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Abstract—In this paper we introduce a traffic growth model for
optical networks with time-varying traffic arrivals assuming the
nodes are capable of full wavelength conversion. We propose a
network dimensioning method based on the traffic growth model
and it eventually results in a nonlinear optimization problem with
cost minimization as the objective and route absorption probabil-
ities as the constraints. The absorption probabilities can be ob-
tained from transient analysis of a Markov chain. Computation of
exact absorption probabilities requires huge computing resources
and is thus feasible only for small networks. We consider a re-
duced load approximation for estimating absorption probabilities
of a wavelength routed network with arbitrary topology and traf-
fic patterns. We show that the approximation method performs
very well for optical networks with long-lived lightpaths.

I. I NTRODUCTION

Wavelength-division multiplexing(WDM) [1] in optical net-
works is a promising technology to utilize the enormous band-
width of optical fiber and it offers the capability of building
very large wide-area networks with throughputs of the order of
gigabits per sec for each node [2]. In this work we consider that
all the network nodes have full wavelength conversion capabil-
ity and it provides improved utilization of the available fiber
bandwidth in a WDM network. Significant advances in optical
and electronic device technologies have made wavelength con-
version feasible. Optical wavelength converters are still in an
experimental stage; however, with electronicwavelength cross-
connects(WXC), it is easier to realize wavelength conversion
[3]. With full wavelength conversion capability, an optical net-
work is equivalent to a conventional circuit switched network.

A network dimensioning method allocates appropriate ca-
pacities to the WDM links based on the network topology and
traffic requirements. Many network dimensioning methods are
based on mathematical models with cost minimization as the
objective and grade-of-service constraints expressed in terms
of end-to-end blocking probabilities[4]. The models turn out
to be nonlinear optimization problems with a rather large num-
ber of variables and in some formulations many nonlinear con-
straints. A straightforward solution method is to use the algo-
rithms for nonlinear constrained minimization [5], [6]. It in-
volves the computation of blocking probabilities for different
values of capacity on the links. For a large circuit-switched
network, Kelly proposed an efficient method to estimate the
loss probabilities based on solving a fixed point problem in-
volving Erlang’s formula under the assumption of independent
blocking and showed that under a limiting regime the estimates
of loss probabilities converge to the correct values [7]. Sev-
eral models are considered in the literature to approximate the

blocking probabilities in all-optical networks with and without
wavelength changers [8]–[11]. In all these cases, the dimen-
sioning problem is solved assuming the network is in asteady
state condition.

Traditional networking technologies were designed for a
world of moderate traffic growth with relatively stable and pre-
dictable traffic patterns. Such systems were simply not de-
signed to handle the explosive growth in bandwidth demand
coupled with the dynamic nature of traffic patterns created by
emerging broadband and Internet applications. So application
of the blocking model is not appropriate because the traffic will
not reach a steady state as it is growing constantly and unpre-
dictably. Such a dramatic shift in the environment requires a
fundamental shift in network architectures in order to realize
the full potential of modern applications.

In this paper we consider atraffic growth model and use the
concept ofabsorption probability instead of blocking probabil-
ity to express the grade of service of a network. The dimen-
sioning problem based on absorption probability is solved for
constant rates of traffic arrivals and the details of the analyti-
cal model can be found in [12]. Here we consider the more
general case oftime-varying traffic arrivals, which is a better
assumption and more relevant in the current scenario of rapidly
growing traffic in optical networks.

We elaborate on this traffic model in the next section.

II. T RAFFIC MODEL AND OVERVIEW

Lightpaths are assumed to arrive randomly according to a sta-
tistical model and have to be set up on the optical layer. Some
lightpaths may depart as well but it is assumed that, on aver-
age, the number of lightpaths will keep increasing and eventu-
ally we will have to reject a lightpath request. Thus the rate of
arrival of lightpath requests exceeds the rate of termination of
lightpaths, and the network is not in equilibrium. This is a rea-
sonable model today since the lightpaths are long-lived and the
traffic in the network is growing. We are interested in dimen-
sioning the WDM links so that the first lightpath request rejec-
tion will occur, with high probability, after a specified period of
time,

