

Open access • Posted Content • DOI:10.1101/872119

Dimensions of anxiety and depression and neurophysiological indicators of errormonitoring: Relationship with delta and theta oscillatory power and error-related negativity amplitude — Source link 🗹

Alexandra M. Muir, Ariana Hedges-Muncy, Ann Clawson, Kaylie A. Carbine ...+1 more authors

Institutions: Brigham Young University

Published on: 11 Dec 2019 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Error-related negativity, Anxiety and Generalized anxiety disorder

Related papers:

- Dimensions of anxiety and depression and neurophysiological indicators of error-monitoring: Relationship with delta and theta oscillatory power and error-related negativity amplitude
- Electrophysiological correlates of performance monitoring under social observation in patients with social anxiety disorder and healthy controls
- · Anxiety and feedback processing in a gambling task: Contributions of time-frequency theta and delta.
- Neurophysiological predictors of gaze-contingent music reward therapy among adults with social anxiety disorder.
- The influence of emotional intelligence and perfectionism on Error-Related Negativity: An event related potential study

1

Running head: SYMPTOM DIMENSIONS AND ERROR-MONITORING

1	
2	
3	
4	
5	
6	Dimensions of anxiety and depression and neurophysiological indicators of error-monitoring:
7	Relationship with delta and theta oscillatory power and error-related negativity amplitude
8	Alexandra M. Muir ¹ , Ariana Hedges-Muncy ¹ , Ann Clawson ² , Kaylie A. Carbine ¹ , Michael J.
9	Larson ^{1,3}
10	¹ Department of Psychology, Brigham Young University
11	² Department of Neuropsychology, Children's National Hospital
12	³ Neuroscience Center, Brigham Young University
13	
14	
15	
16	
17	
18	
19	Correspondence concerning this article should be sent to: Michael J. Larson, Ph.D., Department
20	of Psychology and Neuroscience Center, Brigham Young University, 244 TLRB, Provo, UT
21	84602. Email: michael_larson@byu.edu; Telephone: 801-422-6125
22	
23	

2

24	Impact Statement
25	In line with the RDoC framework, we tested the relationship between anxiety and
26	depressive symptom dimensions and neural indices of error-processing (delta and theta power,
27	error-related negativity ERP amplitude) in 178 participants with a range of pathology symptoms.
28	A non-significant relationship emerged between neural and symptom measures suggesting
29	anxiety and depressive symptomology have a nuanced relationship with error-monitoring in a
30	large sample across a range of anxiety and depression symptoms.
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

SYMPTOM DIMENSIONS AND ERROR-MONITORING

Δ	7
т	1

Abstract

3

48 Error-monitoring processes may be affected by transdiagnostic dimensions of psychopathology 49 symptoms including trait anxiety, worry, and severity of depressive symptoms. We tested the 50 relationship between continuous measures of anxiety and depressive symptomology and neural 51 correlates of error-monitoring as measured by time-frequency domain delta and theta oscillatory 52 power and time domain error-related negativity (ERN) amplitude extracted from the 53 electroencephalogram (EEG). Secondary analyses tested for diagnostic group differences in 54 error-related neural responses in individuals with generalized anxiety disorder (GAD), major 55 depressive disorder (MDD), and comorbid psychiatric disorders. 178 participants (104 female, 56 $M[SD]_{age} = 21.7[4.6]$) with a wide range of psychopathology symptoms completed a modified 57 version of the Eriksen flanker task and symptom questionnaires. Residualized difference values 58 between correct and error trials for delta/theta power and error/correct ERN amplitude were 59 dependent variables. Linear regression analyses adjusted for age and sex showed nonsignificant 60 associations of symptom dimension measures with error-related residualized delta/theta power or 61 residualized ERN amplitude. Subset analyses on those with confirmed psychopathology 62 diagnoses also did not predict residualized error-related delta/theta power nor ERN amplitude. 63 Exploratory analyses with only error trial delta/theta power and ERN amplitude also revealed 64 nonsignificant relationships. Taken in the context of previous literature, results suggest a 65 heterogeneous relationship between depressive and anxiety symptom dimensions and 66 neurophysiological indices of error-monitoring. 67 *Keywords:* delta power, theta power, error-related negativity, GAD, MDD, comorbid disorders

- 68
- 69

SYMPTOM DIMENSIONS AND ERROR-MONITORING

70

1 Introduction

4

71 Error-monitoring, an individual's ability to detect an incorrect response and subsequently 72 adjust to improve future behavior, is an essential skill to achieve successful goal-directed 73 behavior (Mohamed, Börger, Geuze, & van der Meere, 2019; Rabbitt & Rodgers, 1977). 74 Individual differences in error-monitoring may be related to personality traits and transdiagnostic 75 psychopathology symptoms, such as worry, negative affect, impulsivity, and conscientiousness 76 (Hill, Samuel, & Foti, 2016; Moser, Moran, & Jendrusina, 2012). Error-monitoring processes are 77 altered in individuals with psychopathology. For example, individuals with generalized anxiety 78 disorder and obsessive-compulsive disorder have heightened error-monitoring processes (Riesel, 79 Kathmann, & Endrass, 2014; Weinberg, Olvet, & Hajcak, 2010); however, the relationship 80 between error-monitoring processes and symptoms of psychopathology is heterogeneous for 81 other disorders such as major depressive disorder (Aarts, Vanderhasselt, Otte, Baeken, & 82 Pourtois, 2013; Gorka & Phan, 2017; Weinberg, Liu, & Shankman, 2016). We tested the 83 relationship between transdiagnostic symptom dimensions of depression and anxiety and 84 neurophysiological reflections of error-monitoring processes, including event-related potentials 85 (ERP) and electroencephalogram (EEG) oscillatory power in a sample with a wide range of 86 psychopathology symptoms. A secondary aim was to test diagnostic group differences in 87 neurophysiological responses to errors in individuals with confirmed diagnoses of generalized 88 anxiety disorder (GAD), major depressive disorder (MDD), and comorbid psychiatric disorders. 89 1.1 Neurophysiological Measures of Error Monitoring

The error-related negativity (ERN) is an ERP often used to quantify neural manifestations of
error-monitoring. The ERN is a negative deflection in the ERP waveform approximately 0 to 150
ms following an erroneous response (Gehring, Goss, Coles, Meyer, & Donchin, 1993) that

originates in the anterior cingulate cortex (ACC; van Veen & Carter, 2002). Despite numerous

SYMPTOM DIMENSIONS AND ERROR-MONITORING

93

94	theories concerning the functional significance of the ERN, the current consensus is that the
95	ERN represents an early monitoring system interpreting cognitive or emotional responses to
96	errors, after which additional cognitive resources are recruited to improve future behavior
97	(Gehring et al., 1993; Larson, Clayson, & Clawson, 2014; Proudfit, Inzlicht, & Mennin, 2013;
98	Weinberg, Liu, Hajcak, & Shankman, 2015).
99	In addition to time domain measures, analyses of EEG data in the time and frequency
100	domains can be used to quantify neural response to errors. Time-frequency analyses measure the
101	magnitude of frequency band oscillations and are thought to reflect increased synchronization of
102	a group of neurons working together to produce a cognitive response (Buzaski, 2006). While
103	time domain measures such as ERN amplitude capture phase-locked data, time-frequency
104	measures capture both phase- and non-phase locked data, resulting in a richer representation of
105	the EEG signal (Cohen, 2014). Thus, utilization of both time and time-frequency measures to
106	quantify neural response to errors provides a rich and holistic view of the neurophysiological
107	processes related to error-monitoring.
108	Oscillations in the delta (1-3 Hz) and theta (4-8 Hz) frequency bands are thought to reflect
109	error-monitoring processes. Specifically, both midline delta and theta activity increase directly
110	following an incorrect response compared to following correct responses (Cavanagh, Cohen, &
111	Allen, 2009; Luu & Tucker, 2001; Munneke, Nap, Schippers, & Cohen, 2015) and are present in
112	frequency decompositions of the ERN (Luu & Tucker, 2001; Yordanova, Falkenstein,
113	Hohnsbein, & Kolev, 2004). The functional roles of delta- and theta-band activity may also be
114	dissociable (Cohen & Cavanagh, 2011), with evidence suggesting that the delta-band is primarily
115	associated with error-monitoring, while theta-band activity includes both conflict- (i.e., the

6

SYMPTOM DIMENSIONS AND ERROR-MONITORING

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

simultaneous presentation of competing options) and error-related processes (Cohen & Cavanagh, 2011). The ERN and delta/theta oscillatory power quantify both similar and independent portions of neural signal (Cavanagh, Meyer, & Hajcak, 2017; Munneke et al., 2015), suggesting the utility of using both the ERP and oscillation-based measures to quantify neural indices of error-monitoring. 1.2 Symptoms of Anxiety and Depression and Error-Monitoring Processes There is increasing focus on the relationship between symptom dimensions of psychopathology on a continuous scale and error-monitoring processes, regardless of formal psychiatric diagnosis (i.e., a transdiagnostic approach). This approach is in line with the Research Domain Criteria (RDoC) initiative, which aims to establish cognitive and behavioral constructs under which psychopathology can be studied, regardless of traditional diagnostic labels. In the past, diagnostic status was used to group individuals, after which those group differences in error-monitoring were tested (i.e., Aarts et al., 2013; Weinberg et al., 2010). However, it is possible traditional nosology of psychopathology may not be valid nor capture underlying aberrant biology that results in presentation of abnormal behavior (Cuthbert & Insel, 2013). Error-monitoring processes fit well in the RDoC framework, as error-monitoring has the potential to link psychopathology to underlying deviant neural functioning that affects outward behavior (Hanna & Gehring, 2016). Thus, investigating relationships between transdiagnostic symptom dimensions and personality traits in samples with a wide range of psychopathology symptoms allows for a better understanding of what factors may influence individual differences in error-monitoring abilities. The primary approach employed in the current study was to use individual difference psychopathology symptom measures to test for relationships with errorrelated neurophysiology, regardless of psychiatric diagnosis.

