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Abstract

We define a dimension for a triangulated category. We prove a representability
Theorem for a class of functors on finite dimensional triangulated categories.
We study the dimension of the bounded derived category of an algebra or
a scheme and we show in particular that the bounded derived category of
coherent sheaves over a variety has a finite dimension.
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1. Introduction

We define and study a “dimension” for triangulated categories. This is inspired
by Bondal and Van den Bergh’s work [BoVdB] and we generalize some of their
main results. This leads us to look more generally at finiteness conditions for
triangulated categories and their meaning in algebraic and geometric examples.
This is also related to Auslander’s representation dimension for finite dimensional
algebras [Au], and the use of dimensions for triangulated categories enabled to give
the first examples of dimension > 3 [Rou].

Our results also shed some light on properties of dg algebras related to geometry
and might be viewed as requirements for non-commutative geometry. Let us give
two examples.

e Given a projective scheme X over a field, it is a classical fact that there exists
a dg algebra A with D(A) ~ D(X) : going to the dg world, X “becomes
affine”. Given any such dg algebra A, we show that dg-A-modules with finite
dimensional total cohomology admit “resolutions” (Remark 6.14), a strong
condition on a dg algebra.

e Given a quasi-projective scheme X over a perfect field, we show that there
is a dg algebra A with A-perf >~ D?(X-coh). Furthermore, for any such 4,
A-perf has finite dimension, a property which might be viewed as some kind of
homological regularity for A (when A = A is noetherian and the differential
vanishes, then dim A-perf < oo if and only if every finitely generated A-module
has finite projective dimension) : going to the dg world, X “becomes regular”.
Note that this notion is weaker that smoothness of a dg algebra A = perfection
of A as an (A4, A)-dg bimodule.
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More generally, let 7 be the bounded derived category of finitely generated modules
over a noetherian ring with finite global dimension or over an artinian ring, or the
bounded derived category of coherent sheaves over a separated scheme of finite type
over a perfect field, or a quotient of any of these categories. Then, dim7 < oo, i.e.,
T is equivalent to A-perf, where A is a dg algebra which is “homologically regular”.

Let us review the content of the chapters. Chapters §3-5 deal with “abstract”
triangulated categories, whereas chapters §6-7 deal with derived categories of
rings and schemes (quasi-compact, quasi-separated), and stable categories of self-
injective finite dimensional algebras.

In a first part §3, we review various types of generation of triangulated categories
and we define a dimension for triangulated categories. This is the minimum number
of cones needed to build any object (up to a summand) from finite sums of shifts of
a given object. Note that we introduce and use later the notion of compactness of
objects for triangulated categories that do not admit arbitrary direct sums.

We consider various finiteness conditions for cohomological functors on a
triangulated category in §4.1 and we derive some stability properties of these classes
of functors. We define in particular locally finitely presented functors. On an
Ext-finite triangulated category, they include locally finite functors. The crucial
property of locally finitely presented functors is that they can be “approximated” by
representable functors (§4.2 and in particular Proposition 4.15). This leads, in §4.3,
to representability Theorems for locally finitely presented functors, generalizing
Brown-Neeman’s representability Theorem for “big” triangulated categories (co-
complete, generated by a set of compact objects) as well as Bondal-Van den Bergh’s
Theorem for “small” triangulated categories (Ext-finite, with finite dimension).

In §4.4, we consider properties of objects C related to properties of the functor
Hom(—,C) restricted to compact objects. Later (Corollary 6.4 and Proposition
6.12), we determine the corresponding categories for derived categories of noethe-
rian algebras or schemes : the cohomologically locally finitely presented objects are
the complexes with bounded and finite type cohomology.

Part §5 develops a formalism for coverings of triangulated categories mimicking
the coverings of schemes by open subschemes. More precisely, we consider
Bousfield subcategories and we introduce a notion of proper intersection of two
Bousfield subcategories (§5.2.3) and we study properties of families of Bousfield
subcategories intersecting properly. We obtain for example Mayer-Vietoris triangles
(Proposition 5.10). The main part is §5.3, where we consider compactness. We
show that compactness is a “local” property (Corollary 5.12) — this sheds some
light on the compact=perfect property for derived categories of schemes. We
also explain how to construct a generating set of compact objects from local data
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(Theorem 5.15). It is fairly quick to prove the existence of a compact generator
for the derived categories of schemes from this (cf Theorem 6.8 for a version with
supports).

Part §6 is a study of various classes of objects in derived categories of algebras
and schemes. The main section §6.2 considers complexes of O-modules with quasi-
coherent cohomology on a quasi-compact and quasi-separated scheme. We show
how the length of the cohomology (sheaves) of a complex is related to the non-
zero shifted groups of morphisms from a fixed compact generator to the complex
(Proposition 6.9). We give a characterization of pseudo-coherent complexes in
triangulated terms (Proposition 6.10) : they are the objects whose cohomology can
be “approximated” by compact objects — such a result is classical in the presence
of an ample family of line bundles.

In §6.3, we show that for noetherian rings or noetherian separated schemes, the
compact objects of the bounded derived category are the objects with finite type
cohomology. This gives a descent principle.

In §7, we analyze the dimension of derived categories in algebra and geometry.
In §7.1, we use resolution of the diagonal methods. We show that for A a finite
dimensional algebra or a commutative algebra essentially of finite type over a
perfect field, then dim D?(4-mod) < gldim A (Proposition 7.4). For a smooth quasi-
projective scheme X over a field, we have dim D?(X-coh) < 2dimX (Proposition
7.9). We show (Proposition 7.14) that the residue field of a commutative local
noetherian algebra A over a field cannot be obtained by less than Krulldim(A) cones
from sums of A and its shifts. This is the key result to get lower bounds : we deduce
(Proposition 7.16) that for X a reduced separated scheme of finite type over a field,
then dim D?(X-coh) > dimX and there is equality dim D?(X-coh) = dimX when
X is in addition smooth and affine (Theorem 7.17).

In §7.2, we investigate rings with finite global dimension and regular schemes.
As noted by Van den Bergh, a noetherian ring is regular if and only dim A-perf < oo
(Proposition 7.25). Analogously, the category of perfect complexes for a quasi-
projective scheme X over a field has finite dimension if and only if X is regular
(Proposition 7.34). For an artinian ring A, then dim D?(A4-mod) is less than the
Loewy length (Proposition 7.37).

The main result of §7.4 is a proof that the derived category of coherent sheaves
D?(X-coh) has finite dimension, for a separated scheme X of finite type over a
perfect field (Theorem 7.38). This is rather surprising and it is a rare instance
where D?(X-coh) is better behaved than X-perf. As a consequence, the stable
derived category D®(X-coh)/X -perf has finite dimension as well. In the smooth
case (only), one has a stronger result about the structure sheaf of the diagonal, due to
Kontsevich. There are very few cases where we can determine the exact dimension
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of D?(X-coh) for a smooth X, and these are cases where it coincides with dimX
(X affine or X a projective space for example). We conclude the chapter (Corollary
7.51) by a determination of locally finite cohomological functors on X -perf and
D?(X-coh)®, for X a projective scheme over a perfect field k (the first case is due
to Bondal and Van den Bergh) : they are represented by an object of D?(X-coh)
in the first case and an object of X -perf in the second case — this exhibits some
“perfect pairing” Hom(—,—) : X -perfx D? (X -coh) — k-mod.

The geometric part of this work was motivated by lectures given by A. A. Beilin-
son at the University of Chicago and by discussions with A. Bondal. I thank
S. Iyengar and H. Krause for their corrections to a previous version of this paper.

2. Notations and terminology

For C an additive category and Z a subcategory of C, we denote by smd(Z) (resp.
smd(Z)) the smallest additive full subcategory of C containing Z and closed under
taking direct summands (resp. and closed under direct summands and (arbitrary)
direct sums). We say that 7 is dense if every object of C is isomorphic to a direct
summand of an object of Z.

We denote by C° the category opposite to C. We identify a set of objects of C
with the full subcategory with the corresponding set of objects.

Let 7 be a triangulated category. A thick subcategory 7 of 7 is a full
triangulated subcategory such that given M, N € 7 with M®N € Z,then M,N € 1.
Whenever we consider the quotient 7 /Z, it will be assumed that this has small Hom-
sets.

Given X i> Y -5 Zwsa distinguished triangle, then Z is called a cone of f
and X a cocone of g.

Given A an abelian category, we denote by D(A) the derived category of A and
we denote by D=%(.A) the full subcategory of objects with cohomology vanishing
in degrees > a.

Let A be a differential graded (=dg) algebra. We denote by D(A) the derived
category of dg A-modules and by A-perf the category of perfect complexes, i.e., the
smallest thick subcategory of D(A) containing A.

Let A be a ring. We denote by A-Mod the category of left A-modules, by
A-mod the category of finitely generated left A-modules, by A-Proj the category of
projective A-modules and by A-proj the category of finitely generated projective A-
modules. We denote by gldim A4 the global dimension of A. For M an A-module, we
denote by pdim 4 M the projective dimension of M. We denote by A° the opposite
ring to A. For A an algebra over a commutative ring k, we put A" = A ®; A°.
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Let X be a scheme. We denote by X-coh (resp. X-qcoh) the category of
coherent (resp. quasi-coherent) sheaves on X. We denote by D(X) the full
subcategory of the derived category of sheaves of Ox-modules consisting of
complexes with quasi-coherent cohomology. A complex of sheaves of Ox-modules
is perfect if it is locally quasi-isomorphic to a bounded complex of vector bundles
(=locally free sheaves of finite rank). We denote by X -perf the full subcategory of
perfect complexes of D(X). Given a complex of sheaves C, the notation H'(C)
will always refer to the cohomology sheaves, not to the (hyper)cohomology groups.

Let C be a complex of objects of an additive category and i € Z. We put
ocSC=w>C 15 C50andoZC=0—>C > C' T > ...,
Let now C be a complex of objects of an abelian category. We put
ZIC =0 C'/imdi~! = ¢+l & ¢i+2 s ...

and
SC = > CI72 5 C S kerd! — 0.

3. Dimension

3.1. Dimension for triangulated categories

3.1.1 We review here various types of generation of triangulated categories,
including the crucial “strong generation” due to Bondal and Van den Bergh.

Let 7 be a triangulated category.

Let 7, and Z, be two subcategories of 7. We denote by Z; x Z, the full
subcategory of 7 consisting of objects M such that there is a distinguished triangle
My — M — M, ~ with M; € Z;.

Let Z be a subcategory of 7. We denote by (Z) the smallest full subcategory of
T containing Z and closed under finite direct sums, direct summands and shifts. We
denote by ads(Z) the smallest full subcategory of 7 containing Z and closed under
direct sums and shifts.

We putIl 01-2 = (Il *Iz)

We put (Z)¢ = 0 and we define by induction (Z); = (Z);—1 ¢ (Z) fori > 1. We
put (Z)oo = UJ;20(Z)i. We define also Z* = T*(=D x T,

Remark 3.1 The objects of (Z); are the direct summands of the objects obtained by
taking an i-fold extension of finite direct sums of shifts of objects of Z.
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We will also write (Z)7; when there is some ambiguity about 7.
We say that

o 7T generates T if given C € T with Hom¢(DJ[i],C) = 0 for all D € 7 and all
ieZ,thenC =0

e T isad-step generator of T if T = (1), (where d € NU {o0})
o Tisad-step ®-generator of T if T = {ads(Z))4 (where d € N U {o0}).
We say that 7 is

e finitely generated if there exists C € 7 which generates 7 (such a C is called
a generator)

o classically finitely generated (resp. @-generated) if there exists C € 7 which
is a co-step generator (resp. @-generator) of 7 (such a C is called a classical
generator (resp. @-generator)

o strongly finitely generated (resp. @-generated) if there exists C € 7 which
is a d-step generator (resp. @-generator) of 7 for some d € N (such a C is
called a strong generator (resp. ®-generator).

We say more generally that a subcategory Z of 7 classically generates T if T is
the smallest thick subcategory of 7 containing Z. Note that if 7 is strongly finitely
generated, then every classical generator is a strong generator.

It will also be useful to allow only certain infinite direct sums. We define ams(Z)
to be the smallest full subcategory of 7 closed under finite direct sums and shifts
and containing multiples of objects of Z (i.e., for X € Z and E a set such that X (&)
exists in 7, then X &) € ams(7)).

3.1.2 We now define a dimension for a triangulated category.

Definition 3.2 The dimension of 7, denoted by dim7, is the minimal integer d > 0
such that there is M in 7 with 7 = (M) 441-
We define the dimension to be oo when there is no such M.

The following Lemmas are clear.
Lemma 3.3 Let 7' be a dense full triangulated subcategory of T. Then, dim7T =
dim7”.
Lemma 3.4 Let F : T — T’ be a triangulated functor with dense image. If T =
(Z)a, then T = (F(Z))q4. So, dim7’ < dim7.

In particular, let T be a thick subcategory of T. Then, dim7T /T < dim7.

Lemma 3.5 Let 7y and T, be two triangulated subcategories of T such that T =
71 ©T5. Then, dim7 < 14 dim7; 4 dim7>.
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Lemma 3.6 The property of generation, strong generation, etc... for T is equivalent
to the corresponding property for T°. We have dim7° = dim7.

3.2. Remarks on generation

3.2.1

Remark 3.7 One can strengthen the notion of generation of 7 by Z by requiring
that 7 is the smallest triangulated subcategory containing Z and closed under direct
sums. Cf Theorem 4.22 for a case where both notions coincide.
Remark 3.8 Let (Z)' be the smallest full subcategory of 7 containing Z and closed
under finite direct sums and shifts. Define similarly (Z)/,. Then, Z is a classical
generator of 7 if and only if the triangulated subcategory (Z)., of 7 is dense.
By Thomason’s characterization of dense subcategories (Theorem 5.1 below), if 7
classically generates 7 and the classes of objects of Z generate the abelian group
Ko(T),then T = (Z)/.

A similar statement does not hold in general for d-step generation, d € N : take
T = D?((k x k)-mod), where k is a field. Let Z be the full subcategory containing
k x k and k x 0 (viewed as complexes concentrated in degree 0). Then, 7 = (Z)
and Ko(7) = Z x Z is generated by the classes of objects of Z, but (Z)’ is not a
triangulated subcategory of 7.

Note the necessity of allowing direct summands when Ko (7) is not a finitely

generated group (e.g., when 7 = D?(X-coh) and X is an elliptic curve).