�
. The longevity, combined with the cost of a high band-

width lightpath today, means that a network operator is unlikely
to reject a lightpath request. Rather, he would like to upgrade
his network by the addition of more capacity on existing links
in order to accommodate the lightpath request. The time period�

corresponds approximately to the time by which the operator
must institute such upgrades in order to avoid rejecting light-
path requests. So if a network has an absorption probability of
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� at time
�

, it means the operator has to add additional capacity
with probability � by time

�
in order to be able to set up all the

requested lightpaths/connections.
However, the dimensioning problem is solved based on a

nonlinear optimization model and it involves the computation
of absorption probabilities for a given set of capacities on the
WDM links. The network can be modeled by a Markov chain
where a state is represented by the set of lightpaths in progress.
Estimation of absorption probability is based on the transient
analysis of the Markov chain. In this paper we introduce an
efficient method to compute the absorption probabilities which
shows excellent performance even for large networks.

The rest of the paper is organized as follows. In Section III
we compute the exact absorption probabilities for single and
double link networks. In Section IV, we consider a large net-
work, outline the traffic assumptions and describe the method
for calculation of approximate absorption probabilities. In Sec-
tion V, we formulate the optimization problem to determine the
link capacities. We present our results in Section VI and con-
clude in Section VII.

III. E XACT SOLUTION FORSINGLE AND DOUBLE LINK

NETWORKS

In our proposed reduced load approximation method, the ap-
proximate absorption probability of a route in a large network
is calculated based upon the individual link absorption proba-
bilities with the assumption that the links are independent but
the arrival rates are thinned. The details of the method are dis-
cussed in section IV. This motivates us to study a single link
network in details.

Here we consider a single link network of capacity� . The
busy wavelength distribution can be modeled by a birth-death
process where a state of the Markov chain represents the num-
ber of lightpaths in progress. We assume the arrivals are Pois-
son with �����	� as the state-independent arrival rate at time� .
Holding times are assumed exponential with constant mean
���

. The birth-death model for a single link with the above
assumptions is shown in Fig. 1.
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Fig. 1. Markov chain of the busy wavelength distribution on a single link

Let �������	� be the probability of state� at time � . So we can
establish the following relations between the state probabilities
[13]. The network is assumed to start with no lightpaths at all.���� ���	�������������	�����  ��� � ���	���������	��� �! #" ���	����$�%� 
 �  � �'&�" ���	� for
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With these notations the system (1)–(4) can be written asQ �	���	�\�]�������	� = �  J � Q ���	�R�_^5���	� Q ���	� + (5)

whereM(t) is a (� +2) ` ( � +2) matrix of variable coefficients.
We assume the arrival rate�����	� as acontinuous function of

time � . Then the system of linear differential equations (5) with
the given initial values

Q ��89� , possesses aunique continuous
solution on the interval�R;a8 . ([14], p. 20)

Again it can be proved that the elements of the solution vec-
tor are bounded by 0 and 1 and the sum is 1 for all�R;a8 . Hence,
a solution exists and it is unique for all�.;b8 . The explicit so-
lution of (5) is complicated. So an alternative is to compute the
solution through numerical techniques.

The link will be absorbed if all the� wavelengths are busy
and another arrival occurs. So the (� +1)-th state is an absorb-
ing state from which no exit is possible. From (4) it follows that� �1 &�" ���	�c;E8 as �����	�c;d8 and 8 ( � 1 ���	� (e


for all � . So,� 1 &�" ���	� is a monotonically non-decreasing function of� with� 1 &�" ��89�0�:8 . The explicit solution of the absorption probabil-
ity � 1 &4"'���	� is complicated. But it can be computed easily by
numerical methods [15].

For a double link network, we use a three-dimensional
Markov chain model to calculate the exact absorption probabil-
ity. We do not describe the analytical details of the 3-D Markov
chain model here; they can be found in [12]. Although the ex-
plicit solution is unknown, the exact absorption probability can
be computed by numerical methods [15].

IV. A PPROXIMATE SOLUTION FOR GENERAL NETWORKS

We now describe an approximation method to calculate the
absorption probabilities for a general optical network with the
following assumptions.