SYMPTOM DIMENSIONS AND ERROR-MONITORING

-	-	
-	7	
. 4		

139	Trait anxiety is a stable personality trait in which an individual tends to be in a continuously
140	anxious state (Kennedy, Schwab, Morris, & Beldia, 2001). Individuals high on trait anxiety show
141	greater frontal midline theta when compared to those lower on scales of trait anxiety (Schmidt,
142	Kanis, Holroyd, Miltner, & Hewig, 2018); however, other results suggest no relationship
143	between trait anxiety and midline theta (Neo & McNaughton, 2011). In the time domain, larger
144	ERN component amplitude is related to higher trait anxiety scores (Olvet & Hajcak, 2008),
145	which has been interpreted as an indicator of greater expectancy violation in individuals with
146	higher trait anxiety (Compton et al., 2007). When examining the relationship between anxiety
147	symptoms and neural mechanisms of error-monitoring, it is important to dissociate state anxiety
148	from trait anxiety. Anxiety inducing paradigms produced no change in ERN amplitude (Moser,
149	Hajcak, & Simons, 2005) suggesting the ERN is trait-like in nature (Olvet & Hajcak, 2008).
150	Therefore, in the current study, only the trait subscale of the State Trait Anxiety Inventory
151	(STAI) was used to investigate the relationship between trait anxiety and neural measures of
152	error-monitoring.
153	Along with trait anxiety, anxious apprehension (i.e., worry), depressive symptomology, and
154	biological sex may be factors influencing the neurophysiological representations of error-
155	monitoring processes. Anxious apprehension (i.e., worry) is a cognitive component of anxiety
156	where worrisome thoughts dominate day to day life (Nitschke, Heller, Imig, McDonald, &
157	Miller, 2001). Individuals who scored high on measures of anxious apprehension, regardless of
158	diagnosis, displayed enhanced ERN amplitude when compared to controls (Hajcak, McDonald,
159	& Simons, 2003; Moser et al., 2012; Moser, Moran, Kneip, Schroder, & Larson, 2016; Moser,
160	Moran, Schroder, Donnellan, & Yeung, 2013). When looking at the relationship between

161 depressive symptomology and error monitoring processes, there is great heterogeneity in the

8

SYMPTOM DIMENSIONS AND ERROR-MONITORING

162 literature with some evidence that ERN amplitude is not related to depressive symptoms (Chang, 163 Davies, & Gavin, 2010; Schroder, Moran, Infantolino, & Moser, 2013). Other research indicates 164 that ERN amplitude is related to facets of melancholia (Weinberg et al., 2016), suggesting that 165 the ERN may be more specifically related to facets of depression rather than depressive 166 symptoms as a whole. In addition to the possible modulation of ERN amplitude by worry and 167 depressive symptomology, ERN amplitude may differ as a function of biological sex; however 168 the current literature is unclear as to whether men or women display greater ERN amplitudes 169 (Fischer, Danielmeier, Villringer, Klein, & Ullsperger, 2016; Hill, Ait Oumeziane, Novak, 170 Rollock, & Foti, 2018; Larson, South, & Clayson, 2011; Moser et al., 2016). Thus, it is important 171 to account for biological sex when examining individual differences in error-monitoring.

172 **1.3 Diagnostic Status and Error-Monitoring Processes**

173 There is a significant amount of heterogeneity in studies of error-monitoring processes within 174 individuals formally diagnosed with MDD, GAD, or comorbid disorders. ERN amplitude is 175 generally heightened in individuals with anxiety disorders such as GAD (Meyer, Nelson, 176 Perlman, Klein, & Kotov, 2018; Weinberg, Liu, et al., 2015) and enhanced theta power reliably 177 dissociated individuals with GAD from psychiatrically healthy controls (Cavanagh et al., 2017). 178 However, there is also evidence that ERN amplitude is unchanged in people with diagnosed 179 GAD (Kujawa et al., 2016; Xiao et al., 2011). In individuals with comorbid anxiety and 180 depression, there is evidence that ERN amplitude is unchanged from psychiatrically healthy 181 controls (Weinberg, Klein, & Hajcak, 2012; Weinberg, Kotov, & Proudfit, 2015), implying 182 comorbid depression may moderate the relationship between ERN amplitude and GAD 183 diagnostic status. When looking at individuals diagnosed with MDD, although there is some

184 evidence that individuals with MDD have an enhanced ERN when compared to controls (Aarts

SYMPTOM DIMENSIONS AND ERROR-MONITORING

9

185	et al., 2013; Chiu & Deldin, 2007; Holmes & Pizzagalli, 2008, 2010), other evidence suggests
186	that either ERN amplitude is blunted (Olvet, Klein, & Hajcak, 2010; Weinberg et al., 2016), or
187	that there is no difference in ERN amplitude between those with MDD and those without (Gorka
188	& Phan, 2017; Moran, Schroder, Kneip, & Moser, 2017; Weinberg et al., 2012). In addition to
189	this heterogeneity of evidence, there is a lack of evidence present concerning error-related delta
190	and theta power in relation to GAD, MDD, and comorbid disorders. As such, combining time
191	domain and time-frequency domain measures of error processing in GAD, MDD, and comorbid
192	disorders may assist in elucidating the relationship between diagnostic status and neural indices

193 of error-monitoring.

194 **1.4 Aims and Hypotheses**

195 The current study had two aims. Our primary aim was to quantify the relationship 196 between symptom dimensions of trait anxiety, worry, and depressive symptomology and error-197 monitoring processes in individuals with a wide range of symptoms regardless of psychiatric 198 diagnosis using commonly utilized measures of psychopathology. To isolate error-related 199 activity instead of general response-related activity, residualized difference values between 200 correct and error trials for delta/theta power and ERN amplitude were used as the dependent 201 variable of interest (Meyer, Lerner, Reyes, Laird, & Hajcak, 2017). We hypothesized, based on 202 the current literature, that higher trait anxiety and worry would be related to residual delta power, 203 theta power, and ERN amplitude. Due to the heterogeneity of the literature, we also hypothesized 204 there would be no relationship between depressive symptoms and residual delta power, theta 205 power, and ERN amplitude. A secondary aim of the current study was to characterize error-206 monitoring processes in individuals with a diagnosis of GAD, MDD, or comorbid disorders. 207 Similar to the previous hypotheses, we hypothesized that individuals with GAD would have

SYMPTOM DIMENSIONS AND ERROR-MONITORING

208	greater residualized delta power, theta power, and ERN amplitude when compared to
209	psychiatrically healthy controls, but there would be no difference in dependent variables between
210	those with MDD, comorbid disorders, and controls.
211	2 Method
212	All data and code are posted on the Open Science Framework (OSF) and can be found at
213	https://osf.io/pujsv. All methods are in compliance with the methodological reporting checklist
214	for EEG/ERP data as outlined in Keil et al. (2014; see also Clayson, Carbine, Baldwin, &
215	Larson, 2019). A subset of the current data testing different data aspects and hypotheses have
216	been previously published (see Baldwin, Larson, & Clayson, 2015; Clawson, Clayson, & Larson,
217	2013).
218	2.1 Participants
219	Procedures were approved by the Brigham Young University Institutional Review Board.
220	Psychiatrically-healthy control participants were recruited through undergraduate psychology
221	courses, whereas individuals with psychiatric diagnoses and elevated symptoms of
222	psychopathology were recruited through flyers placed at the local university counseling center
223	and community mental health centers. All participants were compensated through course credit
224	or monetary payment.
225	The final sample consisted of 178 participants (female = 104 ; $M(SD)_{age} = 21.7[4.6]$). For
226	those with psychopathology, diagnoses were initially made by a psychiatrist, psychologist, or
227	physician in the community and subsequently confirmed upon enrollment using the Mini-
228	International Neuropsychiatric Inventory (MINI; Sheehan et al., 1998). The MINI has a high
229	concordance rate with the Structured Clinical Interview for DSM-IV Axis I disorders (SCID) but
230	requires less time to administer (Sheehan et al., 1998). Participants were excluded if they had

SYMPTOM DIMENSIONS AND ERROR-MONITORING

231	medication changes within the two months prior to data collection, they had a diagnosis of a
232	psychotic or bipolar disorder, they reported a learning disorder or attention deficit/hyperactivity
233	disorder, they had a history of substance use or dependence, neurological disease, or they were
234	left-handed. At the time of participation 33.1% of all participants were taking a psychotropic
235	medication (GAD = 78.6%, MDD = 60.7%, Comorbid = 58.8% [see Table S1 in the
236	supplementary material on OSF for a list of comorbid disorders] No confirmed diagnosis =
237	61.8%, Control = 0%). The proportion of participants taking psychotropic medications did not
238	differ between the three (GAD, MDD, comorbid) psychopathology groups ($\chi^2(2) = 1.62$, $p =$
239	0.44; see Table S2 in the supplementary material on OSF).
240	Participants were excluded if they had ERP noise levels greater than 20 (root mean
241	square of the residual noise after the consistent ERP is canceled by inverting every other trial;
242	see Schimmel, 1967), if they had less than 50% accuracy on the computerized tasks, or if they
243	had missing or incomplete questionnaire data. To ensure similar number of trials for the
244	oscillatory power and ERP analyses, all participants had a minimum of ten useable trials for all
245	conditions. Because reliability is a product of the context of a current sample and study (Clayson
246	& Miller, 2017a) dependability of ERN amplitude (for both error and correct trials) was
247	estimated using the ERP Reliability Analysis Toolkit in Matlab (Clayson & Miller, 2017b). This
248	toolkit uses generalizability theory to estimate the g-theory reliability analogue known as
249	dependability in ERP components. The error trials had an average dependability of 0.63 and the
250	correct trials had an average dependability of 0.86.
251	Of the 178 participants, 32 participants who originally indicated they had a psychiatric
252	diagnosis were excluded from secondary diagnostic analyses due to a lack MINI confirmation of

their diagnostic status (i.e., they were diagnosed by a practitioner in the community, but the

12

SYMPTOM DIMENSIONS AND ERROR-MONITORING

254	diagnosis was not confirmed by MINI administration in the lab). Thus, the final sample for our
255	secondary diagnostic subgroup secondary analyses consisted of 146 participants (87 controls, 61
256	individuals with psychopathology; $M(SD)_{age} = 21.3(3.4)$, female = 87; $n_{GAD} = 14$; $n_{MDD} = 28$;
257	$n_{Comorbid} = 19$; $n_{Control} = 85$). In order to be included in the comorbid group, the participant had to
258	have a confirmed diagnosis of either GAD or MDD, comorbid with any other disorder(s) (see
250	T_{a} h_{a} S_{a} h_{b}

259 Table S1).

260 **2.2 Experimental Procedures**

261 Upon entering the lab, informed consent was obtained after which participants completed 262 a battery of cognitive tests and questionnaires. Cognitive tests included the Rey-Auditory Verbal 263 Learning Test (RAVLT), Trail Making Test parts A and B, Digit Span forward and backward, 264 Controlled Oral Word Association Test, and animal fluency. The State Trait Anxiety Inventory 265 (STAI), Penn State Worry Questionnaire (PSWQ), and Beck Depression Inventory-Second 266 Edition (BDI-II) were administered as measures of psychiatric symptom severity. All measures 267 collected are reported here for the sake of transparency; however only the BDI-II, STAI, and 268 PSWQ, measures commonly used in clinical settings for psychopathology symptom 269 quantification, were used in the data analyses of the current paper. Therefore, no further 270 information will be reported on the other measures (see Baldwin et al., 2015 & Clawson et al., 271 2013 for comprehensive information). Information on the psychometric properties of the 272 measures included is reported below in section 2.3. 273 Following completion of the neuropsychological tests and symptom questionnaires, 274 participants completed a modified arrow version of the Ericksen flanker task (Eriksen & Eriksen, 275 1974). Participants were presented with five arrows and asked to respond to the direction of the 276 point of the middle arrow with an index or middle finger button press. There was a total of 798

SYMPTOM DIMENSIONS AND ERROR-MONITORING

277	randomly presented trials with 354 trials (45%) being congruent (e.g., <<<<>) and 444 trials
278	being incongruent (55%) (e.g., <<>><>). Participants completed a practice block of 24 trials prior
279	to the beginning of the task to ensure understanding. Stimuli were presented in white 36-point
280	Arial font on a black background on a 17-inch computer approximately 20 inches from the
281	participant. Flanking arrows were presented for 100 ms followed by the target arrow which was
282	presented for an additional 600 ms. Subsequently, a fixation cross was shown for a jittered
283	intertrial interval of 800, 1000, or 1200 ms. Responses occurring over 1600 ms after stimulus
284	presentation were seen as an error of omission and were not included in the data analyses as the
285	next trial was queued after 1600 ms.