Remark 3.9 It would be interesting to study the “Krull dimension” as well. We say
that a thick subcategory Z of 7 is irreducible if given two thick subcategories Z; and
T, of 7 such that 7 is classically generated by 71 «Z,,then 7y =Z or Z, = 7. We
define the Krull dimension of 7 as the maximal integer n such that there is a chain
of thick irreducible subcategories 0 # Zo CZ7 C --- C L, =7 with Z; # Z; 4.

By Hopkins-Neeman’s Theorem [Neel], given a commutative noetherian ring
A, the Krull dimension of the category of perfect complexes of A-modules is the
Krull dimension of A.

By [BeCaRi], given a finite p-group P, the Krull dimension of the stable
category of finite dimensional representations of P over a field of characteristic
p is the p-rank of P minus 1.

Another approach would be to study the maximal possible value for the tran-
scendence degree of the field of fractions of the center of @@, .,Hom(idr,7,idr,z[i]),
where 7 runs over finitely generated thick subcategories of 7.

Remark 3.10 When 7 has finite dimension, every classical generator is a strong
generator. It would be interesting to study the supremum, over all classical
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generators M of 7, of min{d |7 = (M )44}

Remark 3.11 One can study also, as a dimension, the minimal integer d > 0 such
that there is M in 7 with 7 = (ads(M))g+1 or 7 = (ams(M))z4+1 This is of
interest for D(A) and D(X) or D?(A) and D?(X).
3.2.2 We often obtain dévissages of objects in the following functorial way (yet
another notion of dimension...) :

Assume there are triangulated functors F; : 7 — 7 with image in (Z) for 1 <
i <d, triangulated functors G; : 7 — 7 for 0 <i < d with Gy =id, G4 = 0 and
distinguished triangles F; — G; — G;—1 ~» for 1 <i <d. Then, 7T = (Z),.

3.3. Compact objects

3.3.1 Let C be an additive category. We say that C is cocomplete if arbitrary direct
sums exist in C (note that we do not require that C admits cokernels).

An object C € C is compact if for every set F of objects of C such that
@D rerF exists, the canonical map P g -Hom(C,F) — Hom(C,Pp. - F) is an
isomorphism. We denote by C¢ the full subcategory of compact objects of C.

A triangulated category 7 is compactly generated if it generated by a set of
compact objects. We say that a full triangulated subcategory Z of 7 is compactly
generated in T if it is generated by a set of objects of ZN7°.

3.3.2 Let 7 be a triangulated category. Then, 7€ is a thick subcategory of 7.

Let X LN X1 2l bea sequence of objects and maps of 7. If @,.,X;
exists, then the homotopy colimit of the sequence, denoted by hocolim Xj, is a cone
of the morphism ) ;idy, —s; : @;-0Xi = D, Xi-

We have a canonical map - -

colimHom+ (Y, X;) — Hom¢(Y,hocolim X;)

that makes the following diagram commutative

Hom(Y,® X;) — Hom(Y,P X;) — Hom(¥,hocolim X; ) —> Hom(Y,P X; [1]) — Hom(Y,P X; [1])
! ! ! ! !
0 —> PHom(Y,X;) — PHom(Y,X;) —> colimHom(Y,X;) i> @PHHom(Y,X;[1]) — PHom(Y,X;[1])
Since the horizontal sequences of the diagram above are exact, we deduce (cf
e.g. [Nee2, Lemma 1.5]) :

Lemma 3.12 The canonical map colimHomz (Y, X;) — Hom4 (Y, hocolim X;) is an
isomorphism if Y is compact.
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We now combine the commutation of Hom(Y,—) with colimits and with direct

sums in the following result (making more precise a classical result [Nee2, Lemma
23]

Proposition 3.13 Let 0 = Xog —> X1 — X5 — -+ be a directed system in T. For
i > 1, let F; be a set of compact objects such that @Ceﬂ C exists and let X;_1 —
Xi = @cer, C » be adistinguished triangle.

Let Y be a compact object and f : Y — hocolimX;. Then, there is an integer
d > 1, a finite subset .7-'[ of Fi for 1 <i <d and a commutative diagram

0=X() Xl X2 X34>"'4>Xd
e D, ¢ D C

! ! ! h
Sre D C DrC

0=X X/ X} ) —"C)

h can

such that f factors through X, —> X4 — hocolim X;.

Proof: By Lemma 3.12, there is d > 1 such that f factors through the canonical
map Xy; — hocolimX;. We proceed now by induction on d. The composite map
Y — Xq — @ceg, C factors through the sum indexed by a finite subset F; of Fy.
Let Z be the cocone of the corresponding map ¥ — @ 7, C, a compact object.
Let X the cocone of the composite map @Cef;iC — Dcer,C = Xa-1[l].
The composite map X — P 7 C = Dces, C factors through X;. The map
Y — Xy factors through X7 and the composite map Z — Y — X/ factors through
Xg4—1. Summarizing, we have a commutative diagram

Xg-1 —= X4 —> Dces, €~~~

Y

X1 Xj—Dcer,C ~~
A A

3a
Y oo >®Ce]—'jjc s>

z

By induction, we have already a commutative diagram as in the proposition for
the corresponding map Z — X;_;. We define now X, to be the cocone of the
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composite map @Cef; C — Z[1] — X/,_,[1]. There is a commutative diagram

Xa1 HXZH@CGFQC Xa-1[1]
Z[1]
a \
X, Xy — Bcer,C X, [1]
A
z Y @cer,C Z[1]

The composite map Z — Y — X7 factors through X4_1, hence through X/,_,. It
follows that a factors through X/, and we are done. O

We deduce the following descent result [BoVdB, Proposition 2.2.4] :

Corollary 3.14 Let T be a subcategory of T¢ and let d € NU {oco}. Then, T¢N
(ads(Z))a = (Z)a-

Proof: Let Y be a compact object and f : Y — X4 be a split injection where X
is obtained by taking a d-fold extension of objects of (ads(Z)). Proposition 3.13

shows that f factors through an object X/, € (Z)4 and we obtain a split injection
Y — X)) O

3.4. Relation with dg algebras

Following Keller, we say that a triangulated category 7 is algebraic if it is the stable
category of a Frobenius exact category [GeMa, Chapter 5, §2.6] (for example, 7 can
be the derived category of a Grothendieck category).

Recall the construction of [Ke, §4.3]. Let 7 = £-stab be the stable category
of a Frobenius exact category £. Let & be the category of acyclic complexes
of projective objects of £ and Z° : £ — E-stab be the functor that sends C to
cokerd ;.

Given X and Y two complexes of objects of £, we denote by Hom®(X,Y) the
total Hom complex (i.e., Hom*(X,Y)' = ]_[jezHomg(X-i,Yi+j)).

Let M € E-stab and M’ € £ with Z°(M’) > M. Let A = End®*(M’) be the dg
algebra of endomorphisms of M’. The functor Hom®*(M’,—) : £’ — D(A) factors
through Z° and induces a triangulated functor RHom®(M,—) : E-stab — D(A).
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That functor restricts to an equivalence (M )oo = A-perf. In particular, if M is a
classical generator of 7, then we get the equivalence 7 = A-perf.
So,

Proposition 3.15 Let T be an algebraic triangulated category. Then, T is
classically finitely generated if and only if it is equivalent to the category of perfect
complexes over a dg algebra.

This should be compared with the following result.

Assume now £ is a cocomplete Frobenius category. If M is compact, then
RHom®(M,—) restricts to an equivalence between the smallest full triangulated
subcategory of 7 containing M and closed under direct sums and D(A) (cf Theorem
4.22 (2) and Corollary 6.1 below). So, using Theorem 4.22 (2) below, we deduce
[Ke, Theorem 4.3] :

Theorem 3.16 Let £ be a cocomplete Frobenius category and T = E-stab. Then,
T has a compact generator if and only if it is equivalent to the derived category of
a dg algebra.

4. Finiteness conditions and representability

4.1. Finiteness for cohomological functors

We introduce a class of “locally finitely presented” cohomological functors that
includes the representable functors, inspired by Brown’s representability Theorem.
It extends the class of locally finite functors, of interest only for Ext-finite
triangulated categories.

4.1.1 Let k be a commutative ring.

Let 7 be a k-linear triangulated category. Let H : 7° — k-Mod be a (k-

linear) functor. We say that H is cohomological if for every distinguished triangle

H H
X i) y £z ~>, then the associated sequence H(Z) ﬁg H(Y) ﬁ;) H(X)is

exact.
For C € T, we denote by /¢ the cohomological functor Hom+(—,C) : 7° —
k-Mod.

We will repeatedly use Yoneda’s Lemma :

Lemma 4.1 Let X € 7 and H : T° — k-Mod a functor. Then, the canonical map
Hom(hc,H) — H(C), f — f(C)(id¢) is an isomorphism.

Let H : 7° — k-Mod be a functor. We say that H is
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e [ocally bounded (resp. bounded above, resp. bounded below) if for every
X €T, wehave H(X[i]) = 0 for |i| > 0 (resp. for i <« 0, resp. fori > 0)

e locally finitely generated if for every X € 7, thereis D € 7 anda : hp — H
such that (X [i]) is surjective for all i.

e Jocally finitely presented if it is locally finitely generated and the kernel of any
map hg — H is locally finitely generated.

Let X € 7. We introduce two conditions :
(a) thereis D € 7 and « : hp — H such that (X [i]) is surjective for all i
(b) for every B : hg — H, there is f : F — E such that Bhy = 0 and
hr(X[i]) g he (X[i]) L H(X[i]) is an exact sequence for all ;.
Note that H is locally finitely presented if and only if for every X € 7,
conditions (a) and (b) are fulfilled.
Lemma 4.2 For C €7, then hc is locally finitely presented.
Proof: We take D = C and « = id for condition (a). For (b), amap 8 : hg — hc

comes from a map g : £ — C and we pick a distinguished triangle F i> E-%
C . O

Proposition 4.3 Let Hy — Hy — H — H, — Hj3 be an exact sequence of functors
T° — k-Mod.

If Hy and H; are locally finitely generated and Hs is locally finitely presented,
then H is locally finitely generated.

If Hy is locally finitely generated and Hy, H, and Hj3 are locally finitely
presented, then H is locally finitely presented.

Proof: Let us name the maps : Hy i) H, l> H i) H, L> Hs. Let X eT.
Let oy : th — H> asin (a). Let B3 = t305 : hD2 — H3. Let f3: E — D5 as
in (b). Since H(E) — H»(E) — H3(E) is exact, the composite map axh r, : hgp —

H, factors as hg oH i) H,. Letay :hp, — Hj asin (a).

. b
Let a : hx — H. The composite t,a : hy — H, factors as tha : hy —

o .. .
hp, =2 H,. The composition t3(tpa) : hy — Hs is zero, hence b factors as

b: hyx BN hg £> hp,. Now, we have t,yc = axh ¢ = ab = ta. Since
the composite t5(a — yc) : hx — H, is zero, it follows that a — yc¢ factors as
hx AN & 1 ANy7Y Now, a; factors through «;. So, we have shown that a factors
through y + t101 : hg @ hp, — H, hence H satisfies (a).

Letag : hp, — Hp asin (a). Let B’ : hgr — kert,. Then, there is B : hgr — H;
such that B’ = t18;. Since H; is locally finitely presented, there are u : hr — hp,
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and v : hp — hgs such that (81 + toao)(u —v) = 0 and

he (XD "2 hp (X)) @ hp (X[1]) 2% By (X (i)

is exact for every i. Summarizing, we have a commutative diagram

hF

| N

hD() hE/

SN

H() T> H] T>ker[2

It follows that Bv = 0 and hr (X[i]) BN he (X[i]) i) (kert;)(X[i]) is exact for
every i, hence kert, satisfies (b).

Let now B : hgr — H. Let G = kerf and G, = ker(t28). Now, we have
exact sequences 0 - G — G, — kert; and 0 - G, — hgr — H,. The first
part of the Proposition together with Lemma 4.2 shows that G is finitely generated.
Consequently, H is locally finitely presented. 0

4.1.2 We will now study conditions (a) and (b) in the definition of locally finitely
presented functors.

Lemma 4.4 Let H : 7° — k-Mod be a k-linear functor and X € T.

o Let B, : hg, — H for r € {1,2} such that (b) holds for B = B1 + B> :
hE, @, = H. Then, (b) holds for B, and B,.

o Assume (a) holds. If (b) holds for those B : hg — H such that B(X[i]) is
surjective for all i, then (b) holds for all B.

Proof: lLet E = E, & E,. Denote by i, : E, — E and p, : E — E,
the injections and projections. There is f : F — E such that Bhy = 0 and

h
hr(X[i]) e he(X[i]) i) H(X[i]) is an exact sequence for all i.

f/
Fix a distinguished triangle F; L F pif) E, ~> and let fi = pi ff] : F1 —>

E;. We have B1h s, = 0since Bi1hp, r = —B2hp, r.
For all i, the horizontal sequences and the middle vertical sequence in the
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following commutative diagram are exact

h
he (X[~ i (XD 225 b, (X[0))

h/’l \L hr

0 — hiy (X[i]) —2 hp (X[1]) 22 h g (X [1]) —> 0

.BI\L B

H(X[i]) === H(X[i])

0

hence the left vertical sequence is exact as well.

Let us now prove the second part of the Lemma. Let 8 : hg — H. Since (a)
holds, there is D € 7 and « : hp — H such that a(X[i]) is surjective for all i. Let
E'=D@®Eand 8’ =a+ B :hg — H. Then, (b) holds for §’, hence it holds for
B by the first part of the Lemma. O

Remark 4.5 For the representability Theorem (cf Lemma 4.14), only the surjective
case of (b) is needed, but the previous Lemma shows that this implies that (b) holds
in general.

Lemma 4.6 Ler H : 7° — k-Mod be a cohomological functor.

The full subcategory of X in T such that (a) and (b) hold is a thick triangulated
subcategory of T.

In particular, if X is a classical generator for T and (a), (b) hold, then H is
locally finitely presented.

Proof: Let Z be the full subcategory of those X such that (a) and (b) hold. It is
clear that 7 is closed under shifts and under taking direct summands. So, we are left
with proving that 7 is stable under extensions.