A. Model Assumptions

1) The network consists off links connected in an arbi-
trary topology. Denoteg\h for the capacity in linki + ij�
3+7Nk+ClDlClm+ fn6

2) A route o is a subset of links fromp 
3+7Nk+DlClClm+ frq . A
lightpath in routeo uses s hut wavelengths from linki ,s hut�v p�8 +D
 q . Denotew for the set of routes.

3) Lightpaths requests arrive on routeo according to a time-
varying Poisson process with rate� t ���	� at time � .
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4) Lightpath holding times are exponentially distributed
with unit means and independent of earlier arrivals.

5) A link i is absorbed at time� if a lightpath requesting
route o arrives at time� but there is no wavelength free in
link i provideds hut � 
 .

Let us define the vectorsx = ��g\h + iT� 
3+7Nk+ClDlClm+ f�� andy = �$��t + o v wz� when ��t be the number of lightpaths in
progress in routeo . Now considering a{ w|{ -dimensional state
space with a constraint

= y ( x , an explicit form might be
thought to provide the complete solution of absorption prob-
abilities. However, the number of routes and thus the size of
the state space grows rapidly with the number of links. The
size of state space also increases with the capacities of the linksg " + g~} +ClDlClD+ g�� . So, it is impractical to find the explicit forms
of absorption probabilities except for some small networks.

The assumption that all the links are independent with the
sum of arrival rates� t��3� s hut � t ���	� as the arrival rate on linki will yield an upper bound on absorption probability. The ab-
sorption probability of thei -th link at time � is� h�C�X� ���	� (��2���tC�3� s hut � t ���	� + g hC� + iV� 
3+�Nn+ClDlClm+ f +
where

� �������	� + �K� is theabsorption probability at time � for a
single link of capacity� with time-dependent arrival rate�����	�
and mean holding time unity. It can be computed from (5) as� 1 &�" ���	� . But this may lead to a very conservative upper bound.
As an alternative, the links can still be assumed independent
if the arrival rates are thinned properly for each link and this
results a good approximation of the absorption probabilities.

Consider a scalar function�#� � � , so that 8 ( �#� � � (�

as � varies from 0 to 1. Now approximate the carried traf-
fic on link i at time � by a Poisson process with arrival rate� t s�hut���t,���	�n�|���� h S �U��� ��C�X� ���	�	��W$�U�H� where � ��C�X� ���	� is the ab-
sorption probability of link� at time � . It is assumed that whens�hut =1 the traffic of rate��t,���	� is thinned by a factor�#��� ��C�X� ���	�u�
on each link� v o��Bp7i�q before being offered to linki and the
thinnings are independent from link to link and over all routes
containing the linki . Now the success of the approximation
method depends on the proper choice of the function�U� � � . Mo-
tivated by the Erlang fixed point approximation in steady state
condition [7], we consider�U� � �3� 
 � � as a good choice. Apart
from this, we can come up with different possible choices for�#� � � to obtain a better approximation.

Now the approximate absorption probability of linki , i��
3+7Nk+DlClClC+ f can be calculated from the following system of time-
dependent non-linear equations� h�C�X� ���	�R� �*�� �t��3� s hut � t ���	���� �3tC #��h7� �0 �� ��C�X� ���	�	¡ + g hC¢ £ 6 (6)

So the absorption probability of a routeo v w at time � ,¤ t ���	�R� 
 � �h��3t � 
 �K� h�C�X� ���	�	�76 (7)

Now we discuss briefly the method of solution for the sys-
tem of eqns. (6). Consider each linki + iL� 
3+7Nk+ 6C6C6 + f
as an independent single link with arrival rate at time� ,� h ���	�~� � t��3� s hut � t ���	�n�|� �3t� ���h7� �   � �¥ � &�" ���	� ¡ and generate
the ��g h � N � differential equations as shown in (1)–(4) for a
single link network. So we havef sets of homogeneous differ-
ential equations which are non-linear and coupled by the factor� h ���	� . Now we combine all the equations in a single system.
The total number of equations¦:� � �h � " g h � N fn6

Define a probability vectorP( � ) of dimension¦ so that� h� ���	�
be the (� h� #"� � " ��g � � N �#���§� 
 )-th element ofP( � ).