286 2.3 Measures

Means and standard deviations along with Chronbach's alpha (overall and by group) are presented in Table 1. The Beck Depression Inventory, Second Edition (BDI-II; Beck, Steer, & Brown, 1996) was used to quantify depressive symptoms. Participants were asked to rate 21 statements on a scale from 0 (I do not feel sad) to 3 (I am so sad or unhappy that I can't stand it) after which individual item scores were summed to a total score. Possible scores range from 0 to 63. The BDI-II has been shown to have a high level of internal consistency (Chronbach's alpha .89-.93; Beck et al., 1996; Whisman, Perez, & Ramel, 2000).

The State Trait Anxiety Inventory (STAI form Y-2) was used to quantify trait anxiety symptoms (Speilberger, Gorsuch, & Lushere, 1970). Items on the STAI include statements such as "I feel calm" or "I am worried". Participants were asked to rank the statements on a four-point Likert type scale ranging from "not at all" (1) to "very much" (4). Because only trait anxiety is of interest to the current study, we just used trait anxiety subscale score was used for analyses. Possible scores on the STAI trait subscale range from 20-80. In previous studies, the STAI

SYMPTOM DIMENSIONS AND ERROR-MONITORING

300 shows good internal consistency (Chronbach's alpha>.7; Bergua et al., 2012; Speilberger et al.,

301 1970).

302	The Penn State Worry Questionnaire (PSWQ; Meyer, Miller, Metzger, & Borkovec,
303	1990) was used to quantify anxious apprehension and worry symptoms. Participants were
304	presented with 16 items and asked to rank their feelings on a 5-point Likert scale from "Not at all
305	typical of me" (+1) to "Very typical of me" (+5). Items were reverse scored as needed and total
306	score for the PSWQ was calculated through the summing of each item. Possible scores on the
307	PSWQ range from 0-80. The PSWQ has good validity and internal consistency (Meyer et al.,
308	1990).

309 2.4 Electroencephalogram recording and reduction

310 Data were collected from 128 equidistant passive Ag/AgCl electrodes on a hydrocel 311 sensor net from Electrical Geodesics, Inc. using a NA 300 amplifier system (EGI; Eugene, OR; 312 20K nominal gain, bandpass = 0.01 - 100 Hz). During data collection, all data were referenced to 313 the vertex electrode (Cz) and digitized continuously at 250 Hz with a 16-bit analog to digital 314 converter. Per the manufacturer's recommendation, impedances were kept at or below 50 k Ω . 315 Offline, all data were digitally high-pass filtered at 0.05 Hz filter and digitally low-pass filtered 316 at 30 Hz in NetStation (v 5.3.0.1). Data were then segmented from -1000 ms before response 317 until 1000 ms after response for both correct and error trials for the time-frequency analyses, and 318 400 ms before response to 800 ms after correct and erroneous responses for ERN analyses. 319 Segmentation was extended for the time-frequency analyses from the traditional ERN 320 segmentation in order to create a long enough epoch to extract low delta frequencies and to avoid 321 edge artifacts common in time-frequency analyses (Cohen, 2014). For both the ERN and time-322 frequency measures, following segmentation eye movements and blink artifacts were corrected

15

SYMPTOM DIMENSIONS AND ERROR-MONITORING

323 using independent components analysis (ICA) in the ERP PCA toolkit in Matlab (Dien, 2010). If 324 any ICA component correlated with two blink templates (one template being provided by the 325 ERP PCA Toolkit (Dien, 2010) and one template being derived from previous data by the 326 authors) at a rate of 0.9 or higher, the specific component was removed from the data (Dien, 327 2010). Additionally, if the differential average amplitude was greater than 50 microvolts or if the 328 fast average amplitude of a particular channel was greater than 100 microvolts, the channel was 329 defined as bad and the nearest neighbor approach (using six electrodes) was used to interpolate 330 the data for that electrode (Dien, 2010). Following artifact correction, data were re-referenced to 331 an average reference in the ERP PCA toolkit in Matlab and baseline adjusted from 400 ms to 200 332 ms pre-response for all measures.

333

2.4.1 Time-Frequency Data Reduction

334 Time-frequency power values were extracted through Matlab (R2018a) from four fronto-335 central electrodes (6 [FCz], 7, 106, 129 [Cz]; see Larson et al., 2014 for electrode montage). 336 These electrodes were chosen as we were combining both time- and time-frequency domain 337 indices of error-monitoring, and ERN amplitude is maximal over fronto-central electrodes (e.g., 338 Clawson, South, Baldwin, & Larson, 2017). Twelve log-spaced frequencies ranging from 1.5 Hz 339 to 14 Hz were used for a complex Morlet wavelet convolution with trial averaged EEG data. To 340 avoid edge artifacts that are common in time-frequency analyses (Cohen, 2014), 300 ms of data 341 were removed from the epoch, with 100 ms being removed pre-stimulus and 200 ms being 342 removed at the very end prior to convolution. This resulted in a final epoch of 900 ms before 343 response until 800 ms after. Due to the imbalance of correct and error trials, a random 344 permutation of correct trials matching the number of error trials were selected for each 345 participant (Cohen, 2014) as to not bias results towards one trial type or the other. Thus, each

16

SYMPTOM DIMENSIONS AND ERROR-MONITORING

346 participant had the same number of error and correct trials for all analyses (all trial numbers per 347 group are reported in Table 2). After, wavelet convolution was performed using complex Morlet 348 wavelets, data were decibel baseline normalized with a condition-average from 400 ms to 200 349 ms prior to response. Data were then grand averaged across all groups and visually inspected to 350 determine a time window from which to extract delta and theta power values (similar to the 351 collapsed localizer approach advocated in Luck & Gaspelin, 2017). The time window chosen 352 was 0 to 150 ms following response, which is consistent with previous research examining error-353 related neural activity (Dehaene, Posner, & Tucker, 1994; Gehring et al., 1993). Average delta 354 power for correct and error trials was extracted from the 1-4 Hz range while average theta power

- 355 was extracted from the 4-8 Hz range.
- 356

2.4.2 Error-Related Negativity Data Reduction

357 Event-related potential values were extracted using Matlab (R2018a) and R (v. 1.1.463) 358 from the same four fronto-central electrodes (6 [FCz], 7, 106, 129 [Cz]). After all data were 359 baseline adjusted from 400 ms to 200 ms pre-response, mean amplitude was extracted for both 360 error and correct trials (ERN and CRN amplitude respectively for time-domain measures) from 0 361 to 150 ms post-response. Mean amplitude measure was employed due to research suggesting the 362 mean amplitude is more reliable than other ERP peak measures (Clawson et al., 2013; Luck, 363 2005). All means and standard deviations of dependent variables and trial numbers are reported 364 in Table 2.

365 **2.5 Data Analysis**

366

2.5.1 Questionnaire and Behavioral Data

All statistical analyses were performed in R (v 3.5.2). To determine if individuals with a
 diagnosis of pathology did indeed present with greater anxiety and depressive symptoms, three

17

369	4-group (GAD, MDD, Comorbid, Control) one-way ANOVAs were conducted, one for each
370	questionnaire (BDI, PSWQ, STAI Trait) with generalized eta squared (η^2) used as a measure of
371	effect size. Post-hoc Tukey HSD were used to adjust significant group differences.
372	For the behavioral data, mean accuracy and median response time (RT) were calculated
373	overall and as a function of congruency. In the flanker task, it is expected that accuracy will be
374	lower and response time will be longer for incongruent versus congruent trials. Two 4-group by
375	2-congruency (congruent, incongruent) repeated measures analysis of variances (ANOVAs) were
376	conducted with accuracy and RT as dependent variables and general eta squared (η^2) used as a
377	measure of effect size. Either paired samples t-tests (for within-subjects) with Cohen's d_z for
378	effect size or follow-up one way ANOVAs with generalized eta squared for effect size were used
379	to decompose any significant main effects or interactions
380	Pearson's correlations between residualized delta/theta power and residualized ERN
381	amplitude and all three questionnaires were conducted to characterize the relationship between
382	all six variables.
383	2.5.3 Continuous Linear Regressions
384	As a manipulation check, three paired samples <i>t</i> -tests were initially conducted on the
385	whole sample to ensure that error trials demonstrated greater delta and theta power and more
386	negative ERN amplitude when compared to the correct-related negativity (CRN).
387	In order to isolate error-related brain activity from response-related activity, the residuals
388	between correct and error power and ERP amplitude were used as the dependent variable for the
389	subsequent regressions. Error trials were used as the outcome variable and correct trials were
390	used as the predictor in creation of the residualized difference scores (Meyer et al., 2017).

SYMPTOM DIMENSIONS AND ERROR-MONITORING

391	To test our first hypothesis that transdiagnostic measures of anxiety, worry, and
392	depressive symptoms would predict delta power values, theta power values, and ERN amplitude,
393	nine linear regressions were performed. In order to account for the large amount of linear
394	regressions being performed it was decided a priori that only p-values less than 0.01 would be
395	interpreted as significant in order to control for family wise error-rate. Age and sex were entered
396	into linear regressions as predictors due to evidence that ERN amplitude may vary as a function
397	of sex (Fischer et al., 2016; Hill et al., 2018; Larson et al., 2011; Moser et al., 2016) and that
398	ERN amplitude increases as an individual ages (Tamnes, Walhovd, Torstveit, Sells, & Fjell,
399	2013). Each linear regression used one questionnaire as an independent variable of interest (BDI
400	STAI Trait, or PSWQ) to predict one dependent variable (residual delta power, residual theta
401	power, residual ERN). Separate regressions were used as the BDI and STAI Trait scales were
402	found to be highly correlated, and, therefore, could not be entered in the same regression.
403	Normality of residuals was adequate.