Let X; Lx X, ~> be a distinguished triangle in 7 with X;,X, € 7.
Pick D, € 7 and «, : hp, — H such that o, (X,[i]) is surjective for all i. Put
E=D ®Dyand f=0a;+ar:hg — H. Thereis F, € T and f, : F, — E such
that Bh s, = 0 and hf, (X,[i]) 3 he (X, [i]) i) H(X,[i]) is an exact sequence for

alli. Puu F=F @ F,and f = f1+ fo: F > E. LetFi>E—>E’wbea
distinguished triangle. We have an exact sequence H(E’) — H(E) — H(F). The
image in H(F) of the element of H(E) corresponding to B is 0, since Bh s = 0.

h
Hence,,BfactorsashE—t>hE/i>H. Let D=E®FE anda=8+y:hp — H.
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Leta : hx — H. Then, there is a commutative diagram where the top horizontal
sequence is exact

hll
hxal-1) —hx, —— hx

Y v

hr hg H

. h .
The composite hy,—1] — hx, N hg —> hg is zero, hence h;c : hx, — hg

hy b
factors as hy, — hx —> hg/. We have ah, = fc = yh;c = ybh,, hence the

composite hy, — hx S His zero, where a’ = a — yb. So, a’ factors through a
map hy, — H. Such a map factors through §, hence a’ factors through 8 and a
factors through . The same conclusion holds for a replaced by any map hx[;) — H
for some i € Z. So, every map hx[;j — H factors through «, i.e., (a) holds for X.

Consider now a map ' : hgr — H. Let 8” : hg» — H such that B”(X;[i]) is
surjective for all i. Let 8 = '+ 8" : hg — H, where E = E’ ® E”. In order to
prove that B’ satisfies (b), it suffices to prove that 8 satisfies (b), thanks to Lemma
44.

h,
There is F; € T and f; : F; — E such that Bhy = 0 and hfp (X [i]) 4

he(X1[i]) i) H(X,[i]) is an exact sequence for all i. Let E; be the cone of f;.
As in the discussion above, § factors through amap y : hg, — H. Let F, € 7 and

h .
fo: Fs — Ey such that yh , = 0 and hp, (X, [i]) — hg, (Xali)) = H(X2[i]) is
an exact sequence for all i. Let F be the cocone of the sum map E & F, — E;. The

o B . .
composition hp — hg —> H is zero. We have a commutative diagram

hp ——— > hp,

T

hf]

hFl hE hEl
H

In the diagram, the square is homotopy cartesian, i.e., given Y € 7 andu : Y — E,

v : Y — F;, such that the compositions Y Y ES Eiand Y N F, — E; are
equal, then there is w : Y — F such that u is the composition ¥ 2 F—> Eandv
is the composition Y 2 F Fs.
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Leta : hy — hg be such that fa = 0. The composite hyx, — hy N h g factors
through hg,. It follows that the composition hy, — hy 5 hg > h E, 18 zero.
Hence, the composite sy Lo E — hg, factors through amap b : hx, — hg,.
The composite b’ : hy, i> hg, — H factors through amap ¢ : hx,[1] = H, since
hx — hx, i) H is zero. Now, ¢ factors as hy, [ i) hE, 2 H. Summarizing,

we have a diagram all of whose squares and triangles but the one marked “#” are
commutative and where the horizontal sequences are exact

hx, hx hx, hx,

l , o
v v o a4

H~<

o .. b—d’
Let d’ be the composition hx, — hx,[1] — hEg,. Then, the composition 1y, —

"

h
hEg, s H is zero. The map b —d’ factors as hy, — hr, i hEg, . It follows that

d” h ~
hx N hg — hg, factors as hy — hx, — hp, £> hg,. Using the homotopy

cartesian square above, we deduce that a factors through @’ : hx — hp. So, the
sequence hr(X) — hg(X) — H(X) is exact. The same holds for all i, hence (b)
holds for X. ]

Remark 4.7 All the results concerning locally finitely generated and presented
functors above remain valid if we replace the conditions “given X € 7, a certain
statement is true for all i € Z” by “given X € 7 and a € Z, a certain statement is
true fori > a” (or “i <a” or “i = a”) in (a) and (b). Cf for example Proposition
6.10.

4.1.3 Given X an object of 7, we put End*(X) = @, , Hom(X, X [i]).

Proposition 4.8 Let H : 7° — k-Mod be a cohomological functor and X be
a classical generator for T. Then, H is locally finitely generated if and only if
D, H(X[i]) is a finitely generated End* (X )-module.

Proof:  Assume first @, H(X[i]) is a finitely generated End* (X )-module. Let f; €
Hom(h x[n,], H) be a finite set of elements such that the f, (X [n,])(idx[,,]) generate
€, H(X[i]) as an End*(X)-module. Let D = @, X[n,] and f =), f» : hp —
H . Then, f(X|[i]) is surjective for every i, i.e., condition (a) is satisfied.
Conversely, assume (a) is satisfied. There is D € 7 and « : hp — H such that
the canonical map @; Hom(X[i],D) — @, H(X[i]) is surjective. Consequently,
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in order to prove the second implication of the Proposition, we can assume that
H = hp for some D € 7. We prove now the result by induction on 7, the smallest
integer such that D € (X},. The result is clear forn = 1. Let D € (X),. There is a
distinguished triangle

Z—>D =Y »

where Z € (X),—1,Y € (X); and D is a direct summand of D’. We have an exact
sequence of End*(X)-modules

B Hom(X[i].Z) -~ @ Hom(X[i].D") - @DHom(X[i].Y)

where the left and the right terms are finitely generated End*(X)-modules, by
induction. So, @, Hom(X[i],D’) is finitely generated, and €, Hom(X[i],D) as
well. U

4.1.4 Assume k is noetherian. We say that 7 is Ext-finite if @, Hom(X,Y[i]) is a
finitely generated k-module, for every X,Y € 7.

Assume now 7 is Ext-finite and let H : 7° — k-Mod be a functor. We say
that H is locally finite if for every X € 7, the k-module @; H(X[i]) is finitely
generated.

Proposition 4.9 Let H be a locally finite functor. Then, H is locally bounded and
locally finitely presented.

Proof: 1t is clear that H is locally bounded. Let X € 7. Let I; be a minimal
(finite) family of generators of H(X[i]) as a k-module. We have I; = @ for almost
all i, since H is locally bounded. Put D = @; X[i] ® k% and let o : hp — H be
the canonical map. The map «(X[i]) is surjective for all i. So, every locally finite
functor is locally finitely generated.

Letnow §: hg — H. Let G = kerf. Since 7 is Ext-finite, G is again locally
finite, hence locally finitely generated. O

The results on finitely generated and presented functors discussed above have
counterparts for locally bounded functors, the proofs being trivial in this case.

Proposition 4.10 Let Hy — H — H; be an exact sequence of functors 7° —
k-Mod. If Hy and H, are locally bounded (resp. bounded above, resp. bounded
below), then H is locally bounded (resp. bounded above, resp. bounded below).

Let H : T° — k-Mod be a cohomological functor. Then, the full subcategory
of X € T such that H(X[i]) = 0 for |i| > 0 (resp. i < 0, resp. i > 0) is a thick
subcategory.
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4.2. Locally finitely presented functors

4.2.1 Let us start with some remarks on cohomological functors.

Given 0 - Hy — H, — H3 — 0 an exact sequence of functors 7° — k-Mod,
if two of the functors amongst the H;’s are cohomological, then the third one is
cohomological as well. The category of cohomological functors 7° — k-Mod is
closed under direct sums.

Given H; — H, — --- a directed system of cohomological functors 7° —
k-Mod, we have an exact sequence 0 — P H; — P H; — colimH; — 0. This
shows that colim H; is a cohomological functor.

Lemma 4.11 Let Hy,...,H,+1 be cohomological functors on T and f; : H; —
H;iq for 1 <i <n. LetZ; be a subcategory of T closed under shifts and on which
fi vanishes. Then, f,--- f1 vanishes on 11 ¢ --- ¢ 1,.
Proof: Note first that if a morphism between cohomological functors vanishes on
a subcategory Z closed under shifts, then it vanishes on (7).

By induction, it is enough to prove the Lemma forn = 2. Let X1 — X — X5 v
be a distinguished triangle with X; € Z;. The map f;(X) factors through H,(X>),
i.e., we have a commutative diagram with exact horizontal sequences

Hi(X>) 4>H1(X)4>H1(X1)

T

Hy(X2) — Hy(X) — Ha(X1)

.

H3(X3) — H3(X) —— H3(X1)

This shows that f> f1(X) =0. ]

Remark 4.12 Let M € T be a classical @-generator. Let f : D, Hom(idr,id7[i]) —
D; Hom(M, M [i]) be the canonical map. Let { € ker f. It follows from Lemma 4.11
that ¢” vanishes on {(ads(M)),,, hence ¢ is locally nilpotenton 7. If 7 = (ads(M)) 4,
then (ker £)? = 0.

4.2.2 In this part, we study convergence conditions on directed systems. This builds
on [BoVdB, §2.3].

Let 11 i> Vs ﬁ> --- be a system of abelian groups. We say that the system
(Vi) is almost constant if one of the following equivalent conditions is satisfied :

e V;=im fi_1--- f> f1 +ker f; and ker f; y,--- fi =ker f; forany r > O andi > 1.
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e Denote by «; : V; — V = colimV; the canonical map. Then, «; induces an
isomorphism V; /ker f; Sy,

Let 7 be a triangulated category and 7 a subcategory of 7. Let H; — Hy — -+
be a directed system of functors 7° — k-Mod. We say that (H;);>; is almost
constant on 7 if for every X € Z, the system H;(X) — Hy(X) — --- is almost
constant.

Given 1 <r; <r, <---, we denote by (H,,) the system
Jrp—1Sry+10r I Jra—1=Srp+1Sry

r &) ry >t

Proposition 4.13 Let (H;);>1 be a directed system of cohomological functors on T
and 1,..., I, be subcategories of T closed under shifts.

(i) If (H;)i>1 is almost constant on 11,1,,...,1,, then, for any r > 0, the system
(Hpi+r)izo is almost constant on Ly ¢ -+ o Ly,

Assume now (H;)i>1 is almost constant on a subcategory I of T closed under
shifts.. Then,

(ii) (H;)i>1 is almost constant on smd(Z). If in addition the functors H; commute
with products, then (H;);>1 is almost constant on smd(Z).

(iii) (Hir+s)i>o is almost constant on I for any r,s > 0.

(iv) the canonical map Hy,41 — colim H; is a split surjection, when the functors

are restricted to (I),.

Proof: Let H = colimH; and let K; = ker(H; — H). Take 7 and 7’ such that
(H;) is almost constant on Z and Z’. Let I — J — I’ be a distinguished triangle
with/ eZand I’ €T'.

Given i > 1, we have a commutative diagram with exact rows and columns

H;i(I") H(I") ——0
H;(J) H(J)
0 Ki(I) H; (1) H(I) ——0

0 — Ki(I'[-1]) — H;(I'[-1])) —= H(I'[-1]) —=0

|

0 — Ki(J[-1]) — H;(J[-1])




Dimensions of triangulated categories 213

This shows that H;(J) — H(J) is onto. By induction, we deduce that H;(X) —
H(X)isonto foranyi > 1 and any X € 77 ¢ --- ¢ Z,,. It follows from Lemma 4.11

that the composition K; i> Kit+1 — - = K;4p, vanishes on 77 ¢ --- ¢ Z,. We
deduce that (i) holds.

The assertions (ii) and (iii) are clear.
By (i), it is enough to prove (iv) for n = 1. The map f, : H; — H factors
through H,/K; as f1: H;/ Ky — H,. We have a commutative diagram

Hy/K; fi

N

H

H,

When restricted to Z, the canonical map Hy/K; — H is an isomorphism, hence the
canonical map H, — H is a split surjection. This proves (iv). O

We say that a direct system (A i) As ﬁ) ---) of objects of 7 is almost
constant on 7 if the system (/1 4, ) is almost constant on Z.

4.2.3 We study now approximations of locally finitely presented functors.
Lemma 4.14 Let T be a triangulated category and G € T. Let H be a locally
finitely presented cohomological functor. Then, there is a directed system A, i>

As £> - in T that is almost constant on {G|[il};ez and a map colimh 4, — H that
is an isomorphism on (G ) co.

Proof: Since H is locally finitely presented, there is A; € 7 and oy : hgy — H

such that o1 (G[r]) is onto for all r.

. . . i f: Ji-
We now construct the system by induction on i. Assume A4 AN/ PN L

A; and o1,...,0; have been constructed.
Since H is locally finitely presented, there is g : B — A; with imhg(G[r]) =

kere; (G[r]) for all r and with hga; = 0. Let B N A; i) Ait+1 » be

. . . he fi
a distinguished triangle. We have an exact sequence hg —> hy, —> hg, 1o
hence, there is ;1 : ha,,, — H with a; = «;41f;. We have a surjection

hg(GIr]) : hp(G[i]) — kera;(G[r]), hence kere; (G[r]) € ker f;(G[r]). So, the
system is almost constant on {G[i]};ez. It follows from Proposition 4.13 (iv) that
the canonical map H — colim/ 4; is an isomorphism on (G ). U

Proposition 4.15 Let T be a triangulated category classically generated by an
object G. Let H be a cohomological functor. Then, H is locally finitely presented if
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and only if there is a directed system A, i> Ay £> --- in T that is almost constant
on {Gli]}iez and an isomorphism colimh 4, — H.

Proof: The first implication is given by Lemma 4.14. Let us now show the
converse.

Since 7 is classically generated by G, it is enough to show conditions (a)
and (b) for X = G (cf Lemma 4.6). Condition (a) is obtained with «; : hgq, —
H. Fix now B : hg — H. There is an integer i such that £ € (G);. By
Proposition 4.13 (iii) and (iv), the restriction of «;4+; to (G); has a right inverse
p. We obtain a map pf between the functors g and &4, restricted to (G);. It
comes from a map f : E — A;4+1. Let F be the cocone of f. The kernel of
hy(Glr]) : he(G[r]) — ha;,,(G[r]) is the same as the kernel of B(G[r]). So, the
exact sequence hr(G[r]) — he(G[r]) — ha,,,(G[r]) induces an exact sequence
hr(G[r]) = hg(G[r]) = H(G[r]) and (b) is satisfied. O

4.3. Representability

4.3.1 We can now state a representability Theorem for strongly finitely generated
triangulated categories.

Theorem 4.16 Let T be a strongly finitely generated triangulated category and H
be a cohomological functor.

Then, H is locally finitely presented if and only if it is a direct summand of a
representable functor.

Proof: Let G be a d-step generator of 7 for some d € N. Let (A4;) be a directed
system as in Lemma 4.14. Then, ag4q : ha,,, — H is a split surjection by
Proposition 4.13 (iv). The converse follows from Lemmas 4.2 and 4.6. L]

Recall that an additive category is Karoubian if for every object X and every
idempotent e € End(X), there is an object Y and mapsi :Y - X and p: X — Y
such that pi =idy andip =e.