Now combining the differential equations for all the links,Q � ���	�\�T��¨|��� + Q ��©ª�2«z� Q ���	�\�:^O��� + Q � Q ���	� + (8)

whereL andU are constant¦_`\¦ lower and upper bidiagonal
matrices respectively.D is a ¦_`\¦ diagonal matrix which is a
function of � andP. Note that� h ���	� is the (� h� #"� � " ��g � � N �3�B�¬�

)-th diagonal element ofD for all i , iV� 
3+7Nk+ 6C6C6 + f and for all� , ��*8 +D
3+ 6D6C6 + g\h!� 
 .
For the system of eqns. (8), it is not possible to obtain the

explicit form of the solution in general but it can be proved
that a probability solution exists and it is unique for all values
of �®;�8 provided � t ���	� is a continuous function of � for allo v w . Although the analytical solution is unknown, the system
(6) with the given initial conditions can be solved by numerical
methods using ODE solvers [15].

V. CAPACITY ALLOCATION

Given the network topology and the cost to set up capacities
on each link, we want to select the capacities so as to meet the
absorption probability constraints while minimizing costs.

So the problem is to choose the capacityg h for each linki ,iP� 
3+�Nn+ 6D6C6 + f + so as to minimize the linear cost� �h � "�¯ h°g\h
where ¯ h is a known positive price to set up unit capacity in
link i , subject to the constraints that the absorption probability
of any routeo v w at a given time�¬� � should not exceed a
given constant��±�² .

We are now ready to state the problem formally asmathe-
matical program.

Objective function³µ´·¶ ��h � " ¯ h°g\h (9)

subject to� h�C�X� � � �3� � �� �tC�3� s hut � t � � � �� �3tC #��h7� �   � ��C�X� � � � ¡ + g h ¢£¹¸ i + (10)¤ t � � �0� 
 � �h��3t � 
 �M� h�C�X� � � �u� ( ��±�² + for all o v w + (11)8 ( � h�C�X� � � � (º
3+ g\h v®» & for all i + (12)

where» & is a finite set of positive integers.
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This is an example ofmixed integer nonlinear program or
MINLP. Although some efficient algorithms are known for
solving NLPs, no efficient algorithms are known for the so-
lution of arbitrary MINLPs and it is extremely hard. We de-
velop a heuristic to find a good solution using the techniques
of NLP-relaxation and rounding. Note that if we relaxg h to
real numbers, the MINLP is converted to an NLP. Estimate the
absorption probability for a non-integer capacity based on the
absorption probabilities for integer capacities. Now round the
NLP solution to integers to obtain the link capacities. Round-
ing up will always give a solution, but the performance can be
improved by the following technique. Set a threshold between
0 and 1 for the fractional parts of the NLP solution. Round up
to 1 if the fractional part is greater than the threshold value else
round down to 0. Apply this method to all the reals of the NLP
solution and calculate the absorption probabilities. If these are
not acceptable on some links, adjust the threshold and recalcu-
late the absorption probabilities.

VI. RESULTS AND DISCUSSION

Here we present the numerical results of the exact absorption
probabilities for a single link and the exact and approximate ab-
sorption probabilities for a double link as functions of time. We
also consider a moderate-sized network ARPANET as an arbi-
trary network and solve the dimensioning problem for a given
function of traffic arrival.

For our experiments, we consider a linear function to rep-
resent the traffic growth. For the the single link network, the
arrival rate at time� , �����	���*� - � 
 ��� ��¼ � + (13)

where � - is the initial arrival rate at time� = 0 and
¼

is a con-
stant parameter.

The exact absorption probabilities of a single link network of
capacity 32 are calculated for different values of

¼
with � - =14

and the probabilities are plotted as functions of time in Fig. 2. It
shows that the absorption probability is monotonically increas-
ing with � but decreasing with

¼
.

For a two-link network, the upper bound, the exact absorp-
tion probability and the approximate absorption probabilities
with 3 different choices of�U� � � are calculated as functions of
time and the results are shown in Fig. 3. The arrival rate on
route � at time � , � � ���	�R�½� � - � 
 �2� ��¼ � , where� � - is the initial
arrival rate at� = 0, � = 1, 2, 3.