404

2.5.4 Diagnostic Linear Regressions

To test our second hypothesis that diagnostic group would predict greater delta residual power, theta residual power, and residual ERN amplitude, three linear regressions were performed. Group (GAD, MDD, comorbid, control), age, and sex were used to predict delta residual power, theta residual power, and residual ERN amplitude. The group variable was entered as a factored variable (i.e., dummy coded), with GAD serving as the contrast variable for each of the linear regressions.

411 **2.6 Sensitivity Analysis**

412 A sensitivity analysis performed in G*Power (v 3.1) revealed that for both the continuous 413 and diagnostic linear regressions, the current sample is adequately powered to detect a small-to-

SYMPTOM DIMENSIONS AND ERROR-MONITORING

414	medium f^2 effect. Specifically, for the continuous linear regressions, a sensitivity analysis for a
415	linear multiple regression fixed model, R ² deviation from zero at an alpha level of 0.01, power of
416	0.80, and 3 predictors (individual questionnaire, age, sex) with a total sample size of 178 reveals
417	sensitivity to detect an small-to-medium f^2 effect size of 0.09. For the secondary diagnostic linear
418	regressions, analyses revealed that with a total sample size of 148 participants and five predictors
419	(three diagnostic groups [with GAD set as the reference group], age, sex), we were powered to
420	detect a f^2 of 0.13; both sets of linear regressions are powered to detect small to medium effects
421	(Cohen, 1988). Thus, we are confident the results of the current study were not due to lack of
422	statistical power.
423	3 Results
424	3.1 Questionnaire and Behavioral Data
425	A one-way ANOVA with BDI total score as a dependent variable revealed a difference
426	between groups ($F(3,142) = 35.5$, $p < .001$, $\eta^2 = 0.43$). Individuals with psychopathology,
427	regardless of diagnosis, had significantly higher BDI scores when compared to controls, but
428	pathology groups did not significantly differ ($p_{\text{GAD v Control}} < .01$, $p_{\text{MDD v Control}} < .01$, $p_{\text{Comorbid v}}$

429 Control < .01; $p_{\text{GAD v MDD}} = .62$, $p_{\text{GAD v Comorbid}} = .06$, $p_{\text{Comorbid v MDD}} = .36$). Group differences

430 between PSWQ score were evident (F(3,137) = 11.1, p < 0.001, $\eta^2 = 0.20$) with individuals with

431 psychopathology, regardless of diagnosis, having higher PSWQ scores when compared to

432 controls and no differences amongst pathology groups ($p_{\text{GAD \& Control}} = .01, p_{\text{MDD \& Control}} = .01$,

433 $p_{\text{Comorbid & Control}} < .01; p_{\text{GAD & MDD}} = .87, p_{\text{GAD & Comorbid}} = .83, p_{\text{Comorbid & MDD}} = .26).$ Lastly,

434 individuals with psychopathology had significantly higher STAI Trait scores when compared to

435 controls ($F(3,140) = 64.4, p < .001, \eta^2 = 0.58; p_{\text{GAD v Control}} < .01, p_{\text{MDD v Control}} < .01, p_{\text{Comorbid v}}$

SYMPTOM DIMENSIONS AND ERROR-MONITORING

20

436	$_{Control}$ < .01), but no difference between individuals with psychopathology ($p_{GAD \ v \ MDD}$ = .99, p_{GAD}
437	$v_{\text{Comorbid}} = .18, p_{\text{Comorbid v MDD}} = .08).$

438 All behavioral (RT and accuracy) data is reported by group in Table 3. Overall accuracy 439 for the flanker task was 91% and overall median response time was 413 ms. Paired samples t-440 tests confirmed that for the overall sample, there was lower accuracy and longer response time for incongruent trials when compared to congruent trials ($t_{accuracy}(177) = 18.6, p < .001, d_z = 1.4;$ 441 442 $t_{response}$ time(177) = 154.8, p < .001, $d_z = 11.6$). For accuracy in the smaller diagnostic sample, there was a main effect of congruency (F(1,142) = 216.8, p < .001, $\eta^2 = 0.25$) as expected, there 443 was no main effect of group (F(3,142) = 1.63, p = .18, $\eta^2 = 0.03$), but this was qualified by a 444 significant group by congruency interaction ($F(3,142) = 3.2, p = .03, \eta^2 = 0.01$). A paired 445 446 samples *t*-test confirmed there was greater accuracy for congruent versus incongruent trials $(t(145) = 16.3, p < .001, d_z = 1.4)$. One-way ANOVAs revealed that groups did not differ on 447 accuracy for congruent trials (F(3,142) = 0.43, p = .74, $\eta^2 = 0.01$), but did on incongruent 448 449 trials (F(3,142) = 2.70, p = .05, $\eta^2 = 0.05$). However, post-hoc tests revealed no individual group 450 comparisons reached statistical significance (closest *p*-value = .06 between control participants 451 and individuals with MDD). Thus, no clear differences in accuracy based on congruency and 452 group emerged.

For response times in the diagnostic sample, there was a main effect of congruency $(F(1,142) = 1660.1, p < .001, \eta^2 = 0.43)$ and a congruency by group interaction $(F(3,142) = 4.05, p = .008, \eta^2 = 0.01)$, but no main effect of group $(F(3,142) = 1.65, p = .18, \eta^2 = 0.03)$. A paired samples *t*-test confirmed response times were longer on incongruent trials when compared to congruent trials $(t(145) = .49.1, p < .001, d_z = .4.1)$ as expected. Follow-up one-way ANOVAs

SYMPTOM DIMENSIONS AND ERROR-MONITORING

21

458	revealed no differences in response times for any group for both congruent ($F(3,142) = 1.68$, $p =$
459	.17, $\eta^2 = 0.03$) and incongruent trials ($F(3, 142) = 1.93$, $p = .13$, $\eta^2 = 0.04$).
460	
461	3.4 Transdiagnostic Regression Analyses
462	In the full sample, error trials were associated with greater delta and theta power (delta:
463	$t(177) = 10.1, p < .001, d_z = 1.0, M(SD)_{error} = 2.5(1.6), M(SD)_{correct} = 1.0(1.3)$; theta: $t(177) = 10.1, p < .001, d_z = 1.0, M(SD)_{error} = 2.5(1.6), M(SD)_{correct} = 1.0(1.3)$; theta: $t(177) = 10.1, p < .001, d_z = 1.0, M(SD)_{error} = 2.5(1.6), M(SD)_{correct} = 1.0(1.3)$; theta: $t(177) = 10.1, p < .001, d_z = 1.0, M(SD)_{error} = 2.5(1.6), M(SD)_{correct} = 1.0(1.3)$; theta: $t(177) = 10.1, p < .001, d_z = 1.0, M(SD)_{error} = 2.5(1.6), M(SD)_{correct} = 1.0(1.3)$; theta: $t(177) = 10.1, p < .001, d_z = 1.0, M(SD)_{error} = 2.5(1.6), M(SD)_{correct} = 1.0(1.3)$; theta: $t(177) = 10.1, p < .001, d_z = 1.0, M(SD)_{error} = 1.0(1.3)$; theta: $t(177) = 10.1, p < .001, d_z = 1.0, M(SD)_{error} = 1.0(1.3)$; theta: $t(177) = 10.1, p < .001, d_z = 1.0, M(SD)_{error} = 1.0(1.3)$; theta: $t(177) = 10.1, p < .001, d_z = 1.0, M(SD)_{error} = 1.0(1.3)$; theta: $t(177) = 10.1, p < .001, d_z = 1.0, M(SD)_{error} = 1.0(1.3)$; theta: $t(177) = 10.1, p < .001, d_z = 1.0, M(SD)_{error} = 1.0, M(SD)_{error} = 1.0, M(SD)_{error} = 1.0(1.3)$; theta: $t(177) = 10.1, p < .001, d_z = 1.0, M(SD)_{error} = 1.0, M$
464	12.5, $p < .001$, $d_z = 1.1$, $M(SD)_{error} = 2.0(2.0)$, $M(SD)_{correct} = -0.1(1.6)$), along with a more
465	negative ERN amplitude when compared to correct trials ($t(177) = -6.3$, $p < .001$, $d_z = -0.6$,
466	$M(SD)_{error} = -0.1(2.6)$, $M(SD)_{correct} = 1.5(2.8)$).
467	Scatterplots of questionnaire total score (BDI, STAI Trait, PSWQ) by each dependent
468	variable (delta residual power, theta residual power, ERN residual amplitude) are presented in

469 Figures 1, 2, and 3. Pearson's correlations revealed no significant relationships between

470 psychiatric symptoms measured by the questionnaires and error-related EEG/ERP dependent

471 variables (see supplementary Table S3 on OSF).

472 Time-frequency plots and topographical plots for delta/theta power are presented in 473 Figure 4 with time-frequency plots separated by group in Figure 5. Overall ERN amplitude, ERN

474 amplitude by group, and topographical plots are presented in Figure 6. As a note, for all linear

regressions, standardized beta coefficients are reported. While holding age and sex constant, BDI 475

476 score, STAI trait score, and PSWQ score did not significantly predict delta power values (β_{BDI} =

477 $0.0, p_{BDI} = 0.53; \beta_{STAI} = -0.00, p_{STAI} = 0.99; \beta_{PSWO} = 0.06, p_{PSWO} = 0.43;$ see Table 4).

Transdiagnostic measures did not significantly predict theta power values ($\beta_{BDI} = 0.09$, $p_{BDI} =$ 478

479 0.25; $\beta_{STAI} = 0.10$, $p_{STAI} = 0.20$; $\beta_{PSWO} = 0.10$, $p_{PSWO} = 0.18$; see Table 5) nor ERN residual

SYMPTOM DIMENSIONS AND ERROR-MONITORING

22

480 amplitude (
$$\beta_{BDI}$$
 = -0.02, p_{BDI} = 0.77; β_{STAI} = -0.07, p_{STAI} = 0.33; β_{PSWQ} = -0.10, p_{PSWQ} = 0.18;

481 see Table 6).