Corollary 4.17 Let 7T be a strongly finitely generated Karoubian triangulated cate-
gory. Then, every locally finitely presented cohomological functor is representable.

Via Proposition 4.9, Theorem 4.16 generalizes the following result of Bondal
and Van den Bergh [BoVdB, Theorem 1.3].

Corollary 4.18 Let 7 be an Ext-finite strongly finitely generated Karoubian
triangulated category. A cohomological functor H : T° — k-Mod is representable
if and only if it is locally finite.

The following Lemma is classical:
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Lemma 4.19 Let T be a triangulated category closed under countable multiples.
Then, T is Karoubian.
e

Proof: Given X € 7 and e € End(X) an idempotent, then hocolim(X Sx 3
X — --+) is the image of e. O

We have a variant of Theorem 4.16, with a similar proof :

Theorem 4.20 Let T be a triangulated category that has a strong ®-generator and
H be a cohomological functor that commutes with products.

Then, H is locally finitely presented if and only if it is a direct summand of a
representable functor.

If T is closed under countable multiples, then H is locally finitely presented if
and only if it is representable.

4.3.2 Let us now consider cocomplete and compactly generated triangulated
categories — the “classical” setting.

Lemma 4.21 Assume T is cocomplete. Then, every functor is locally finitely
presented.

Proof: Let H be afunctorand X € 7. Let D = @, X[i]/# XDl and o : hp — H
the canonical map. Then, «(X|[i]) is surjective for every i. It follows that H is
locally finitely generated.

Now, the kernel of a map hg — H will also be locally finitely generated, hence
H is locally finitely presented. O

So, we can derive the classical Brown representability Theorem ([Nee3,
Theorem 3.1], [Ke, Theorem 5.2], [Nee2, Lemma 2.2]) :

Theorem 4.22 Let T be a cocomplete triangulated category generated by a set S
of compact objects. Then,

1. a cohomological functor T° — k-Mod is representable if and only if it
commutes with products

2. every object of T is a homotopy colimit of a system A i> As £> -+« almost
constant on {ads(S)) and such that Ay and the cone of f; for alli are in ads(S).
In particular, T is the smallest full triangulated subcategory containing S and
closed under direct sums.

3. S classically generates T°€.
Proof: Let G = @PgcsS. Let H : T° — k-Mod be a cohomological functor that
commutes with products. Let (4;, f;) be a directed system constructed as in Lemma
4.14 and C = hocolim 4;. Note that we can assume that A; and the cone of f; are

direct sums of shifts of G (cf Lemmas 4.14 and 4.21). By Proposition 4.13 (ii), the
system is almost constant on {ads(S)).
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The distinguished triangle A; — P A; — C ~> induces an exact sequence
H(C) — [[H(A;) — [[H(A;), since H takes direct sums in 7 to products.
Consequently, there is a map f : h¢ — H that makes the following diagram
commutative

hc

e

colimh 4,

H

where the canonical maps from colim/ 4, are isomorphisms when the functors are
restricted to (S) (cf Lemma 3.12). So, the restriction of f to (S) is an isomorphism.
Consequently, f is an isomorphism on the smallest full triangulated subcategory 7"
of 7 containing S and closed under direct sums. To conclude, it is enough to show
that 7/ = 7 and we will prove the more precise assertion (2) of the Theorem.

We take X € 7 and H = hy. Then, f comes from amap g : C — X. The
cone Y of g is zero, since Hom(S[i],Y) =0 forall S € S andi € Z. Hence, g is an
isomorphism, so (2) holds.

Assume finally that X € 7¢. Then, g7 : X = C factors through some object
of (S); by Proposition 3.13, hence X € (S);. O

4.3.3 We deduce a general duality property for compact objects (cf [Kr, Lemma
4.10).

Corollary 4.23 Let T be a cocomplete compactly generated triangulated category
over a field k. Then, there is a faithful functor S : T¢ — T and bifunctorial
isomorphisms

Hom(C,D)* = Hom(D,S(C))
for C € T¢ and D € T. If Hom(C, D) is finite dimensional for all C,D € T€, then
S is fully faithful.
Proof: Let C € T¢. The cohomological functor Hom(C,—)* : 7° — k-Mod
commutes with products, hence it is representable by an object S(C) € 7 by

Theorem 4.22. By Yoneda’s Lemma, this defines a functor S : 7¢ — 7. Now,
if D € 7€, then S is equal to the composition

Hom(C, D) > Hom(C, D)** = Hom(D,S(C))* = Hom(S(C),S(D)).

O]

Whenever 7€ admits a Serre functor, it must be the restriction of the S above.

Corollary 4.24 Let T be a cocomplete compactly generated triangulated category
over a field k. Assume there is a self-equivalence S’ of T together with bifunctorial
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isomorphisms
Hom(C,D)* = Hom(D, S'(C))

for C,D € T€. Then, S takes values in T and there is a unique isomorphism
NSy making the following diagram commutative for any C,D € T¢

Hom(D,S’(C))

/

Hom(C,D)*

T

Hom(D, S(C))

Proof: A bifunctorial isomorphism Hom(D,S’(C)) = Hom(D, S(C)) comes from
a unique functorial map S’'(C) — S(C). Its cone is right orthogonal to 7, hence it
is zero, since 7 is generated by 7°¢. O

4.4. Finiteness for objects

4.4.1 We say that C is cohomologically locally bounded (resp. bounded above,
resp. bounded below, resp. finitely generated, resp. finitely presented, resp. finite)
if the restriction of h¢ to 7 has that property.

From Lemma 4.2, we deduce
Lemma 4.25 Let C € T€. Then, C is cohomologically locally finitely presented.

Lemma 4.26 Let C € T be cohomologically locally finitely generated. Then, C is
cohomologically locally finitely presented if and only if given X € T¢, E € T¢ and
B E — C such that Hom(X [i],B) is surjective for every i € Z, then the cocone of
B is cohomologically locally finitely generated.

Proof: Let F be the cocone of 8. We have an exact sequence

Hom(X[i],
0 — Hom(X[i], F) — Hom(X[i], E) 2" ¥ tom(x[i],.C) — 0.
The Lemma follows now from Lemma 4.4. O
From Lemma 4.14 and Proposition 4.13 (ii), we obtain
Lemma 4.27 Assume T is cocomplete and generated by a compact object G. Let C

be a cohomologically locally finitely presented object of T. Then, there is a system
A1 — Ay — -+ in T€ which is almost constant for (ads(G)) and an isomorphism

hocolimA4; — C.
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In particular, given d > 0, thereis D € T€ and [ : D — C such that every map
from an object of (ads(G))y4 to C factors through f.

From Propositions 4.3 and 4.10, we deduce

Proposition 4.28 The full subcategory of T of cohomologically locally finitely
presented (resp. bounded) objects is a thick subcategory.

Note that the full subcategory of cohomologically locally bounded (resp.
bounded above, resp. bounded below) objects is also a thick subcategory.
From Theorem 4.16, we deduce

Corollary 4.29 Let T be a triangulated category such that T¢ is strongly finitely
generated. Then, C € T° if and only if C is cohomologically locally finitely
presented.

Remark 4.30 Not all cohomological functors on 7 ¢ are isomorphic to the restriction
of hc, for some C € 7. This question has been studied for example in [Nee4, Bel,
ChKeNee]. Let us mention the following result [ChKeNee, Lemma 2.13] : let 7 be
a cocomplete and compactly generated triangulated category. Assume k is a field.
Let H be a cohomological functor on 7€ with value in the category k-mod of finite
dimensional vector spaces. Then there is C € 7 such that H is isomorphic to the
restriction of ¢ to 7T°.

5. Localization

5.1. Compact objects

5.1.1 Let us recall Thomason’s classification of dense subcategories [Th, Theorem
2.1]:

Theorem 5.1 Let 7 be a triangulated category and T a dense full triangulated
subcategory. Then, an object of T is isomorphic to an object of L if and only if its
class is in the image of the canonical map Ko(T) — Ko(7T).

The following Lemma is proved in [BoNee, Lemma 1.5].
Lemma 5.2 Let T be a cocomplete triangulated category and T be a thick

subcategory closed under direct sums. Then, T /T is cocomplete and the quotient
functor T — T /T commutes with direct sums.

The following is a version of Thomason-Trobaugh-Neeman’s Theorem [Nee2,
Theorem 2.1].

Theorem 5.3 Let 7 be a cocomplete and compactly generated triangulated
category. Let T a full triangulated subcategory closed under direct sums and
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compactly generated in T. Denote by F : T — T /T the quotient functor. Then,

(i) I is a cocomplete compactly generated triangulated category and ¢ = T N
Te.
(ii) Given X € T€ and Y €T, the canonical map

limHomz(X',Y) = Homyz/7(FX,FY)

is an isomorphism, where the limit is taken over the maps X' — X whose cone
is in Z¢. Also, if FY isin F(T°), then, thereis C € T¢ and f : C — Y such
that F(f) is an isomorphism.

(iii) F commutes with direct sums and the canonical functor T¢/I¢ — T T
factors through a fully faithful functor G . T€/Z1¢ — (T /I)°.

(iv) An object of (T /T)¢ is isomorphic to an object in the image of G if and only
if its class is in the image of Ko(G).

Proof: 1Tt is clear that 7 is cocomplete and that 7¢ N Z C Z¢. Let Sz be a set
of objects of 7¢ N Z that generates Z. It follows from Theorem 4.22 (3) that S
classically generates Z¢. Since 7¢ N7 is a thick subcategory of Z, it follows that
Z¢ =T NZ° and (i) is proven.

LetXeZ7¢andY € 7. Let¢p: W - Xandy: W — Y with W € 7. Let Z be
a cone of ¢ and assume Z € Z. By Theorem 4.22 (2) and Proposition 3.13, X — Z
factors through a map « : X — Z’ for some Z’ € TN 7T°¢. Let X’ be the cocone of
«. The map X’ — X factors as a composition ¢¢. This shows (ii).

X/
K
Y
w
N
X Y

Z ‘f‘a

gt

Z/‘
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Since 7 is cocomplete and the direct sum in 7 of objects of 7 is in Z, it follows

from Lemma 5.2 that F commutes with direct sums.

Let now X € 7¢ and {Z;} be a family of objects of 7. Let f : F(X) —
B, F(Z;))=F(@®,Z;). Thereis¢ : X' — X and ¢ : X' — P, Z; with the cone of
¢inZNTCand f = F(y¥)F(¢)~'. Since X’ is compact, ¥ factors through a finite
sum of Z;’s, hence f factors through a finite sum of F(Z;)’s. Consequently, F(X)
is compact. The fully faithfulness of G comes from (ii).

Let us now prove (iv). By Theorem 4.22 (3), (7 /Z)¢ is classically generated by
F(7T°). Since F(7°) is a full triangulated subcategory of (7 /7)€, it is dense. The
result follows now from Theorem 5.1. O

Corollary 5.4 Let T be a cocomplete and compactly generated triangulated
category. Let T be a full triangulated subcategory closed under direct sums and
generated by an object G € T NZT such that for all C € T¢, then Hom(C,G[i]) =0
forli| > 0.

If T¢ is strongly finitely generated, then (T /1)¢ is strongly finitely generated.
Remark 5.5 Let T be a cocomplete triangulated category generated by a set £ of
compact objects and let Z a thick subcategory closed under direct sums. If the

inclusion functor Z — 7 has a left adjoint G, then G(£) is a generating set for Z
and it consists of compact objects of 7.

5.2. Proper intersections of Bousfield subcategories

5.2.1 Let 7 be a triangulated category and Z be a thick subcategory. We have a
canonical fully faithful functor i : Z — 7 and a canonical essentially surjective
quotient functor j* : 7 — 7 /Z. We say that there is an exact sequence of
triangulated categories

0I5 75 7750

We say that C € 7T is Z-local if Hom(M,C) = 0 for all M € Z. Note that given
C,D €T with D an Z-local object, then Hom(C, D) 5 Hom(j*C,j*D).

Let 7’ be a thick subcategory of Z. Then, we have a commutative diagram of
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exact sequences of triangulated categories

0 0
T / 0
/
0 I/ T T/T—>0
!
0 1T T/I/
L

5.2.2 Let us recall the construction of Bousfield localization (cf e.g. [NeeS5, §9.1]).

We say that 7 is a Bousfield subcategory if the quotient functor j* : 7 — 7 /T
has a right adjoint j.. We then denote by 7 :id7 — j«j* the corresponding unit.

Assume 7 is a Bousfield subcategory. Note that C is Z-local if and only if
n(C): C — j«j*C isan isomorphism if and only if C ~ j,.C’ for some C' € 7 /7.

We denote by iy : Z — 7 the inclusion functor. Let C € 7 and C’ be the cocone
of n(C). We have j*C’ =0, hence C’ € Z. Since j.j*C[—1] is Z-local, the object
C’ is well defined up to unique isomorphism. So, there is a functor i' : 7 — T and
amap ¢ : ixi' — id7 such that the following triangle is distinguished

ini' S idy 2 juj* (1

Furthermore, ¢ provides (i«,i') with the structure of an adjoint pair.

Since i, and j* have right adjoints, they commute with direct sums. Also, 7 is
closed under direct sums (taken in 7°) and we have i'j, = j*i, = 0. The unit of
adjunction idz Siliyisan isomorphism, as well as the counit j* j, Sidy /T

Let Z be a thick subcategory of 7. Then, the following conditions are equivalent

e 7 is a Bousfield subcategory

e forany C € 7, there is a distinguished triangle C; - C — C; » with C; € Z
and C, an Z-local object.

o the restriction of j * to the full subcategory of Z-local objects is an equivalence.

Let Z’ be a Bousfield subcategory of 7 containing Z. Then, Z is a Bousfield
subcategory of Z’. The right adjoint to the inclusion of Z in Z’ is i‘i.. Also, I’/T is
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a Bousfield subcategory of 7 /Z and the left adjoint to the quotient 7 /Z — 7 /7 is
J* s

Assume 7 is cocomplete and compactly generated and Z is a full triangulated
subcategory closed under direct sums. Assume furthermore 7 /Z has small Hom-
sets. Then, 7 is a Bousfield subcategory [Nee5, Example 8.4.5]. Indeed, given
D € T/Z, the functor Hom(j*(—),D) : 7° — k-Mod is cohomological and
commutes with products (Theorem 5.3), hence is representable by Theorem 4.22.
The thickness follows from Lemma 4.19.

