable for all types of problems. We have demon-
strated its effectiveness on very high-dimensional problems with very little data. On problems where
linear models cannot adequately capture relationships, the method would fail. Open research areas
include a theoretical underpinning of the approach, characterization of the domains on which it is
effective, and extension to nonlinear interactions.
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Appendix

Algorithm 1 The Variable Selection Algorithm.

arguments: Sample data X ∈R
M×N,y ∈ R

M

return: Variable subset S
function VS-SSVM(X,y)

Add in L random variables RVs as new descriptors, X← (X RVs) ∈ R
M×(N+L)

t← 0
repeat

t← t +1
Randomly partition data into training (Xtr ,ytr) and validation (Xv,yv) sets
Perform model selection over parameters C and ν using pattern search
Solve LP(3) on (Xtr ,ytr ), obtain a linear model with the weight vector w(t)

until t ≥ T , the maximum number of iterations
Combine weight vectors to obtain w←Combine(w(t), t = 1,2, . . . ,T),
set the threshold γ← average {wN+l , l = 1, · · · ,L}, the weights for RVs.
return Variable subset S consisting of variables with w greater

than threshold γ
end

Algorithm 2 The Induction Algorithm.

arguments: Sample X ∈ R
M×N,y ∈ R

M

return: SVM regression model f .
function SSVM(X,y)

t← 0
repeat

t← t +1
Randomly partition data into training (Xtr ,ytr) and validation (Xv,yv) sets
Perform model selection over parameters C, ν, and σ2

Solve LP(2) over (Xtr ,ytr ) with best C, ν, and σ2,
obtain the nonlinear model f (t)

until t ≥ T , maximum number of bootstraps
Bag models f (t), f ← 1

T ∑T
t=1 f (t)

return SVM regression model f
end
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