482 **3.3 Diagnostic Linear Regressions**

483	Linear regression results for the following models are reported in Table 7. While holding
484	age and sex constant, diagnostic group did not significantly predict delta residual power
485	$(\beta_{MDDxGAD} = 0.01, p_{MDDxGAD} = 0.92; \beta_{ComorbidxGAD} = 0.06, p_{ComorbidxGAD} = 0.59; \beta_{ControlxGAD} = 0.13,$
486	$p_{ControlxGAD} = 0.35$). Similarly, diagnostic group did not significantly predict theta residual power
487	$(\beta_{MDDxGAD} = -0.03, p_{MDDxGAD} = 0.79; \beta_{ComorbidxGAD} = 0.05, p_{ComorbidxGAD} = 0.69; \beta_{ControlxGAD} = 0.03, p_{MDDxGAD} = 0.03, p_{MDDxGAD} = 0.79; \beta_{ControlxGAD} = 0.05, p_{MDDxGAD} = 0.69; \beta_{MDDxGAD} = 0.03, p_{MDDxGAD} = 0.03, p_{M$
488	$p_{ControlxGAD} = 0.69$). Diagnostic group did not predict ERN residual values ($\beta_{MDDxGAD} = 0.00$,
489	$p_{MDDxGAD} = 0.99; \beta_{ComorbidxGAD} = -0.03, p_{ComorbidxGAD} = 0.78; \beta_{ControlxGAD} = 0.03, p_{ControlxGAD} = 0.82).$
490	Exploratory linear regressions that mirrored the regressions described above were
491	performed with error trial only delta/theta power and ERN amplitude (i.e., not the residualized
492	difference scores, but the error trials only). The results for these linear regressions are presented
493	in the supplementary material on OSF (see supplementary material Tables S4-S7). All results
494	mirrored the results presented above, with no questionnaire nor diagnostic group predicting
495	delta/theta power and ERN amplitude. In addition, upon visual inspection of the data, there may
496	have been potential outliers in the BDI, STAI Trait, and PSWQ scales. Therefore, to ensure that
497	outliers were not driving the current results, outliers were defined as 2 times the inter-quartile
498	range and taken out for exploratory regressions. The pattern of significance in the results did not
499	change with the removal of these outliers. All <i>p</i> -values were above .23.

500

4 Discussion

The primary aim of the current study was to test the relationship between transdiagnostic
 measures of trait anxiety, worry, and depressive symptomology and neurophysiological measures

23

SYMPTOM DIMENSIONS AND ERROR-MONITORING

503 of error-monitoring as indexed by residualized delta/theta oscillatory power and residualized 504 error-related negativity amplitude. Our first hypothesis that higher trait anxiety and worry would 505 predict greater residual delta/theta power and ERN amplitude was not supported, as there was a 506 nonsignificant prediction of the residualized values from the trait anxiety and worry 507 questionnaires. However, our hypothesis that there would be no relationship between depressive 508 symptoms and neurophysiological indicators of error monitoring was supported, as depressive 509 symptoms did not predict any dependent variable. A secondary aim of the current study was to 510 test for between-group differences in error-monitoring processes in individuals with GAD, 511 MDD, and comorbid disorders. Our second hypothesis that individuals with GAD would exhibit 512 higher error-related delta/theta residualized power values and residualized ERN amplitude was 513 unsupported, as group status was a nonsignificant predictor any of delta/theta power and ERN 514 amplitude. However, our hypothesis that those with MDD would not differ from controls was 515 supported, as there were nonsignificant differences between those diagnosed with MDD and 516 controls.

517 Although the results of the current study did not support all of our original hypotheses, 518 these results are consistent with the considerable amount of heterogeneity emerging in the extant 519 literature. When examining the results of continuous scales predicting delta/theta power and 520 ERN amplitude, these null results align with the results of Weinberg et al. (2014), where trait 521 worry did not relate to the magnitude of the ERN amplitude. Further, in Weinberg et al. (2012), 522 Mood and Anxiety Symptom Questionnaire- Anxious Arousal (MASQ-AA) subscale score did 523 not relate to error-related brain activity, suggesting that general physiological anxiety symptoms 524 may not be related to ERN amplitude. Although anxious arousal was not directly tested in the 525 current study, this evidence lends credence to a general idea that anxiety symptomology and

SYMPTOM DIMENSIONS AND ERROR-MONITORING

548

526 ERN amplitude may not be related without accounting for additional factors that may influence 527 ERN amplitude, such as intolerance of uncertainty (Jackson, Nelson, & Hajcak, 2016). In 528 addition, when looking at depressive symptoms, anhedonic depression symptoms do not relate to 529 neural measures post-error (Schroder et al., 2013), along with general depressive symptoms 530 (Chang et al., 2010), and distress/misery latent factors (Gorka, Burkhouse, Afshar, & Phan, 531 2017). Again, these results in combination with the current results suggest depressive symptoms 532 may not be related to delta/theta power and ERN amplitude. 533 It is plausible there is simply not a strong relationship between anxious and depressive 534 symptomology and neurophysiological measures of error-monitoring in a large sample of people, 535 or that the relationship depends on extraneous variables not accounted for in the current study 536 (i.e., hidden moderator explanation). A recent meta-analysis showed the relationship between 537 depression and the ERN in the published literature is small (Moran et al., 2017), while another 538 meta-analysis displayed a "small-to-medium" effect between anxiety and ERN (Moser et al., 539 2013), although this may be overestimated due to publication bias (Moran et al., 2017). When 540 looking at midfrontal theta oscillations, those with higher levels of trait anxiety do display 541 enhanced theta power when performing cognitive control tasks (Cavanagh & Shackman, 2015), 542 but this may be specific to the individual's reactivity to uncertainty or threat. The current results 543 add to a heterogenous body of literature and present evidence that in a relatively large sample 544 with a wide range of psychopathology symptoms, the relationship between transdiagnostic 545 measures of anxiety and depression and neural indices of error-monitoring may be more nuanced 546 than originally thought. 547 Another possible explanation of the current results is that error-monitoring processes may

be related to more nuanced anxiety and depressive symptoms that were not captured in the

25

549	measures used. We chose broad symptom measures that are commonly used in clinical settings
550	instead of focusing on specific subscales or traits, such as anhedonia, helplessness, or rumination
551	to name a few. It may that the relationship between neurophysiological measures of error
552	processing and pathology are only present in very specific subdimensions. For example,
553	individuals who experience feelings of helplessness display greater ERN amplitude when
554	compared to those who report lower levels of helplessness (Pfabigan et al., 2013) or rumination
555	is correlated with a more negative ERN when compared to those lower on scales of rumination
556	(Tanovic, Hajcak, & Sanislow, 2017), suggesting that specific factors of depressive
557	symptomology may contribute to individual differences in error-monitoring processes. Future
558	research should continue to test which specific dimensions of depressive and anxious
559	symptomology factors relate to error-monitoring processes in order to parse apart relationships
560	with individual differences in error-monitoring.
561	When comparing the results of the group linear regressions to previous research, there is
562	additional evidence that diagnostic group may not specifically relate to error-monitoring
563	processes, along with methodological differences that may contribute to heterogeneity in the
564	literature. When testing for group differences in error-monitoring processes, Kujawa et al. (2016)
565	and Xiao et al. (2011) found no difference in Δ ERN (error minus correct ERN amplitude) in
566	individuals with GAD when compared to controls, suggesting that error-monitoring processes
567	may not be heightened in those with GAD. However, individuals diagnosed with social anxiety
568	disorder had a more negative Δ ERN when compared to controls, suggesting that ERN amplitude

- 569 may be differentially affected between anxiety disorders (Kujawa et al., 2016). Other studies
- 570 have demonstrated that Δ ERN was more negative in GAD, but ERN or CRN alone was not
- 571 (Weinberg et al., 2012). In the current paper, residualized values between ERN and CRN values

SYMPTOM DIMENSIONS AND ERROR-MONITORING

26

572	were used over Δ ERN (Meyer, Lerner, Reyes, Laird, & Hajcak, 2017), and therefore
573	methodological decisions, such as which ERP measure to use, could have affected study
574	outcomes. When examining the literature surrounding depression and ERN amplitude, the results
575	of a recent meta-analysis suggest that the relationship between depression and ERN amplitude is
576	small and that the current literature is possibly contaminated with publication bias (Moser et al.,
577	2017).
578	The results of the current study should be considered within the appropriate limitations.
579	Although the sample size for the linear regressions containing all continuous variables was
580	relatively large ($n = 178$), diagnostic group linear regressions had much smaller sample sizes for
581	each subgroup ($n_{GAD} = 14$, $n_{MDD} = 28$, $n_{Comorbid} = 19$). Therefore, it is possible we did not have
582	enough participants in each diagnostic category to detect small differences in neural
583	measurements of error-monitoring that existed between groups. Further, as the task employed in
584	the current study was originally designed primarily to extract the time domain ERN, the greatest
585	epoch length we could extract surrounding a response was 1000 ms. Thus, the lowest frequency
586	we could extract without violating the Nyquist theorem was 1.5 Hz (Cohen, 2014) although delta
587	frequency extends as low as 1 Hz. This lower boundary may have impeded our ability to
588	accurately quantify frequencies in the delta frequency range. Finally, the reliability of our
589	symptom measures is quite good; however, reliability (in this case dependability) of ERN
590	amplitude was below the commonly-accepted level .70. Thus, the lower reliability at .63 may
591	have reduced the possible relationship between ERN amplitude and the symptom measures and
592	should be considered.

593 In conclusion, for the current sample, trait anxiety, worry, and depressive symptoms were 594 not related to error related delta/theta oscillatory power or ERN. Further, diagnostic group status

27

595	did not predict error-related residual delta/theta power or ERN amplitude. It is possible the
596	relationship between neural indices of error-monitoring and anxiety and depressive
597	symptomology is more nuanced than original thought, therefore, future research should
598	investigate various factors that could influence the relationship. It is also possible that there is not
599	a large enough relationship between symptomology and neural indices of error-monitoring to
600	bear out in a large sample. Future research should also investigate other individual difference
601	traits that may influence error-monitoring to further understand what factors influence our ability
602	to monitor errors and correct future behavior.
603	
604	
605	
606	
607	
608	
609	
610	
611	
612	
613	
614	
615	
616	
$\frac{01}{10}$	
610	
620	
620 621	
622	
623	
624	
625	
626	
627	