Remark 5.6 Let 7 be a cocomplete compactly generated triangulated category and
7 a Bousfield subcategory. If C € 7 is cohomologically locally bounded, then
i'C is cohomologically bounded. An object C’ € T /Z is cohomologically locally
bounded if and only if j.C’ is cohomologically locally bounded.

5.2.3 Let Z; and Z, be two Bousfield subcategories of 7.
Lemma 5.7 The following assertions are equivalent
1. i14ii(Z2) C Iy and iz«iy(Z1) C T,

2. ]1*]1*(1-2) CZ,and ]2*]2*(1—1) Ch

M,N)->M®N
3. the canonical functor I, /(1 N1) x 1o/ (Z1N1,) ();@) T/(T1N1,)

is fully faithful

4. given My € I, and M, € I,, every map M, — M, and every map M, — M,
factors through an object of T N 15,.

Proof: Given N € 7,, we have a distinguished triangle i.i iN - N —
Jixji N ~>. This shows immediately the equivalence between (1) and (2).

Let f: M — N with M € Z,. Then, thereis g : M — il*i{N such that
f =n1(N)g. Itis now clear that (1)=(4). Assume (4). Then, there is L € 7; N7,
and ¢ : il*i{N — L and ¢ : L — N such that e(N) = ¢. Now, there is ¢’ : L —
i1«i} N such that = &(N)¢’. So, e(N)(1 —¢'¢) = 0. Since the canonical map
End(il*iiN) — Hom(il*iiN,N), h — e(N)h is injective, it follows that il*iiN is
a direct of L, hence il*i{N €1,. So, (4)=(1).

A map in 7 factors through an object of Z; N 7, if and only if it becomes 0 in
T /(Z1 NI,). This shows the equivalence of (3) and (4). ]

We say that Z; and Z, intersect properly if the assertions of Lemma 5.7 are
satisfied. This property passes to intersections, unions, quotients... A collection
of Bousfield subcategories any two of which intersect properly behaves like a
collection of closed subsets.

We will identify Z; /(Z; N Z,) with its essential image in 7 /Z5.
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There are commutative diagrams of inclusions of subcategories and of quotients
of categories

7 T/T,
V i1 Jr J1u
LN, — T T & T/(Ty UTo)oo
k 12 i3 4
T, T/1,

Lemma 5.8 Assume I, and I, intersect properly. Let {a,b} = {1,2}. Then,
o 71 NIy and (I ULs) o are Bousfield subcategories of T .
o We have insif, ~ igxilipxi} and jusjl == jax s joxjy-

o There are commutative diagrams

Ia g T T/Ia Jax T
iémi li}, j:ul lf;‘
LNl —1 T/(ThiUL)eo —=T /Iy

bNx* JbUx

o The canonical functor T, /(Z1 N1,) = (Z1 U L) 0o /2y is an equivalence and
we have a commutative diagram of exact sequences of triangulated categories

.
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Proof: Let C € 7. We have distinguished triangles
i1xi]C = C = j1xjC ~> and insiniyi]C — i14iiC = joujFit«iiC »>
The octahedral axiom shows that there are C’ € 7 and distinguished triangles
inxiyitxiiC — C = C' v and jou jait«iiC — C' — j1ujiC v

Since C’ is (Z1 N Z,)-local and i2*iéi1*iiC € 71 N 7Z,, we deduce that 7; N7,
is a Bousfield subcategory of 7. The map iZ*iéil*i{C — C factors uniquely
through the canonical map in«i r!wC — C and similarly the map in.i r!wC — C factors
uniquely through i1 éil*i{ C — C and this provides functorial inverse morphisms
between in*i%C and iz,kiéil*i{C.

The case of (Z; U Ip)eo is similar, using iz«ijji«jiC — jisj;C —
J2xJs J1xji C ~> as a second distinguished triangle.

.. . . S I N ~ 0. .
We have ii>+(Z2) C Z1 N 15, hence the canonical map ijn«ijqijizx — i{i2« 1S

an isomorphism. Now, we have canonical isomorphisms
. g, A S SN NI
Linxlyn > Linxlpynlalax = Linklinll2%

and we get the first commutative square. The proof of the commutativity of the
second square is similar.
The last assertion is clear. 0

Lemma 5.9 Let F be a finite family of Bousfield subcategories of T any two of
which intersect properly.

Given F' a subset of F, then (\;erT (resp. (UzerT)oo) is a Bousfield
subcategory of T that intersects properly any subcategory in F.

Given 1,711,715 € F, then T /(Z N11) and I, /(Z N 1,) are Bousfield subcate-
gories of T /1 that intersect properly.

Proof: By induction, it is enough to prove the first assertion when F’ has two
elements, 7' = {Z,,Z3} and the result is then given by Lemma 5.8.

Let M ey, NeI,,LeT and f : L - M and g : L — N such that f
becomes an isomorphism in 7 /Z. Then, the cone of f isinZ, so L € (Z; UT)eo.
The first part of the Lemma shows that (Z; U 7)o and Z, intersect properly. It
follows that g factors through an object of (Z; U 7)o N Z,. Consequently, the
image of g in 7 /Z factors through an object of (Z1/(Z NZy)) N (Z,/(Z N1,)). We
have shown that every map in 7 /Z between M and N factors through an object of
(Z1/(ZINZI1))N(Z2/(Z N1,)) and we deduce the proper intersection property.  [J

5.2.4 We have two Mayer-Vietoris triangles ("open" and "closed" cases).
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Proposition 5.10 Assume I, and T, intersect properly.

(1) If T = (Z1.23) 00, then, there are isomorphisms of functors i% 5 iimii and

i}] — iémié giving a distinguished triangle of functors

o f1x€1ni) {Fizweani} R
insin — 11*1 &) 12*12 MY idy ~»> .

(2) If I; NI, = O, then there are isomorphisms of functors ji«jiusx = Jjus and

Jax Jousx — Jux giving a distinguished triangle of functors

. m—m . ., . Ly JUsmuJy t2sm20dy
7 — Jjixji + J2xJ2 Jusjy v

Proof It is an easy general categorical fact that there is an isomorphism of functors
zm = 1(m p !'such that en = 8a0(la*8aml ). Then, (¢;—&3)o0 (11*8zml —1—12*81012)

Given M € 1, an (Z; N 1y)-local object, then i M is Z;-local. Since the
canonical functor Z,/(Z; N 15) =T /21 is an equivalence, it follows that the Z;-
local objects of 7 are contained in Z,, hence ji+(7 /Z1) C Z,. As a consequence,
given N € 7 /Z; such that iéjl*N =0, we have N = 0. Consider now C € 7 such
that i]C = iC = 0. Then, C = ji.j*C. Since ijC = 0, it follows that j*C = 0,
hence C = 0. We deduce that in order to prove that the triangle of Proposition 5.10
(1) is distinguished, it is sufficient to prove so after applying the functor ii and after
applying the functor zi

The map i}iz«e2niy : iiizxiznsisnis — i}izxi} is an isomorphism since iizs ~
[ m*iém (Lemma 5.8). As the map i isl is an isomorphism, we deduce that after
applying i { the triangle is a split distinguished triangle.

The second assertion has a similar proof. O

We say that two subcategories C; and C, of a category C are orthogonal if
Hom(C;,C,) = Hom(C,,Cy) = 0 for all C; € C; and C, € C,. Note that this is
equivalent to requiring that Z; N Z, = 0 and Z; and Z, intersect properly.

5.3. Coverings

5.3.1 The following proposition shows that compactness is a local property, in a
suitable sense :

Proposition 5.11 Let 7 and I, be two orthogonal Bousfield subcategories of T.
LetC €T . If j[C, j,C and j;C are compact, then C is compact.
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Proof: Let F be a set of objects of 7 whose direct sum exists. Let a € {1,2,U}.
We have canonical isomorphisms

P Hom(C, juxjoi D) = EPHom(j; C. ji D) = Hom(j; C.ED ju D)
Der D D

= Hom(j;C.j D) = Hom(C. jax ji P D).
D D
We have a commutative diagram

+—>@ pHom(C,D)—>@ p Hom(C, j1x j; D)®EP p Hom(C, j2x j5 D) —>P p Hom(C, jux j; D) —>-

~ ~

-+—>Hom(C,@ p D) —=Hom(C, j1x j;" @ p D)®Hom(C, j2 j5 D p D) —>Hom(C, jux j 5B p D) —>--

where the exact horizontal rows come from the Mayer-Vietoris triangles (Proposi-
tion 5.10 (2)). It follows that the canonical map & , Hom(C, D) 5 Hom(C,&p D)
is an isomorphism. O

Combining Theorem 5.3 and Proposition 5.11, we get

Corollary 5.12 Let T be a compactly generated cocomplete triangulated category
and let T; and T, be two orthogonal Bousfield subcategories of T. Assume 1L, is
compactly generated in T fora € {1,2}.

Let C € T. Then, C is compact if and only if j|'C and j;C are compact.

Proof: The only new part is that the compactness of jjC follows from that of j;*C.
Since compact objects of 7 remain compact in 7 /Z; (Theorem 5.3), it follows that
7, is compactly generated in 7 /Z;. So, if j*C is compact, then j’C is compact
(Theorem 5.3 again). O

5.3.2 We have now a converse to the localization Theorem 5.3:

Proposition 5.13 Let T be a triangulated category and I be a Bousfield subcate-
gory of T.

Let & be a set of objects of TNT generating T and E' be a set of objects of T*
which generates T /Z. Then T is generated by the set E UE’.
Proof: Let C € T such that Hom(D[n],C) = 0 forall D € £ and n € Z. Then,
using the distinguished triangle (1), we get Hom(D[n],i4xi'C) = 0, hence i'C = 0.
If follows that C is Z-local.

Assume now in addition Hom(D’[n],C) = 0 for all D’ € £ and n € Z. We
have C > j,j*C, hence Hom(j*D’'[n],j*C) = Hom(D'[n], jxj*C) = 0. So,
j*C =0and finally C = 0. O

Proposition 5.14 Let T be a cocomplete triangulated category and Iy, T, be two
orthogonal Bousfield subcategories. Assume
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o T /1, is compactly generated and
o 7, is compactly generated in T |1,

for{a,b} = {1,2}.

Then, T is compactly generated.

More precisely, let £ be a generating set of objects of I, which are compact in
T /7y and let £ be a set of objects of (T /1,)¢ generating T /Z,. Then,

e £ECTC
o given M € &', there is M € T such that jz*M ~ M@ MJ1]
o EU{M}pce generates T.
Let J be a Bousfield subcategory of T intersecting properly T and I,. Assume
o J/(ZyNT) is compactly generated in T /T, and
e 7, N T is compactly generated in T /1,

for{a,b} = {1,2}.

Then, J is compactly generated in T .

Proof: Since 7 is cocomplete and Z, is Bousfield, it follows that 7 /Z, is
cocomplete.

Let £ be a generating set of objects of Z, which are compact in 7 /Z;. Given
C €&, wehave j;C = jC =0and j;*C is compact. It follows from Proposition
5.11 that C is a compact object of 7. In particular Z, is compactly generated.

Let £ be a set of compact objects generating 7 /Z,. Let M € £ and D, =
M & M[1]. By Theorem 5.3, Dy = j,;, D> is compact and there is Dy € (7 /Z;)¢
with an isomorphism j{,D; = Dy. Let now M be the cocone of the sum of
canonical maps jo+ Dy @ j1+D1 — jusDy. We have j;M ~ D, fora € {1,2,U}.
It follows from Proposition 5.11 that M is compact. Let & = (M} iice- NOw,
Proposition 5.13 shows that £ U £, generates 7 .

For the case of 7, we apply the first part of the Proposition to the cocomplete
triangulated category J with its orthogonal Bousfield categories 7y N7 and Z, N J .
We obtain a generating set £ of objects of 7 with the property that their images
inJ/(Z1NJ)and J/(Z, N J) are compact. These objects are thus compact in
T /Z, and T /7, by Theorem 5.3. Since Z; and Z, are compactly generated in 7, it
follows from Corollary 5.12 that £, C T°€. O

5.3.3 A cocovering of T is a finite set F of Bousfield subcategories of 7" any two
of which intersect properly and such that Nze+Z = 0.

The following result gives a construction of a compact generating set from
(relative) compact generating sets for the quotients 7 /Z.
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Theorem 5.15 Let F be a cocovering of T.

e Let C be an object of T which is compact in T /{\ JzeT) for all non empty
F' C F. Then, C is compactin T.

Assume from now on that for all T € F and F C F —{I}, then
NeerZ' | Nzerun L is compactly generated in T /1.

e Then, T is compactly generated and an object of T is compact if and only if it
is compactinT /T forall T € F.

e Let J be a Bousfield subcategory of T intersecting properly every element of
F and such that for all T € F and F' C F —{Z}, then J N (\perZ'/T N
Nzeru {I}I’ is compactly generated in T /Z. Then, J is compactly generated
inT

Proof: 'We prove each assertion of the Theorem by induction on the cardinality of
F.

Let Ty € F. Weput Ip = (Vzer_z,Z and T = T /I,. Given T € F, we put
T =7/(INI,),viewed as a full subcategory of 7. Let F = {Z}7e7—¢z,;- We have
canonical equivalences 7 /7 5 T/I and T7/(ZNT') > T/(ZNTI). This shows
that F is a cocovering of 7. Let 7 = T/(Z; ULs)e0. Given I € F —{I}, let
T=T/(ToUIZNT)))eo. Let F = {I}zer_ (7,3~ This is a cocovering of T.

Let 7' be a non—empty subset of F — {I 1}.  We have equivalences
T/(UzerL)oo =T /{UzrerZ)oo and T/{ UIEF, oo =T /{(UzerZUTi)oo. Let
C € T such that C is compact in 7 /(| ;¢ 7)o for all non empty 7' C F. By
induction, C is compact in 7 and in 7. Since it is also compact in 7 /71, it follows
from Proposition 5.11 that C is compact.

Given 7/ ¢ F —{Z,} and T € F — (F' U {Z1}), then we have a canonical
equivalence (e I/ (perumn ' - Nzer L'/ Nrerum L' This shows that
NzerZ'/ Nperuin L' is compactly generated in 7/Z. By induction, we deduce
that 7 is compactly generated.

The induction hypothesis shows that Z; is compactly generated in 7. Now, by
assumption, 7 /7 is compactly generated and 7, is compactly generated in 7 /Z;.
So, Proposition 5.14 shows that 7 is compactly generated.