It is observed from Fig. 3 that the approximations with all
the 3 functions are very close to the exact values at low absorp-
tion probabilities. But the approximations with�#� � �~� 
 � �
and �#� � �,� 
 � N � � N � } deviate widely from the exact values at
large absorption probabilities. This behavior can be explained
as follows. For large values of absorption probability, the thin-
ning of type-3 lightpaths are excessive and the thinned terms at� , �¿¾,���	���#��� "�C�X� ���	�u� and �¿¾3���	���#��� }�C�X� ���	�	� are almost zero. This
is equivalent to a 2-link network with only type-1 and type-2
lightpaths with arrival rates� " ���	� and �¿}3���	� respectively and
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Fig. 2. The exact absorption probabilities of a single link network with capac-
ity À = 32, arrival rate at timeÁ , Â9ÃÄÁ�Å�Æ�ÇuÈ�Ã$Ç�É�Á�Ê�Ë3Å and mean holding timeÇ7Ê�Ì = 1.
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Fig. 3. Absorption probabilities of a two-link network with capacitiesÀ¬Í0ÆÀÏÎrÆÐÇ�Ñ , initial arrival ratesÂ Í�Ò = Â'Î Ò = Â�Ó Ò = 6, parameterË = 4 and mean
holding time Ç7Ê�Ì =1. The inset figure is a zoom of the curves at low absorption
probabilities.

the corresponding absorption probability is a significant under
estimate of the exact absorption probability. The large underes-
timation at high absorption probabilities causes no problem in
designing a network, in practice, because the required absorp-
tion probability is typically low (0.1 or less). Observe that the
approximation with�U� � �'� 
 � � � � } is good for both low and
high absorption probabilities.

We consider the ARPA network shown in Fig. 4 as an ex-
ample of an arbitrary and moderately large topology to study
the performance for arbitrary networks. Routes are selected as
the shortest paths between any two nodes. The total number of
possible routes is 190 considering only one route between any
two nodes. Under shortest path routing, the maximum possi-
ble hop length is 6 and the number of routes with 1, 2, 3, 4,
5 and 6 hops are 32, 52, 56, 32, 17 and 1 respectively. Here
we consider only the non-uniform traffic withÔ = 0.5 where�ÖÕV���	�%�×Ô Õ  #" l � " ���	� , �ÖÕc���	� is the arrival rate on aØ -hop
route at time� and � " ���	��Ù� " - � 
 �½� ��Ú � , � " - is the initial
arrival rate at�0�*8 on a single hop route.
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Fig. 4. A 20 node, 32 link network representing a skeleton of the original
Arpanet. A set of capacities (column 4, Table I) is shown on different links
of the network, as an example of a properly dimensioned network for a time
period &®Æ(' with )+*-,�Æ/.10 Ç .

We now solve the dimensioning problem so that the absorp-
tion probabilities of all the routes are less than 0.01(1%) and
0.1(10%) at time

� � 
3+7Nk+32
and 4 with � " - �54 and the ca-

pacities allotted to various links of the networks are presented
in Table I. We consider�#� � �0� 
 � � because it is equivalent
to �#� � ��� 
 � � � � } at low absorption probabilities but the
complexity is less.

For an illustration, let us assume the mean holding time of a
lightpath is 6 months. Allot the capacities based on the absorp-
tion probability as shown in Fig. 4. The absorption probabilities
for all the routes are computed by the proposed reduced load ap-
proximation method which are all less than 0.1 and compared
with the simulation at

� � N with � " - �64 . The simulated ab-
sorption probabilities are found slightly less than the approxi-
mate absorption probabilities in all the routes and the difference
is more for larger hop routes. This ensures that the operator has
a 90% or better chance of not having to upgrade the network
for a time period of 1 year where the traffic arrival rate will be
doubled every two years.

VII. CONCLUSION

In this paper, we have introduced a traffic growth model for
time-varying traffic in optical networks and proposed a dimen-
sioning method based on a nonlinear optimization problem with
cost minimization as the objective and route absorption proba-
bilities as the constraints. Here we consider only fixed rout-
ing. In practice, when a certain route is saturated the operator
is likely to use an alternative path to setup a new lightpath. The
model described can be modified for alternate routing but this
is a topic for further research.
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