628	References
629	Aarts, K., Vanderhasselt, MA., Otte, G., Baeken, C., & Pourtois, G. (2013). Electrical brain
630	imaging reveals the expression and timing of altered error monitoring functions in major
631	depression. Journal of Abnormal Psychology, 122(4), 939–950.
632	https://doi.org/10.1037/a0034616
633	Baldwin, S. A., Larson, M. J., & Clayson, P. E. (2015). The dependability of
634	electrophysiological measurements of performance monitoring in a clinical sample: A
635	generalizability and decision analysis of the ERN and Pe. <i>Psychophysiology</i> , 52(6), 790-
636	800. https://doi.org/10.1111/psyp.12401
637	Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the Beck Depression Inventory-II.
638	San Antonio, TX: Psychological Corporation.
639	Bergua, V., Meillon, C., Potvin, O., Bouisson, J., Le Goff, M., Rouaud, O., Amieva, H.
640	(2012). The STAI-Y trait scale: Psychometric properties and normative data from a large
641	population-based study of elderly people. International Psychogeriatrics, 24(7), 1163-
642	1171. https://doi.org/10.1017/S1041610212000300
643	Cavanagh, J. F., Cohen, M. X., & Allen, J. J. B. (2009). Prelude to and resolution of an error:
644	EEG phase synchrony reveals cognitive control dynamics during action monitoring. The
645	Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(1), 98-
646	105. https://doi.org/10.1523/JNEUROSCI.4137-08.2009
647	Cavanagh, J. F., Meyer, A., & Hajcak, G. (2017). Error-Specific Cognitive Control Alterations in
648	Generalized Anxiety Disorder. Biological Psychiatry. Cognitive Neuroscience and
649	Neuroimaging, 2(5), 413–420. https://doi.org/10.1016/j.bpsc.2017.01.004
650	Cavanagh, J. F., & Shackman, A. J. (2015). Frontal midline theta reflects anxiety and cognitive
651	control: Meta-analytic evidence. Journal of Physiology, Paris, 109(1-3), 3-15.
652	https://doi.org/10.1016/j.jphysparis.2014.04.003
653	Chang, WP., Davies, P. L., & Gavin, W. J. (2010). Individual differences in error monitoring in
654	healthy adults: Psychological symptoms and antisocial personality characteristics.
655	European Journal of Neuroscience, 32(8), 1388–1396. https://doi.org/10.1111/j.1460-
656	9568.2010.07384.x
657	Chiu, P. H., & Deldin, P. J. (2007). Neural evidence for enhanced error detection in major
658	depressive disorder. The American Journal of Psychiatry, 164(4), 608-616.
659	https://doi.org/10.1176/ajp.2007.164.4.608
660	Clawson, A., Clayson, P. E., & Larson, M. J. (2013). Cognitive control adjustments and conflict
661	adaptation in major depressive disorder. <i>Psychophysiology</i> , 50(8), 711–721.
662	https://doi.org/10.1111/psyp.12066
663	Clawson, A., South, M., Baldwin, S., & Larson, M. (2017). Electrophysiological
664	Endophenotypes and the Error-Related Negativity (ERN) in Autism Spectrum Disorder:
665	A Family Study. Journal of Autism & Developmental Disorders, 47(5), 1436–1452.
666	https://doi.org/10.1007/s10803-017-3066-8
667	Clayson, P. E., Carbine, K. A., Baldwin, S. A., & Larson, M. J. (2019). Methodological reporting
668	behavior, sample sizes, and statistical power in studies of event-related potentials:
669	Barriers to reproducibility and replicability. <i>Psychophysiology</i> , 56(11), e13437.
670	https://doi.org/10.1111/psyp.13437
671	Clayson, P. E., & Miller, G. A. (2017a). ERP Reliability Analysis (ERA) Toolbox: An open-
672	source toolbox for analyzing the reliability of event-related brain potentials. International
673	Journal of Psychophysiology, 111, 68–79. https://doi.org/10.1016/j.jpsycho.2016.10.012

29

674	Clayson, P. E., & Miller, G. A. (2017b). Psychometric considerations in the measurement of
675	event-related brain potentials: Guidelines for measurement and reporting. International
676	Journal of Psychophysiology: Official Journal of the International Organization of
677	Psychophysiology, 111, 57–67. https://doi.org/10.1016/j.ijpsycho.2016.09.005
678	Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). Hillsdale, N.J:
679	L. Erlbaum Associates.
680	Cohen, Michael X, & Cavanagh, J. F. (2011). Single-Trial Regression Elucidates the Role of
681	Prefrontal Theta Oscillations in Response Conflict. Frontiers in Psychology, 2.
682	https://doi.org/10.3389/fpsyg.2011.00030
683	Cohen, Michael X., & van Gaal, S. (2014). Subthreshold muscle twitches dissociate oscillatory
684	neural signatures of conflicts from errors. <i>NeuroImage</i> , 86, 503–513.
685	https://doi.org/10.1016/j.neuroimage.2013.10.033
686	Cohen, M.X. (2014). Analyzing Neural Time Series Data: Theory and Practice. Retrieved from
687	https://books.google.com/books?id=rDKkAgAAQBAJ
688	Compton, R. J., Carp, J., Chaddock, L., Fineman, S. L., Quandt, L. C., & Ratliff, J. B. (2007).
689	Anxiety and Error Monitoring: Increased Error Sensitivity or Altered Expectations?
690	Brain and Cognition, 64(3), 247-256. https://doi.org/10.1016/j.bandc.2007.03.006
691	Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: The seven
692	pillars of RDoC. BMC Medicine, 11, 126. https://doi.org/10.1186/1741-7015-11-126
693	Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a Neural System for Error
694	Detection and Compensation. Psychological Science (0956-7976), 5(5), 303-305.
695	https://doi.org/10.1111/j.1467-9280.1994.tb00630.x
696	Dien, J. (2010). The ERP PCA Toolkit: An open source program for advanced statistical analysis
697	of event-related potential data. Journal of Neuroscience Methods, 187(1), 138-145.
698	https://doi.org/10.1016/j.jneumeth.2009.12.009
699	Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a
700	target letter in a nonsearch task. <i>Perception & Psychophysics</i> , 16(1), 143–149.
701	https://doi.org/10.3758/BF03203267
702	Fischer, A. G., Danielmeier, C., Villringer, A., Klein, T. A., & Ullsperger, M. (2016). Gender
703	Influences on Brain Responses to Errors and Post-Error Adjustments. Scientific Reports,
704	6, 24435. https://doi.org/10.1038/srep24435
705	Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A Neural System
706	for Error Detection and Compensation. <i>Psychological Science (0956-7976)</i> , 4(6), 385–
707	390. https://doi.org/10.1111/j.1467-9280.1993.tb00586.x
708	Gorka, S. M., Burkhouse, K. L., Afshar, K., & Phan, K. L. (2017). Error-related brain activity
709	and internalizing disorder symptom dimensions in depression and anxiety. Depression
710	and Anxiety, 34(11), 985–995. https://doi.org/10.1002/da.22648
711	Gorka, S. M., & Phan, K. L. (2017). Impact of anxiety symptoms and problematic alcohol use on
712	error-related brain activity. International Journal of Psychophysiology: Official Journal
713	of the International Organization of Psychophysiology, 118, 32–39.
714	https://doi.org/10.1016/j.ijpsycho.2017.05.011
715	Hajcak, G., McDonald, N., & Simons, R. F. (2003). To err is autonomic: Error-related brain
716	potentials, ANS activity, and post-error compensatory behavior. Psychophysiology,
717	40(6), 895–903. https://doi.org/10.1111/1469-8986.00107

718	Hanna, G. L., & Gehring, W. J. (2016). The NIMH Research Domain Criteria initiative and
719	error-related brain activity. <i>Psychophysiology</i> , 53(3), 386–388.
720	https://doi.org/10.1111/psyp.125/1
721	Hill, K. E., Ait Oumeziane, B., Novak, K. D., Rollock, D., & Foti, D. (2018). Variation in
722	reward- and error-related neural measures attributable to age, gender, race, and ethnicity.
723	International Journal of Psychophysiology: Official Journal of the International
724	Organization of Psychophysiology, 132(Pt B), 353–364.
725	https://doi.org/10.1016/j.ijpsycho.2017.12.009
726	Hill, K. E., Samuel, D. B., & Foti, D. (2016). Contextualizing individual differences in error
727	monitoring: Links with impulsivity, negative affect, and conscientiousness.
728	<i>Psychophysiology</i> , 53(8), 1143–1153. https://doi.org/10.1111/psyp.12671
729	Holmes, A. J., & Pizzagalli, D. A. (2008). Spatiotemporal dynamics of error processing
730	dysfunctions in major depressive disorder. Archives of General Psychiatry, 65(2), 179–
731	188. https://doi.org/10.1001/archgenpsychiatry.2007.19
732	Holmes, A. J., & Pizzagalli, D. A. (2010). Effects of task-relevant incentives on the
733	electrophysiological correlates of error processing in major depressive disorder.
734	Cognitive, Affective & Behavioral Neuroscience, 10(1), 119–128.
735	https://doi.org/10.3758/CABN.10.1.119
736	Jackson, F., Nelson, B. D., & Hajcak, G. (2016). The uncertainty of errors: Intolerance of
737	uncertainty is associated with error-related brain activity Elsevier Enhanced Reader.
738	https://doi.org/10.1016/j.biopsycho.2015.11.007
739	Kennedy, B. L., Schwab, M., Morris, R. L., & Beldia, G. (2001). Assessment of State and Trait
740	Anxiety in Subjects with Anxiety and Depressive Disorders. Psychiatric Quarterly, 72,
741	263–276. https://doi.org/10.1023/A:1010305200087
742	Kujawa, A., Weinberg, A., Bunford, N., Fitzgerald, K. D., Hanna, G. L., Monk, C. S., Phan,
743	K. L. (2016). Error-related brain activity in youth and young adults before and after
744	treatment for generalized or social anxiety disorder. Progress in Neuro-
745	Psychopharmacology & Biological Psychiatry, 71, 162–168.
746	https://doi.org/10.1016/j.pnpbp.2016.07.010
747	Larson, M. J., Clayson, P. E., & Clawson, A. (2014). Making sense of all the conflict: A
748	theoretical review and critique of conflict-related ERPs. International Journal of
749	<i>Psychophysiology</i> , 93(3), 283–297. https://doi.org/10.1016/j.ijpsycho.2014.06.007
750	Larson, M. J., South, M., & Clayson, P. E. (2011). Sex differences in error-related performance
751	monitoring. <i>Neuroreport</i> , 22(1), 44–48.
752	https://doi.org/10.1097/WNR.0b013e3283427403
753	Luck, S. J. (2005). An Introduction to the Event-Related Potential Technique. Cambridge, MA:
754	MIT Press.
755	Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP
756	experiment (and why you shouldn't). <i>Psychophysiology</i> , 54(1), 146–157.
757	https://doi.org/10.1111/psyp.12639
758	Luu, P., & Tucker, D. M. (2001). Regulating action: Alternating activation of midline frontal and
759	motor cortical networks. Clinical Neurophysiology: Official Journal of the International
760	Federation of Clinical Neurophysiology, 112(7), 1295–1306.
761	https://doi.org/10.1016/s1388-2457(01)00559-4
762	Meyer, A., Lerner, M. D., Reyes, A. D. L., Laird, R. D., & Hajcak, G. (2017). Considering ERP
763	difference scores as individual difference measures: Issues with subtraction and