Consider now J = J/(J NI,). Then, [J intersects properly any 7 € F.
Also, J/(J N1I) is compactly generated in T /Z. By induction, we deduce that
J is compactly generated in 7. Also, J NZ; is compactly generated in 7. By
assumption, J/(J NZy) and J NI, are compactly generated in 7 /Z;. It follows
from Proposition 5.14 that 7 is compactly generated in 7.



Dimensions of triangulated categories 229

Let C € 7. By induction, the image C of C in 7 is compact if and only if C is
compact in 7/Z for T € F —{Z;}. Now, Corollary 5.12 shows that C is compact in
T if and only if it is compact in 7 and in 7 /Z; and we are done. O

Note that the proof of Theorem 5.15 actually provides a construction of a
generating set. For example, if the generating sets in the hypotheses of the Theorem
are all finite, then 7 is generated by a finite set of compact objects, hence by a single
compact object (and the same holds for 7).

Proposition 5.16 Let F be a cocovering of T. Then, dim7T < ) ;. -(1+dim7 /7).

Proof: As in the proof of Theorem 5.15, we proceed by induction on the cardinality
of 7. We take 7y € F and put 7o = (\zcs_(7,;Z- By induction, we have
dim7 /Iy <} 7er_7;3(1 +dim7/Z). On the other hand, we have an essentially
surjective functor 7 /71 — I,, hence dimZ, < dim7 /Z; (Lemma 3.4). ]

Note that this holds as well for the other two definitions of dimension of Remark
3.11 when the functor jz. commutes with direct sums (then, ié commutes with
direct sums as well) — the corresponding result is certainly more interesting. This
holds in the geometric setting of §6.2.1.

6. Derived categories of algebras and schemes

We study here the concepts of §4 for derived categories of algebras and schemes.

6.1. Algebras

6.1.1 From Theorem 4.22 (3), we deduce the following result [Ke, §5.3] :
Corollary 6.1 Let A be a dg algebra. Then, D(A)¢ = (A) 0o-

Proposition 6.2 Let A be a dg algebra and C € D(A). Then, C is cohomologically
locally bounded (resp. bounded above, resp. bounded below) if and only if
H(C) = 0 for |i| > 0 (resp. fori > 0, resp. fori < 0). In particular, if C
is cohomologically locally finitely generated, then C € D?(A).

Proof: We have D(A)¢ = (A) (Corollary 6.1). Hence, C is cohomologically
locally bounded (resp. bounded above, resp. bounded below) if and only if
hc (Afi]) = 0 for |i| > 0 (resp. fori <« 0, resp. fori > 0). Since hc(A[i]) 5
H~(C), the result follows. O

6.1.2 For A an algebra, we denote by K—?(A-proj) (resp. K ~?(A-Proj)) the
homotopy category of right bounded complexes of finitely generated projective A-
modules (resp. projective A-modules) with bounded cohomology.



230 R. ROUQUIER

Proposition 6.3 Let A be an algebra. The canonical functors induce equivalences
between

o K’(A-proj) and D(A)¢

o K—P(A-proj) and the full subcategory of D(A) of cohomologically locally
finitely presented objects

Proof: The first assertion is an immediate consequence of Corollary 6.1.
Recall that the canonical functor K~+?(A-Proj) — D?(A) is an equivalence.

We now prove the second assertion. Let C € D(A). By Corollary 6.1 and
Lemma 4.6, C is cohomologically locally finitely presented if and only if conditions
(a) and (b) hold for X = A.

Let C be a right bounded complex of finitely generated projective A-modules
with bounded cohomology. Consider r such that H(C) = 0 for i < r. The
canonical map from the stupid truncation 6="C to C is surjective on cohomology,
so C satisfies (a), hence C is cohomologically locally finitely generated. Now,
Lemma 4.26 shows that C is cohomologically locally finitely presented.

Let C be a cohomologically locally finitely generated object. Then, C has
bounded cohomology (Proposition 6.2). Let i be maximal such that H'(C) # 0.
Up to isomorphism, we can assume C/ = 0 for j > i. By assumption, there is a
bounded complex D of finitely generated projective A-modules and f : D — C a
morphism of complexes such that H( f) is onto. In particular, we have a surjection
D' — C" — H'(C), hence H'(C) is finitely generated.

Let C be cohomologically locally finitely presented.

Assume first C = M is a complex concentrated in degree 0. Let f : D® — M be
a surjection, with D finitely generated projective. Then, ker f is cohomologically
locally finitely presented (Proposition 4.28), hence is the quotient of a finitely
generated projective module. By induction, it follows that M has a left resolution
by finitely generated projective A-modules.

We take now for C an arbitrary cohomologically locally finitely presented
object. We know that C has bounded cohomology and we now prove by induction
on sup{i | H'(C) # 0} —min{i|H'(C) # 0} that C is isomorphic to an object of
K% (A-proj).

Let i be maximal such that H/(C) # 0. As proven above, there is a finitely
generated projective A-module P and a morphism of complexes f : P[—i] — C
such that H( f) is surjective. Let C’ be the cone of f. By Proposition 4.28, C’ is
again cohomologically locally finitely presented. By induction, C’ is isomorphic to
an object of K~?(A-proj) and we are done. O
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Corollary 6.4 Let A be a noetherian algebra. Then, the full subcategory of
cohomologically locally finitely presented objects of T = D(A) is equivalent to
D?(A-mod).

Remark 6.5 For a dg algebra, there might be no non-zero cohomologically locally
bounded objects (e.g., for k[x,x~!] with x in degree 1 and differential zero). The
notion of cohomologically locally finitely presented objects is more interesting for
our purposes.

6.2. Schemes

6.2.1 Recall that a scheme is quasi-compact and quasi-separated if it has a finite
covering C by open affine subschemes such that given U,U’ € C, then U — (U NU’)
is a closed subscheme of U defined by a finite number of equations.

Let X be a quasi-compact and quasi-separated scheme. The category D(X)
is a cocomplete triangulated category. The perfect complexes have bounded
cohomology. If X is in addition separated, then the canonical functor D(X-qcoh) —
D(X) is an equivalence [BoNee, Corollary 5.5]. If X = SpecR, then D(X) =~
D(R-Mod). If X is a noetherian scheme, then it is quasi-compact and quasi-
separated and we denote by D, (X) the full subcategory of D(X) of complexes
with coherent cohomology sheaves.

Let U be a quasi-compact open subscheme of X (i.e., a finite union of affine
open subschemes). We denote by Dy_y(X) the full subcategory of D(X) of
complexes with cohomology supported by X — U. We denote by j : U — X
the open immersion and i : X —U — X the closed immersion. We have an exact
sequence of triangulated categories

0— Dx_u(X) 2 D(X) L5 DWU) -0

and adjoint pairs (ix,i') and (j*,js). In particular, Dx_y(X) is a Bousfield
subcategory of D(X). Furthermore, j. has finite cohomological dimension (i.e.,
there is an integer N such that if C € D(U) and H"(C) = 0 for n > 0,
then H"(j«C) = 0 for n > N). Consequently, i' has also finite cohomological
dimension.

Given U and U’ two quasi-compact open subschemes of X, then Dy_y (X)
and Dx_y(X) intersect properly and Dy _y(X) N Dx_y/(X) = Dx_wuv)(X).
If U UU’ = X, then the restriction functor Dy_gy(X) = Dy—_ynu(U) is an
equivalence.

Given F a finite family of open subschemes of X, then {Dx_y(X)}yer is a
cocovering of D(X) if and only if F is a covering of X.



232 R. ROUQUIER

6.2.2 Let us start with the study of the affine case.

The following Proposition makes [BoNee, Proposition 6.1] more precise.

Proposition 6.6 Ler A be a commutative ring and f1,..., f, € A. Let I be the ideal
of A generated by f1,..., fu. Let X = SpecA and Z = SpecA/I.

Let K(fi,....fn) = ®,;(0 > Ox ﬁ) Ox — 0) (with non zero terms in degrees
-n,...,0).
Then,

e Let C € Dz(X) such that H°(C) # 0. Then, Hompx)(K(f1,-.., fx),C) # 0.
Given ¢ € RT'°(C), there are integers d,,...,d, > 0 such that ¢ is in the image
of the canonical map HomD(X)(K(fld1 ,...,fnd"),C) — Hompx)(Ox.C) =
RT(C).

o K(f1,..., fn) is a compact object of D(X) that is a generator for D z(X).

Proof: 1Itis clear that K( f1,..., f) is compact and supported by Z. Also, the first
statement of the Proposition implies the second one.
We have a distinguished triangle

K oo ) 25 Koo fnet) = K(froeon fon) >

giving an exact sequence

Hom(K(fi.., fin).C) = Hom(K(fir-.., fin1)sC) 22 Hom(K( fi.... 1), C).

We prove the first assertion by induction on m. Since Hom(K( f1,..., fm—1),C)
is supported by Z and non zero, it follows that the kernel of the multiplication
by fm is not zero, hence Hom(K(fi,..., fm),C) # 0. By induction, there
exists di,....dm—1 > 0 and ¢p—1 € Hom(K(f{',..., £m71),C) with image ¢ €

RT%(C). There is d,, > 0 such that f,"¢m—1 = 0. Then, there is ¢, €
Hom(K(fld‘,...,f,,‘f’"),C) with image ¢,,—1. Now, ¢, has image ¢ € RI'°(C).

O
Lemma 6.7 Let X = Spec A be an affine scheme and Z a closed subscheme defined
by fi = - = fy = 0. Let K be the smallest additive subcategory of Dz(X)

containing the objects K(fd1 ,...,f,,d"')for di,....d, > 0.

Let a < b be two integers. Let C € D;b (X) with C' avector bundle fori > a.
Then, there is P € K[—b] * K[-b + 1] * -« * K[—a] and f : P — C such that
Hi(cone(f)) =0fori > a.
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Proof: We prove the Lemma by induction on » —a. By assumption, H?(X) has
finite type. It follows from Proposition 6.6 that there is K1 € K and f; : K1[—b] —
X such that H®(f}) is surjective. Let C’ = cone( f1). By induction, there is L €
K[=b + 1] %% K[—a] and g : L — C’ such that H' (cone(g)) = 0 fori > a. Let
P be the cocone of the composition L — C’ — K{[—b + 1]. Thereis f : P — C
making the following diagram commutative

Ki[-b] C C’ Ki[-b+1]
R
K1[-b] P L Kq[-b+1]
Since cone( ) >~ cone(g), we are done. 0

6.2.3 The following result is classical, although no published proof seems to exist
(when Z = X, cf [Nee3, Corollary 2.3 and Proposition 2.5] for the separated case
and [BoVdB, Theorem 3.1.1] for the general case). The general constructions of
§5.3 reduce immediately its proof to the affine case.

Theorem 6.8 Let X be a quasi-compact and quasi-separated scheme. The perfect
complexes on X are the compact objects of D(X).

Let Z be a closed subscheme of X with X — Z quasi-compact. Then, Dz (X) is

generated by an object of Dz(X) N D(X)°.
Proof: Theorem 5.15 shows that compactness is of local nature in the following
sense : an object C € D(X) is compact if and only there is a finite covering C of X
by quasi-compact open subschemes such that the restriction of C to an intersection
of open subschemes in C is compact. Perfectness is obviously also of local nature,
in that sense. Since X is quasi-compact and quasi-separated, we can even assume
that the open subschemes in the coverings are affine. This shows that compact
complexes are perfect.

Let us prove that perfect complexes are compact. The discussion above reduces
the problem to proving that bounded complexes of vector bundles are compact.
Corollary 6.1 shows that a bounded complex of vector bundles over an affine scheme
is compact. The discussion above allows us to deduce that the same remains true for
quasi-compact separated schemes, and then for quasi-compact and quasi-separated
schemes.

The scheme X has a finite covering C by affine open subschemes with U —
(U NU’) defined by a finite number of equations for any U,U’ € C. Theorem 5.15
reduces then the second part of the Theorem to the case where X is affine. If Z is

defined by the equations f; = --- = f, = 0, then ), (0 — Ox i) Ox - 0)is a
generator of Dz (X) that is compact in D(X) (Proposition 6.6). O
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Note that we deduce Dz(X)¢ = Dz(X) N D(X)¢ (Theorem 5.3 (1)).

6.2.4 Given C,D € Dz(X), we denote by amp(C) (resp. ampp(C)) the smallest
interval of Z such that H'(C) = 0 for i ¢ amp(C) (resp. Hom(D,C[i]) = 0
for i & ampp(C)). Given [ an interval of Z and m > 0, we put / £ m =
{i + jtier,jezni—mm)-

The following Proposition relates in a precise way boundedness of a complex
and cohomological local boundedness (cf [BoVdB, Lemma 3.3.8] for bounded
cohomology implies cohomologically locally bounded).

Proposition 6.9 Let X be a quasi-compact and quasi-separated scheme and Z be
a closed subscheme of X with X — Z quasi-compact. Let C € Dz(X). Then, C
is cohomologically locally bounded (resp. bounded above, resp. bounded below) if
and only if H'(C) = 0 for |i| > 0 (resp. fori > 0, resp. fori < 0).

More precisely, let G € D(X)¢ N Dz(X) be a generator for Dz (X). Then,
there is an integer N such that for any C € Dz(X), then ampg(C) C amp(C) = N
and amp(C) C ampg(C) £ N.

Proof: Let G’ € Dz(X)¢. Then, there is an integer d such that G’ € (G);. As a
consequence, there is an integer m such that for any C € Dz(X), then ampg, (C) C
ampg (C)=£m. Note that this shows it is enough to prove the more precise statements
for one G.

Let us first assume that X is affine. We take G as in Proposition 6.6. Let
C € Dz(X). If Hom(G,C) = 0, then, H°(C) = 0. Conversely, If H(C) = 0 for
—n <i <0, then Hom(G,C) = 0. So, the Proposition follows.

We denote by 1: Z — X the closed immersion. Let m be an integer such that
for C € D(X), we have amp(i'C) C amp(C) £ m. Let G, be a compact generator
of D(X). Since 1.Gy is compact and G is a classical generator of D(X)¢, there is
an integer m’ such that for C € D(X), we have amp;,(C) C ampg, (C) £ m’.

Let D € D(X). We have Hom (G, ' D) ~ Hom (ixG, D), so amps(i' D) =
amp;, g (D) C ampg, (D) £m’.

Let C € Dz(X). Then, ampg(C) C ampg, (ixC) £ m’. Since amp(iC) =
amp(C), it follows that it is enough to prove the first inclusion of the Proposition in
the case where Z = ). By induction, the Mayer-Vietoris triangle (Proposition 5.10
(2)) reduces the proof to the affine case, which we already considered.