764	alternative approaches. <i>Psychophysiology</i> , 54(1), 114–122.
765	https://doi.org/10.1111/psyp.12664
766	Meyer, A., Nelson, B., Perlman, G., Klein, D. N., & Kotov, R. (2018). A neural biomarker, the
767	error-related negativity, predicts the first onset of generalized anxiety disorder in a large
768	sample of adolescent females. Journal of Child Psychology and Psychiatry, and Allied
769	Disciplines, 59(11), 1162–1170. https://doi.org/10.1111/jcpp.12922
770	Meyer, T. J., Miller, M. L., Metzger, R. L., & Borkovec, T. D. (1990). Development and
771	validation of the Penn State Worry Questionnaire. Behaviour Research and Therapy,
772	28(6), 487–495. https://www.doi.org/10.1016/0005-7967(90)90135-6
773	Mohamed, S. M. H., Börger, N. A., Geuze, R. H., & van der Meere, J. J. (2019). Error
774	monitoring and daily life executive functioning. Experimental Brain Research, 237(9),
775	2217–2229. https://doi.org/10.1007/s00221-019-05589-w
776	Moran, T. P., Schroder, H. S., Kneip, C., & Moser, J. S. (2017). Meta-analysis and
777	psychophysiology: A tutorial using depression and action-monitoring event-related
778	potentials. International Journal of Psychophysiology: Official Journal of the
779	International Organization of Psychophysiology, 111, 17–32.
780	https://doi.org/10.1016/j.ijpsycho.2016.07.001
781	Moser, J. S., Hajcak, G., & Simons, R. F. (2005). The effects of fear on performance monitoring
782	and attentional allocation. <i>Psychophysiology</i> , 42(3), 261–268.
783	https://doi.org/10.1111/j.1469-8986.2005.00290.x
784	Moser, J. S., Moran, T. P., & Jendrusina, A. A. (2012). Parsing relationships between dimensions
785	of anxiety and action monitoring brain potentials in female undergraduates.
786	<i>Psychophysiology</i> , 49(1), 3–10. https://doi.org/10.1111/j.1469-8986.2011.01279.x
787	Moser, J. S., Moran, T. P., Kneip, C., Schröder, H. S., & Larson, M. J. (2016). Sex moderates the
788	association between symptoms of anxiety, but not obsessive compulsive disorder, and
789	error-monitoring brain activity: A meta-analytic review. <i>Psychophysiology</i> , 53(1), 21–29.
790	https://doi.org/10.1111/psyp.12509
/91	Moser, J. S., Moran, I. P., Schröder, H. S., Donnellan, M. B., & Yeung, N. (2013). On the
/92	relationship between anxiety and error monitoring: A meta-analysis and conceptual
/93	Iramework. Frontiers in Human Neuroscience, 7.
/94 705	nttps://doi.org/10.3389/innum.2013.00466
795 706	Munneke, GJ., Nap, 1. S., Schippers, E. E., & Cohen, M. A. (2015). A statistical comparison of
/96	EEG time- and time-irequency domain representations of error processing. Brain
709	Nee D S. H. & McNeyekter, N. (2011). Erental that new relimined to new ratio and
798	Neo, P. SH., & Michaughion, N. (2011). Frontal theta power linked to neuroticism and
/99 800	https://doi.org/10.2758/s12415.011.0028 x
800	Nitsehke L P. Heller W. Imig L C. McDonald P. P. & Miller G. A. (2001) Distinguishing
801	Dimensional of Anniety and Depression Cognitive Theyapy and Personale 25(1), 1, 22
802 803	https://doi.org/10.1023/A:1026485530405
803	Olvet D & Haicak G (2008) The error-related negativity (FRN) and psychonathology:
805	Toward an endophenotype <i>Clinical Psychology Raviaw</i> 28(8) 1343–1354
806	https://doi org/10 1016/j cpr 2008 07 003
807	Olvet D M Klein D N & Haicak G (2010) Depression symptom severity and error-related
808	brain activity Psychiatry Research 179(1) 30-37
809	https://doi org/10 1016/i psychres 2010 06 008
007	maps., aonorg, 10.1010, j.psy emes.2010.0000

810	Pfabigan, D. M., Pintzinger, N. M., Siedek, D. R., Lamm, C., Derntl, B., & Sailer, U. (2013).
811	Feelings of helplessness increase ERN amplitudes in healthy individuals.
812	Neuropsychologia, 51(4), 613–621.
813	https://doi.org/10.1016/j.neuropsychologia.2012.12.008
814	Proudfit, G. H., Inzlicht, M., & Mennin, D. S. (2013). Anxiety and error monitoring: The
815	importance of motivation and emotion. Frontiers in Human Neuroscience, 7.
816	https://doi.org/10.3389/fnhum.2013.00636
817	Rabbitt, P., & Rodgers, B. (1977). What does a man do after he makes an error? An analysis of
818	response programming. <i>Quarterly Journal of Experimental Psychology</i> , 29(4), 727–743.
819	https://doi.org/10.1080/14640747708400645
820	Riesel, A., Kathmann, N., & Endrass, T. (2014). Overactive performance monitoring in
821	obsessive-compulsive disorder is independent of symptom expression. European
822	Archives of Psychiatry & Clinical Neuroscience, 264(8), 707–717.
823	https://doi.org/10.1007/s00406-014-0499-3
824	Schimmel, H. (1967). The (+) reference: Accuracy of estimated mean components in average
825	response studies. Science (New York, N.Y.), 157(3784), 92-94.
826	https://doi.org/10.1126/science.157.3784.92
827	Schmidt, B., Kanis, H., Holroyd, C. B., Miltner, W. H. R., & Hewig, J. (2018). Anxious
828	gambling: Anxiety is associated with higher frontal midline theta predicting less risky
829	decisions. Psychophysiology, 55(10), e13210. https://doi.org/10.1111/psyp.13210
830	Schroder, H. S., Moran, T. P., Infantolino, Z. P., & Moser, J. S. (2013). The relationship between
831	depressive symptoms and error monitoring during response switching. Cognitive,
832	Affective & Behavioral Neuroscience, 13(4), 790-802. https://doi.org/10.3758/s13415-
833	013-0184-4
834	Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., Dunbar,
835	G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The
836	development and validation of a structured diagnostic psychiatric interview for DSM-IV
837	and ICD-10. The Journal of Clinical Psychiatry, 59 Suppl 20, 22-33; quiz 34-57.
838	Speilberger, C. D., Gorsuch, R. L., & Lushere, R. E. (1970). The State-Trait Anxiety Inventory
839	(test manual).
840	Tamnes, C. K., Walhovd, K. B., Torstveit, M., Sells, V. T., & Fjell, A. M. (2013). Performance
841	monitoring in children and adolescents: A review of developmental changes in the error-
842	related negativity and brain maturation. Developmental Cognitive Neuroscience, 6, 1–13.
843	https://doi.org/10.1016/j.dcn.2013.05.001
844	Tanovic, E., Hajcak, G., & Sanislow, C. A. (2017). Rumination is associated with diminished
845	performance monitoring. Emotion (Washington, D.C.), 17(6), 953–964.
846	https://doi.org/10.1037/emo0000290
847	van Veen, V., & Carter, C. S. (2002). The anterior cingulate as a conflict monitor: FMRI and
848	ERP studies. Physiology & Behavior, 77(4-5), 477-482. https://doi.org/10.1016/s0031-
849	9384(02)00930-7
850	Weinberg, A., Klein, D. N., & Hajcak, G. (2012). Increased error-related brain activity
851	distinguishes generalized anxiety disorder with and without comorbid major depressive
852	disorder. Journal of Abnormal Psychology, 121(4), 885-896.
853	https://doi.org/10.1037/a0028270
854	Weinberg, A., Kotov, R., & Proudfit, G. H. (2015). Neural indicators of error processing in
855	generalized anxiety disorder, obsessive-compulsive disorder, and major depressive

856	disorder. Journal of Abnormal Psychology, 124(1), 172–185.
857	https://doi.org/10.1037/abn0000019
858 859	Weinberg, A., Liu, H., Hajcak, G., & Shankman, S. A. (2015). Blunted Neural Response to Rewards as a Vulnerability Factor for Depression: Results from a Family Study. <i>Journal</i>
860	of Abnormal Psychology, 124(4), 878–889. https://doi.org/10.1037/abn0000081
861	Weinberg, A., Liu, H., & Shankman, S. A. (2016). Blunted neural response to errors as a trait
862	marker of melancholic depression. <i>Biological Psychology</i> , 113, 100–107.
863	https://doi.org/10.1016/j.biopsycho.2015.11.012
864	Weinberg, A., Olvet, D. M., & Hajcak, G. (2010). Increased error-related brain activity in
865	generalized anxiety disorder. Biological Psychology, 85(3), 472–480.
866	https://doi.org/10.1016/j.biopsycho.2010.09.011
867	Whisman, M. A., Perez, J. E., & Ramel, W. (2000). Factor structure of the Beck Depression
868	Inventory-Second Edition (BDI-II) in a student sample. Journal of Clinical Psychology.
869	56(4), 545–551. https://doi.org/10.1002/(sici)1097-4679(200004)56:4<545::aid-
870	iclp7>3.0.co:2-u
871	Xiao, Z., Wang, J., Zhang, M., Li, H., Tang, Y., Wang, Y., Fromson, J. A. (2011). Error-
872	related negativity abnormalities in generalized anxiety disorder and obsessive-compulsive
873	disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35(1), 265–
874	272. https://doi.org/10.1016/j.pnpbp.2010.11.022
875	Yordanova, J., Falkenstein, M., Hohnsbein, J., & Kolev, V. (2004). Parallel systems of error
876	processing in the brain. <i>NeuroImage</i> , 22, 590–602.
877	https://doi.org/10.1016/j.neuroimage.2004.01.040
878	
879	
880	
881	
882	
883	
884	
885	
886	
887	
888	
889	
890	
891	
892	
893	
894	
895	
896	
897	
898	
899	
900	
901	

902	Author Note
903	This research was supported by the Brigham Young University College of Family, Home, and
904	Social Sciences.
905	There was no conflict of interest while conducting this study.
906	For reprints: Michael J. Larson. michael_larson@byu.edu
907	Acknowledgements: We thank Issac Prows and Joseph Fair for their assistance in data collection.
908 909 910 911 912	
913	
914	
915	
916	

SYMPTOM DIMENSIONS AND ERROR-MONITORING

919 II scores range from 0 to 60.

920 * Outliers are marked with an asterisk. Outliers were identified as 2 times the inter-quartile range

921 and taken out for exploratory regressions. Results did not change. All p > .23.

925 range from 20-80.

Figure 3: Penn State Worry Questionnaire score by dependent variables. Possible PSWQ scoresrange from 0 to 80.