Let Uy,...,U, be an affine open covering of X. We have canonical equivalences

Dz_u,nz(X) = Dz-v,nz(Us,Us) and Dy,nz(X — (Z — (Ur N Z))) =
Dy, nz(U,). So, we have an exact sequence of triangulated categories

[ J*
0— Dz_v,nz(| JUs) = Dz(X) = Dy,nz(Us) =0
SFEr
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and an exact triangle of functors i,i' — Idp,(x) —> jxj* » .

We now show the second inclusion by induction on n. Let H be a compact
generator of Dz_y.n Z(US#, Us). By induction, there is an integer N; such that
for every C' € Dz_y,nz (U, Us), we have amp(C’) C ampy (C’) £ N;. Given
C € Dz(X), we have Hom(H,i'C) ~ Hom(i, H,C). There is an integer N, such
that for any C € Dz(X), we have amp; g (C) C ampg(C) = N». So, given C €
Dz(C), we have amp(i'C) C ampg (C) = N; = N,. The proof above shows that
there is N3 such that given any D € Dz(X), we have ampg (D) C amp(D) £ Ns.
In particular, for any C € Dz(X), we have ampG(i*i’C) c amp(i'C) £ N3 C
ampg (C) £ Ny £+ Ny £ N3, hence ampg (j«j*C) Campg(C) £ N1 £ N, = N3 £ 1.

The study of the affine case shows there is N4 such that for any C € Dz(X),
then amp(j*C) C amp ;g (j*C) &= Ny = ampg (j«j *C) £ Ny Campg(C) £ Ny £
Ny = N3 £ N4 £ 1. There is an integer N5 such that for any D € Dy, nz(U,), we
have amp(j. D) C amp(D) & Ns. Since amp(C) C amp(ixi'C) Uamp(j.j*C), we
deduce that amp(C) C ampg (C) £ Ny £ N, £ N3 £ Ny = Ns £ 1. O

6.2.5 An object C € D(X) is pseudo-coherent if for every a € Z and every point
x of X, there is an open subscheme U of X containing x, a bounded complex D
of vector bundles on U and f € Homp)(D,Cy) such that H i(cone(f)) = 0 for
i > a (cf [SGA6, §1.2] or [ThTr, §2.2]). Pseudo-coherent complexes form a thick
subcategory of D™ (X).

The following Proposition gives a substitute for global resolutions of pseudo-
coherent complexes. Such resolutions exist for schemes with a family of ample
line bundles (cf [SGA6, §1I] or [ThTr, Proposition 2.3.1]). It shows that pseudo-
coherence of C is a condition on the functor Hom(—,C) restricted to compact
objects.

Proposition 6.10 Let X be a quasi-compact and quasi-separated scheme and Z
a closed subscheme with X — Z quasi-compact. Let C € Dz(X). The following
conditions are equivalent

(i) C is pseudo-coherent
(ii) givena € Z, thereis D € Dz(X)¢ and f : D — C such that H' (cone( f)) =
Ofori >a
(iii) given any G € Dz(X)¢ and any a € Z, thereis D € Dz(X)¢ and f : D — C
such that Hom(G,cone( f)[i]) =0 fori > a.

Proof: We prove (i)=(ii) by induction on the minimal number of affine open
subschemes in a covering of X. Let X = U U V where U is an open affine
subscheme and V is a an open subscheme that can be covered by strictly less affine
open subschemes than X. Let n be the minimal number of defining equations of
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Z N (X —V) as aclosed subscheme of U.

Let C € Dz(X) be pseudo-coherent and let a € Z. Then, C}y is pseudo-
coherent and by induction there is Dy € Dzay (V)¢ and f; : Dy — Cjy such
that H'(cone( f1)) = O fori > a —n. Replacing D, by Dy @ Dy[d] and f; by
(f1,0) for d > 0 odd, we can assume in addition that [D{] = 0. Then, Theorem 5.3
shows that f; lifts to f{ : D] — C where D] € Dz(X)°. Let C; = cone(f}).
Let C; = t=%7"Cy, an object of Dznx—y)(X). Lemma 6.7 shows there is
D, € Dznx-v)(U) a bounded complex of free Oy-modules of finite type with
D) =0fori <a—nandamap f>: Dy — Cyy such that H'(cone(f>)) = 0 for
i > a. Via the equivalence D znx—v)(X) =D znx-v)(U), this map corresponds
to f, : D) — C, with D} € Dznx—y)(X)¢. We have

Hom(D5,(z=*7"C1)[1]) = Hom(D>,(z=*7"C1)[1]jy) = 0
hence there is f3 : D}, — C; lifting f,. Let C3 be its cone. We have a distinguished

triangle t<¢""C; — C3 — cone(f;) ~>, hence H'(C3) = 0 fori > a. Let D be
the cocone of the composition C — C; — C3. The octahedral axiom shows that

D € Dz(X)¢ and we are done.

r<a-ncC cone(fz) ~s

&)
1 \
15

D,

Since compact objects of Dz (X) are isomorphic, on affine open subschemes, to




Dimensions of triangulated categories 237

bounded complexes of vector bundles, we have (ii)=>(i). The equivalence between
(ii) and (iii) is given by Proposition 6.9. U

We say that a noetherian scheme X satisfies (x) if given G a compact generator
of D(X) and given any M € X-qcoh, there is C € (ams(G)) and f : C - M
such that HO(f) is surjective.

Note that if condition (x) holds for one G, then it holds for all compact
generators (cf Theorem 4.22 (3)).

Lemma 6.11 Let X be an affine scheme or a quasi-projective scheme over a field.
Then, X satisfies (x).

Proof: The affine case is clear for G = Oy. The other case is solved by Lemma
7.30 below. ]

Proposition 6.12 Let X be a noetherian scheme satisfying (x). Then, the full
subcategory of cohomologically locally finitely presented objects of D(X) is
equivalent to D® (X).

coh

Proof: Let G be a compact generator for D(X).
Let M € Dfoh(X ). Then, M is cohomologically locally bounded (Proposition
6.9). Take a € Z such that Hom(G,M|[i]) = 0 for i < a. Consider N as in
Proposition 6.9. By Proposition 6.10, there is C € D(X)¢ and f : C — M such
that H'(cone(f)) = 0 for i > a — N. Then, Hom(G[i], f) is surjective for all i.
It follows that M is cohomologically locally finitely generated. So, every object of
Dfoh(X ) is cohomologically locally finitely presented (Lemma 4.26).

Let C be a cohomologically locally finitely presented object. Thanks to
Proposition 6.9, we know that C has bounded cohomology. Assume C ¢ Dé’oh(X )
and take i minimal such that H'(C) is not coherent. Since t</C € D2, (X), it
follows from the first part of the Proposition that </ C is cohomologically locally
finitely presented, hence D = t='C is cohomologically locally finitely presented
as well (Proposition 4.28). Condition (*) shows that there is £ € {ams(G))o and
f + E — D such that H'(f) is surjective. Lemma 4.27 shows that f factors
through a compact object F. Now, H' (F) is coherent, hence H'(D) is coherent as

well, a contradiction. J

Remark 6.13 Let X be a quasi-compact quasi-separated scheme. Let us show that
given M € X-qcoh of finite type, there is C € D(X)¢ and f : C — M such that
HO(f) is surjective.

Let F be a finite covering of X by affine open subschemes. Given U € F, there
is a complex Cy € D(U)¢ with [Cy] = 0 and a map fy : Cy — Fjy such that
H°(f) is onto. By Theorem 5.3, there is C(U) € D(X)¢, ¢u : C(U)y = Cy
and f(U) : C(U) - F such that f(U)y = fudu. Let C = @QyeC(U) and
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f => f(U). Then, C € D(X) and f is surjective.

Remark 6.14 Let k be a field and X a projective scheme over k. Let A be a
dg algebra such that D(A) ~ D(X). Then, H*(A) is finite dimensional, since
the equivalence restricts to an equivalence (A)s, >~ X -perf and End* (M) is finite-
dimensional for M € X -perf. Given C € D(A) with H*(C) finite dimensional and
given a € Z, there is D € D(A)° and f : D — C such that H' (cone( f)) = 0 for
i > a (use Proposition 6.12 and the fact that C is cohomologically locally finitely
presented). This is a very strong condition on a dg algebra. For example, the dg
algebra k[x]/x? with x in degree 1 and differential zero doesn’t satisfy this condition
(the indecomposable perfect complexes are isomorphic to objects with zero terms
outside two consecutive degrees).

6.3. Compact objects in bounded derived categories

Proposition 6.15 Let A be an abelian category with exact filtered colimits and a
set G of generators (i.e., a Grothendieck category). Assume that for any G € G, the
subobjects of G are compact.

Then, (D?(A))¢ = (A) 0.
Proof: An object I of A is injective if and only if for any G € G and any
subobject G’ of G, the canonical map Hom4(G,I) — Hom4(G’,T) is surjective
[Ste, Proposition V.2.9]. Note that G’ is compact. It follows that a direct sum of
injectives is injective.

Let M € A°. Let F be a family of objects of D?(A). Then, @, F exists in
D’ (A) if and only if the direct sum, computed in D(.A), has bounded cohomology,
i.e., if and only if, there are integers r and s such that for any F € F, we have
H!(F)=0fori <r andfori >s. Given F € F, let I be a complex of injectives
quasi-isomorphic to F with zero terms in degrees less than r. Since Pp I {, is
injective, we have Ext' (M,@D rl I{;) =0 for all j and i > 0. Hence,

P Homp (M. F) > @) H Hom® (M. 1) > H°EDHom® (M. IF)
F F F

— H°Hom% (M. 1r) = Homp(u(M.EP F).
F F
It follows that M € D?(A)°.
Let C € D?(A)¢. We prove by induction on max{i|H'C # 0} —min{i|H'C #
0} that C € (A°) .
Take i maximal such that H'C # 0. Then, Homps 4y (C, M[—i]) 5
Homy (H'C,M) for any M € A. Tt follows that H'C € A°. As proven above,
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we deduce that H' C[—i] € D?(A)¢, hence t="1C e D?(A)°. By induction,
=71C € (A€) o and we are done. O

Remark 6.16 The assumption of the Proposition can be stated differently, as pointed
out by a referee. Let A be a cocomplete abelian category with a set of generators G
such that for all G € G, Hom(G,—) commutes with filtered colimits. Then, A is a
Grothendieck category [CrBo, §2.4].

Corollary 6.17 Let A be a noetherian ring. Then, D?(A-mod) C D?(A)¢ and the
inclusion is an equivalence.
Let X be a separated noetherian scheme. Then, D?(X)¢ = Dé’oh(X ).

Proof: In the ring case, we take G = {A}. In the geometric case, we take for G the
set of coherent sheaves, cf [ThTr, Appendix B, §3]. L]

7. Dimension for derived categories of rings and schemes

7.1. Resolution of the diagonal

Let k be a field.
7.1.1

Lemma 7.1 Let A be a noetherian k-algebra such that pdim 4 A < oco. Then,
DP(A) = (ams(A))14pdim g4 and DP(A-mod) = (A)14psimma- In particular,
dim D?(A-mod) < pdim 4. A.

Proof: 'We proceed as in §3.2.2: we have A € (A®") 14 pdim ;. 4- hence C € (4 ®y
C)1+pdim 4en 4 TOr every C € D?(A), and this gives

D”(A) = (ams(A)) 1-+pdim yen A-

Now, we have D?(A-mod) ~ D?(A)¢ (Corollary 6.17) and the result follows
from Corollary 3.14. O

We say that a commutative k-algebra A is essentially of finite type if it is the
localization of a commutative k-algebra of finite type over k.
Recall the following classical result :

Lemma 7.2 Let A be a finite dimensional k-algebra or a commutative k-algebra
essentially of finite type. Assume that given V a simple A-module, then Z(End4(V))
is a separable extension of k. Then, pdim 4 A = gldim A.

Proof: Note that under the assumptions, A®" is noetherian. In the commutative
case, gldimA4 = sup{gldimAn}n and pdimu A = sup{pdim 4_jen Am}m Where m
runs over the maximal ideals of A. It follows that it is enough to prove the
commutative case of the Lemma for A local.
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So, let us assume now A is finite dimensional or is a commutative local k-
algebra essentially of finite type.

Let0 > P77 — .. - P% - A — 0 be a minimal projective resolution of A
as an A°"-module. So, there is a simple A°"-module U with Ext’,.,(4,U) # 0. The
simple module U is isomorphic to a quotient of Homg (S,7) for S,T two simple
A-modules. By assumption, End4(S) ®; End4(T)° is semi-simple, hence U is
actually isomorphic to a direct summand of Homg (S, 7).

Then,

Ext'y(T.S) = Ext'ye,(4,Homy (T.S)) # 0,

hence, r < gldimA.
Now, given N an A-module,0 - P7" @4 N — -+ — P°®@4 N —- N - Oisa
projective resolution of N, hence r > gldim A4, so r = gldim A4. O

Remark 7.3 Note that this Lemma doesn’t hold if the residue fields of A are not
separable extensions of k. Cf the case A = k’ a purely inseparable extension of k.

Combining Lemmas 7.1 and 7.2, we get

Proposition 7.4 Let A be a finite dimensional k-algebra or a commutative k-
algebra essentially of finite type. Assume that given V a simple A-module, then
Z(End4(V)) is a separable extension of k.

If A has finite global dimension, then DP(A) = (ams(A))14gdima and
D?(A-mod) = (A)14gtima. In particular, dim D?(A-mod) < gldim A.

Remark 7.5 The dimension of D?(A4-mod) can be strictly less than gldim A (this will
be the case for example for a finite dimensional k-algebra A which is not hereditary
but which is derived equivalent to a hereditary algebra). This cannot happen if A is
a finitely generated commutative k-algebra, cf Proposition 7.16 below.

7.1.2 Following §3.2.2, we have the following result (cf [BoVdB, §3.4]).

Proposition 7.6 Let X be a separated noetherian scheme over k. Assume there is
a vector bundle L on X and a resolution of the structure sheaf Oa of the diagonal
inXxX
0>F 5. >F0" 5 00—0
with F' € smd(L R L).
Then, D? (X -qcoh) = (ams(L))14, and D?(X-coh) = (L)14,.