SYMPTOM DIMENSIONS AND ERROR-MONITORING

930

931 Figure 4: Time-frequency and topographical plots of delta and theta difference power (error

932 minus correct).

933

934

935

936

937

SYMPTOM DIMENSIONS AND ERROR-MONITORING

Figure 5: Time-frequency plots of delta and theta difference power separated by group

40

Figure 6: Plots of error-related negativity (ERN). Topographical plot is the difference ERN 948

SYMPTOM DIMENSIONS AND ERROR-MONITORING

	Group	Mean	Standard	Range	Chronbach's
			Deviation	(min,max)	Alpha
Age	Overall	21.67	4.59	18,53	
	GAD	22.07	4.53	18, 32	
	MDD	21.89	2.15	18,26	
	Comorbid	22.53	6.56	18,47	
	Control	20.61	2.27	18, 27	
BDI	Overall	13.97	12.45	0,53	0.95
	GAD	17.36	9.29	3,34	0.88
	MDD	21.07	12.17	1,39	0.93
	Comorbid	25.68	17.82	0,53	0.95
	Control	5.85	4.57	0,21	0.81
PSWQ	Overall	40.68	12.68	4,67	0.93
	GAD	46.57	8.4	32, 61	0.9
	MDD	43.54	9.97	25, 58	0.92
	Comorbid	50.29	8.51	34, 64	0.89
	Control	34.99	13.66	4, 67	0.92
STAI	Overall	44.23	13.6	20, 74	0.95
	GAD	52.93	10.83	29,66	0.91
	MDD	52.82	11.53	24, 68	0.91
	Comorbid	59.35	8.65	45, 74	0.83
	Control	34.42	7.29	20.55	0.85

Table 1

Means and standard deviations for demographics and questionnaires

Table 2	
---------	--

Means and standard deviations for dependent variables and trial numbers.

	Group	Mean	Standard	Range
			Deviation	(min,max)
Error delta	Overall	2.46	1.41	-4.85, 6.79
	GAD	2.07	1.46	0.22, 4.80
	MDD	2.17	2.04	-4.85, 6.45
	Comorbid	2.39	1.41	0.48, 5.40
	Control	2.65	1.62	-1.35, 6.79
Correct delta	Overall	0.99	1.31	2.50, 8.59
	GAD	0.94	1.08	-1.21, 2.51
	MDD	0.87	0.97	-1.81, 2.34
	Comorbid	0.98	0.86	-0.40, 3.18
	Control	0.89	1.33	-2.50, 8.59
Error theta	Overall	1.95	2.06	-8.67, 7.70
	GAD	2.06	1.62	-1.35, 4.40
	MDD	1.80	2.70	-8.67, 6.97
	Comorbid	2.34	2.01	0.03, 5.43
	Control	1.94	2.03	-3.68, 7.70
Correct Theta	Overall	-0.14	1.56	-7.29, 11.87
	GAD	0.17	1.09	-2.15, 2.16
	MDD	-0.10	0.89	-2.30, 1.15
	Comorbid	0.18	1.02	-1.44, 3.07
	Control	-0.46	1.42	-7.29, 5.30
Error-related negativity	Overall	-0.12	2.59	-11.19, 7.29
(ERN)	GAD	-0.18	1.56	-2.28, 2.52
	MDD	-0.17	2.75	-11.19, 4.11
	Comorbid	-0.42	1.78	-3.06, 3.70
	Control	-0.03	2.81	-9.51, 7.29
Correct-related				
negativity	Overall	1.46	2.75	-11.87, 18.38
(CRN)	GAD	1.06	1.10	-0.76, 3.37
	MDD	1.38	2.12	-3.62, 5.02
	Comorbid	1.08	1.66	-1.42, 3.77
	Control	1.78	3.17	-11.87, 18.38

bioRxiv preprint doi: https://doi.org not certified by peer review) is the	10.1101/872119; this version a author/funder, who has grar under aCC-BY-N	n posted December 11, ted bioRxiv a license to NC-ND 4.0 International	2019. The copyright holder fo display the preprint in perpet license.	r this preprint (which was uity. It is made available
SYMPTOM DIMEN	SIONS AND ERROF	R-MONITORING		43
Correct Trials	Overall	648 7	114 62	164 784
Contect mais	GAD	662 79	103.12	443 771
	MDD	629.82	140.68	192, 775
	Comorbid	606.16	151.65	164,779
	Control	652.81	102.16	278, 773
Error Trials	Overall	47.4	31.07	10, 170
	GAD	49.36	29.52	14, 108
	MDD	58.89	31.23	18, 136
	Comorbid	49.47	32.15	14, 119
	Control	40.13	28.69	11, 158

Note: Correct trials were randomly selected to match the number of error trials in the time-frequency data analyses

Delta/Theta power = db Change from Baseline

ERN/CRN = microvolts

SYMPTOM DIMENSIONS AND ERROR-MONITORING

Table 3Means and standard deviations for task accuracyand response time

	Group	Mean	Standard	Range
			Deviation	(min,max)
Overall flanker accuracy (%)	Overall	91	6	57, 98
	GAD	91	5	82, 98
	MDD	90	6	74, 97
	Comorbid	90	6	76, 98
	Control	92	6	57, 98
Congruent trial flanker			_	
accuracy (%)	Overall	96	5	61, 100
	GAD	96	3	91, 100
	MDD	95	5	75, 100
	Comorbid	95	6	79, 99
	Control	96	5	61, 100
Incongruent trial flanker	0 11	00	7	54 00
accuracy (%)	Overall	88	7	54, 99
	GAD	8/	/	74,97
	MDD	85	8	/0, 97
	Comorbid	86	7	73,97
	Control	89	1	54, 99
Overall flanker RT	Overall	413.32	31.68	317, 493,5
	GAD	413.64	32.63	368.477.5
	MDD	402.54	33.15	329.5.472
	Comorbid	405.37	39.64	317, 455
	Control	419.08	30.04	350, 493.5
				,
Congruent flanker RT	Overall	371.32	31.93	278, 460
	GAD	367.36	30.58	315, 421
	MDD	360.14	34.17	291, 433
	Comorbid	371.42	43.78	278, 436
	Control	375.89	30.14	313, 460
Incongruent flanker RT	Overall	441.01	32.43	368, 525
	GAD	446.79	37.67	401, 521
	MDD	432.43	32.85	369, 496
	Comorbid	431.21	32.78	368, 477
	Control	445.68	31.74	383, 525

SYMPTOM DIMENSIONS AND ERROR-MONITORING

	β	t	ΔR^2	VIF	F	df	Adj. <i>R</i> ²	Cohen's f^2
BDI					2.9	3,174	0.03	0.05
BDI	0.05	0.63	0.00	1.02				
Age	-0.01	-0.19	0.00	1.07				
Sex	-0.22	-2.88**	0.05	1.08				
STAI Tra	it				2.76	3,174	0.03	0.05
STAI								
Trait	-0.00	-0.01	0.00	1.03				
Age	-0.01	-0.14	0.00	1.09				
Sex	-0.22	-2.78	0.04	1.10				
PSWQ					2.98	3,174	0.03	0.05
PSWQ	0.06	0.78	0.00	1.06				
Age	-0.02	-0.25	0.00	1.09				
Sex	-0.23	-2.93	0.05	1.11				

Table 4

Multiple linear regressions with diagnostic group predicting delta power residual values

Note: VIF = variance inflation factor.

*p<0.5, **p<.01, ***p<.001

SYMPTOM DIMENSIONS AND ERROR-MONITORING

	β	t	ΔR^2	VIF	F	df	Adj. <i>R</i> ²	Cohen's
BDI					2.42	3,174	0.02	0.04
BDI	0.09	1.15	0.01	1.02				
Age	-5.00	-0.66	0.00	1.07				
Sex	-0.20	-2.67*	0.04	1.08				
STAI Tra	it				2.54	3,174	0.03	0.04
STAI								
Trait	0.10	1.28	0.01	1.04				
Age	-0.06	-0.75	0.00	1.09				
Sex	-0.20	-2.63	0.04	1.10				
PSWQ					2.60	3,174	0.03	0.05
PSWQ	0.10	1.36	0.01	1.06				
Age	-0.06	-0.76	0.00	1.09				
Sex	-0.21	-2.68**	0.04	1.12				

Table 5

Multiple linear regressions with diagnostic group predicting theta power residual values

Note: VIF = variance inflation factor.

*p<0.5, **p<.01, ***p<.001

SYMPTOM DIMENSIONS AND ERROR-MONITORING

	β	t	ΔR^2	VIF	F	df	Adj. R^2	Cohen's f^2
BDI					0.72	3,174	0.00	0.01
BDI	-0.02	-0.29	0.00	1.02				
Age	-0.06	-0.75	0.00	1.07				
Sex	0.08	1.02	0.00	1.08				
STAI Trait					1.02	3,174	0.00	0.02
STAI						-		
Trait	-0.07	-0.97	0.01	1.04				
Age	-0.05	-0.63	0.00	1.09				
Sex	0.09	1.15	0.01	1.10				
PSWQ					1.31	3,174	0.01	0.02
PSWQ	-0.10	1.35	0.01	1.06				
Age	-0.05	-0.57	0.00	1.09				
Sex	0.10	1.27	0.01	1.12				

Multiple linear regressions with diagnostic group predicting ERN residual amplitude

variance inflation factor. Note: VIF

*p<0.5, **p<.01, ***p<.001

Table 6

SYMPTOM DIMENSIONS AND ERROR-MONITORING

48

	β	t	ΔR^2	VIF	F	df	Adj. R ²	Cohen's f^2
Delta Residual Power Model with Group					1.72	5, 140	0.02	0.06
MDD x GAD	0.00	0.97	0.01	1.09				
Comorbid x GAD	0.01	0.1						
Control x GAD	0.06	0.54						
Age	-0.09	-1.1	0.01	1.13	-			
Sex	-0.19	-2.27	0.03	1.09				
Theta Error Residual Model with Group					1.53	5,140	0.02	0.05
MDD x GAD	0.00	1.24	0.01	1.09				
Comorbid x GAD	-0.03	-0.27						
Control x GAD	0.05	0.4						
Age	-0.10	-1.11	0.01	1.13				
Sex	-0.21	-2.49	0.04	1.09				
ERN Residual Model with Group					0.53	5, 140	-0.02	0.02
MDD x GAD	0.00	-1.00	0.00	1.09				
Comorbid x GAD	0.00	0.02						
Control x GAD	-0.03	-0.29						
Age	0.08	0.90	0.01	1.13				
Sex	0.13	1.50	0.02	1.09				

Multiple linear regressions with diagnostic group predicting residual values

Note: VIF = variance inflation factor.

*p<0.5, **p<.01, ***p<.001

1075

Table 7