Proof: Let p;,p2 : X x X — X be the first and second projections. For C €
D?(X-qcoh), we have C ~ Rp;+(Op @V p5C). It follows that C € (L®; RI'(L ®

C))14r, hence C € (ams(L))14,. Since D?(X-qcoh)¢ = D®(X-coh) (Corollary
6.17), the second assertion follows from Corollary 3.14. 0

Note that the assumption of the Proposition forces X to be smooth.
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Example 7.7 Let X = Pj. Let us recall results of Beilinson [Bei]. The object
G =0 @®0O(n)is a classical generator for D?(X-coh). We have Ext' (G,G) =
0 fori # 0. Let A = End(G). We have D?(X-coh) ~ D?(A-mod). We have
gldimA4 = n, hence D?(A-mod) = (A),+, (Proposition 7.4), so D?(P"-coh) =
(O&---®O(n))y+1. Another way to see this is to use the resolution of the diagonal
ACXxX:

0> 0nKRQ"n)——>O-1)KRQA) > ORO - Op —0.
By Proposition 7.16 below, it follows that dim D? (P"-coh) = .

Example 7.8 In [Kap], Kapranov considers flag varieties (type A) and smooth
projective quadrics. For these varieties X, he constructs explicit bounded reso-
lutions of the diagonal whose terms are direct sums of £ X L', where £ and £’
are vector bundles. It turns out that these resolutions have exactly 1 + dimX
terms (this is the smallest possible number). By Proposition 7.16, it follows that
dim D? (X -coh) = dimX.

Starting from a smooth projective variety X, there is an ample line bundle whose
homogeneous coordinate ring is a Koszul algebra [Ba, Theorem 2]. This provides
a resolution of O [Kaw, Theorem 3.2]. Now, if the kernel of the r-th map of the
resolution is a direct sum of sheaves of the form £ X L', where £,L’ are vector
bundles, then dim D? (X -coh) < r. Note that this can work only if the class of Ox
is in the image of the product map Ko(X) x Ko(X) — Ko(X x X). The case of
flag varieties associated to reductive groups of type different from A, would be
interesting to study.

The following is our best result providing an upper bound for smooth schemes.

Proposition 7.9 Let X be a smooth quasi-projective scheme over k. Let L be
an ample line bundle on X. Then, there is r > 0 such that D?(X-qcoh) =
(ams(G))2gimx+1 and D?(X-coh) = (G)agimx+1 where G = O & LO' @ - @
L2~ In particular, dim D? (X -coh) < 2dim X.

Proof: There is a resolution of the diagonal

Lo 0
..._)C_l —)"'—)COd—>0A—)O
. . . . d—i
where C' € smd({£L7/ W L7/} ;50). Denote by C the complex -+ > C™" — -+ —
C% — 0. Let n = dim X . Truncating, we get an exact sequence

g 0
0—>C_2”_1/kerd_2n—>C_2n—>~“—>C_ld_>"'_>C0d—>OA_>O

Since X x X is smooth of dimension 27, we have Ext?*1(Oa,C 72"~ /kerd =") =
0. So, the distinguished triangle C ~2"~! /kerd ~2"[2n] — 0=72"C — Op ~> splits,
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i.e., O4 is a direct summand of the complex 6=~2"C. We conclude as in the proof
of Proposition 7.6. 0

Remark 7.10 We actually don’t know any case of a smooth variety where
dim D? (X -coh) > dim X . The first case to consider would be an elliptic curve.

Remark 7.11 Let d be the largest integer such that Ext4 (Oax,F) # 0 for some

Oxxx

F € (X x X)-coh. Then, dimX < d. We don’t know if the inequality can be strict.
7.1.3

Lemma 7.12 Let A be a k-algebra. Let W be an A-module with pdimW > d.
Then, there are A*"-modules Q° = A,Q",....Q¢ which are projective as left and as
right A-modules, and elements {; € Exthcn(Qi,Qi+l)f0r 0<i<d—1 such that
(Ca—1L0) ® 4 idw is a non zero element of Ext% (W, Q% ® 4 W).

d—2 d—l d() . . .
Proof: Let++— C™2 — C™! — C% — 4 — 0 be a projective resolution of

the A°"-module A. Then, -+ - C2Q4W - C 14 W - C'Q4W — W — 0is
a projective resolution of W. Let Q' be the kernel of d' ! fori < —1 and Q° = A.
. . . . di ,
Let §; € Extl..(7,Q/*1) given by the exact sequence 0 - Q! - C~7 — Q' —
0.
Since Exti(W, —) is not zero, it follows that the exact sequence

0> QURUW >C 4 QUW = o > ClQUW > COQUW - W =0

gives a non zero element £ € Extffl(W,Qd ®4W). This element is equal to
(a—1-+-80) ®aidw. O
The following result is our main tool to produce lower bounds for the dimension.

Lemma 7.13 Let A be a k-algebra. Let W be an A-module with pdimW > d.
Then, W & (ads(A))4.

Proof: Assume W € (ads(A4))14, for some r > 0. Let Wy_; — Wy — Vs ~> be a
family of distinguished triangles, for 1 < s < r. We put Vy = W, and we assume
Vs € {ads(A)) forO <s <rand W, = W & W’ for some W'.

We use now Lemma 7.12. The element ¢; induces a natural transformation of
functors Q' ® 4 — — QI 1[1]® 4 — from D(A) to itself. Restricted to (ads(A4)), this
transformation is zero. It follows from Lemma 4.11 that ({y_;---{o) ® 4 — vanishes
on (ads(A))4. It follows that r > d. O

We deduce the following crucial Proposition :

Proposition 7.14 Let A be a commutative local noetherian k-algebra with maximal
ideal m. Then, A/m ¢ <A>KrulldimA‘
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Proof: We know that KrulldimA < gldimA = pdim,4 A/m (cf for example [Ma,
Theorem 41]). The result follows now from Lemma 7.13. L]

From Lemma 7.13 and Propositions 7.4 and 7.25, we deduce

Proposition 7.15 Let A be a noetherian k-algebra of global dimension d € N U
{oo}. Assume k is perfect. Then, d is the minimal integer i such that A-perf =

(A)it1-

We can now bound dimensions :

Proposition 7.16 Let X be a reduced separated scheme of finite type over k. Then,
we have dim D? (X -coh) > dim X.

Proof: Let M € D?(X-coh) such that D®(X-coh) = (M), 41.
Pick a closed point x of X with local ring Oy of Krull dimension dim X such that
M, € (Ox) (given F a coherent sheaf over X, there is a dense open affine U such
that F|y is projective. Now, a complex with projective cohomology splits). Then,
kx € {Ox)r41. It follows from Proposition 7.14 that r > KrulldimO, = dimX.
O

From Propositions 7.4 and 7.16, we deduce

Theorem 7.17 Let X be a smooth affine scheme of finite type over k. Then,
dim D? (X -coh) = dim X.

Remark 7.18 Let A = k[x]/(x?) be the algebra of dual numbers. The indecompos-
able objects of D?(A-mod) are k[i] and L,[i] for n > 1 and i € Z, where L, is
the cone of a non-zero map k — k[n]. It follows that D?(A4-mod) = (k),, hence,
dim D?(A-mod) = 1 (cf Proposition 7.37 below).

Note that the dimension of the category of perfect complexes of A-modules is
infinite by Proposition 7.25 below. Let us prove this directly. Given C a perfect
complex of A-modules, there is an integer r such that Ext,., (A,A) acts as 0 on
(C) for i > r. On the other hand, given d an integer, the canonical map — ® 4
idy, .., : Ext}‘lm(A,A)’d — Homps 4y (Lrg+1.Lra+1[rd]) is not zero (note that
L,q41 is perfect). So, L,541 € (C)g by Lemma 4.11.

Remark 7.19 Let k be a field and A a finitely generated k-algebra. Can the
dimension of D?(A-mod) be infinite ? We will show that the dimension is finite if A
is finite dimensional (Proposition 7.37) or commutative and k is perfect (Theorem
7.38).
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7.2. Finite global dimension

The methods used here are extensions of those used by Bondal and Van den Bergh
(cf in particular [BoVdB, §4.2]).

7.2.1 We explain here a method of dévissage for derived categories of abelian
categories with finite global dimension (compare with [BoVdB, proof of Lemma
4.2.8]).

Lemma 7.20 Let A be an abelian category and C a complex of objects of A.

Assume H'C = ... = H'C = 0 for some i > 0. Let 0 — kerd® 2
0 i . . .
o Lo Lo A Ci*t1/imd' — 0 be an exact sequence equivalent to

0—>kerd® - C% - ... - C'*t! = C'*t1/imd' — 0 (i.e., giving the same element
in Ext' T2(C'*1/imd’ kerd®)). Then, C is quasi-isomorphic to the complex

_ d_z _ a fO fi . b . di+2
e C 2 (' S L T o2

: . _p d! a . ; B
where a is the composite C~' —s kerd® — L° and b the composite L't! —
i+
Ci*1/imd’ ! ci+2,

Proof: It is enough to consider the case of an elementary equivalence between
exact sequences. Let

0 — kerd? L° Litl Ci*tl/imd' —=0
0 — kerd? co citl C*tl/imd' —=0

be a commutative diagram, with the rows being exact sequences. Then, there is a
commutative diagram

Cc2 c1 L0 Lit1 Ci+2
kerd?
C—2 c-1 Co CH—I Ci+2
This induces a morphism of complexes from the first row to the last row of the
diagram and this is a quasi-isomorphism. O

Lemma 7.21 Let A be an abelian category with finite global dimension < n. Let
C be a complex of objects of A. Assume H'C = 0 ifn [ i. Then, C is quasi-
isomorphic to @, (H™ C)[—ni].
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Proof: Pick i € Z. The sequence 0 — ker d" — C" — .. —
crith o crG+) /o ym@r@+D-1 5 0 is exact. It defines an element of
ExtT1(C"0+D / imd"+D=1 ker d™). This group is 0 by assumption, hence the
exact sequence is equivalent to 0 — ker d"' — ker d" N 0--0 N
C"0+D /im gr@+D=1 . cnl+D /imgn@+D=1 — 0. Lemma 7.20 shows that C
is quasi-isomorphic to a complex D with d} = -+ = dl")(lH) 1 = 0. Now, there is a
morphism of complexes (H"¢+DC)[—n(i 4+ 1)] — D that induces an isomorphism
on H"+1_ So, for every i, there is a map p; in D(A) from (H" C)[—ni] to C that
induces an isomorphism on H"'. Let p=Y"; p; : @,;(H"'C)[—ni] — C. This is a
quasi-isomorphism. O
Proposition 7.22 Let A be an abelian category with finite global dimension < n
with n > 1. Let C be a complex of objects of A. Then, there is a distinguished

triangle in D(A)
@Di - C — @Ei >
i i
>ni+1.L.

where D; = o= =nG+D-1C s g complex with zero terms outside [ni +
l,....,n(i +1)—1] and E; is a complex concentrated in degree ni.

Proof: Leti € Z. Let f; be the composition of the canonical maps t="(+D-1C —
C with the canonical map =" H1¢=nG+D=1C _ ¢=n(+D=1C Then, H"(f;) is
an isomorphism for ni +2 <r <n(i + 1) — 1 and is surjective for r = ni + 1. Let
D = @,;oz"+1¢=r+D=-1C and f =Y, f; : D — C. Let E be the cone of f.
We have an exact sequence

> H"™2D S H"T2C > HY2E—S H" 'D S H"'C—» H"'E—~H" D
—)HniC—)HniE—>HnH—lD—»HnH_lC—)Hni+1E—>Hni+2D:>Hni+2C—>---
Since H™ D = 0 for all i, we deduce that H"E = 0 if n / r. The Proposition

follows now from Lemma 7.21. O

Remark 7.23 Note there is a dual version to Proposition 7.22 obtained by passing
to the opposite category A°.

7.2.2
Proposition 7.24 Let A be a ring with finite global dimension. Then,

Db(A) = (ams(4))2+2gldimA-

If A is noetherian, then D?(A-mod) = (A)24201dima and dim D?(A-mod) <
1 + 2gldim A.
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Proof: Put n = gldimA. Let C € D%(A). Up to quasi-isomorphism, we can
assume C is a bounded complex of projective A-modules. We now use Proposition
7.22 and its notations. An A-module M has a projective resolution of length n + 1,
hence M € (ams(A4)),+1. So, @, E; € (ams(A4)),+1. Similarly, we have P; D; €
(ams(A)),+1 (note that H"(D;) is projective for r # n(i + 1) — 1), hence C €
(ams(A4))2+2n-

The second part of the Lemma follows from Corollaries 6.17 and 3.14. O

In the noetherian case, the following characterization of regular algebras is due
to Van den Bergh.

Proposition 7.25 Let A be a ring. Then, the following conditions are equivalent
(i) gldimA < oo
(i) K®(A-Proj) > D?(4)
(iii) thereis G € D(A)¢ and d € N such that (ams(D(A)¢))so = (ams(G))y
If A is noetherian, the following conditions are equivalent:
(i’) every finitely generated A-module has finite projective dimension
(ii’) D?(A-mod) = A-perf
(iii’) A-perf is strongly finitely generated.

Proof: The equivalence between the first two assertions is clear, since D?(A) is
classically generated by the L[i], where L runs over the A-modules and i over Z.
Put D(A)/ = (ams(D(A)))eo. Note that the canonical functor K?(A-Proj) 5
D(A)7 is an equivalence. Let C € D(A). As in Proposition 6.3, one shows that
C e D?(4) if and only if Hom(—,C )Ip(4)- 18 locally finitely presented.
Assume (iii). By Theorem 4.20, we have C € D(A)/ if and only if
Hom(—,C) p4)s is locally finitely presented. So, D®(4) = D(A)” and (ii) holds.
Finally, (i)=(iii) follows from Proposition 7.24.
The proof for the remaining assertions is similar. O

Remark 7.26 For finite dimensional or commutative algebras over a perfect field,
we obtained in Proposition 7.4 the better bound dim D?(4-mod) < gldimA. We
don’t know whether such a bound holds under the assumption of Proposition 7.24.
The construction of Proposition 7.24 is not optimal when A is hereditary, since
the D;’s in Proposition 7.22 are then zero, i.e., every object of D?(A) is isomorphic

to a direct sums of complexes concentrated in one degree. We get then the following
result.

Proposition 7.27 Let A be a hereditary ring. Then, D?(A) = (ams(A))».
Assume now A is noetherian. Then, D?(A-mod) = (A),.
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Remark 7.28 Proposition 7.27 generalizes easily to quasi-hereditary algebras. Let
C be a highest weight category over a field k with weight poset A (i.e., the category
of finitely generated modules over a quasi-hereditary algebra). Then, there is a
decomposition D?(C) = Z; ¢ -+ o T, such that Z; ~ D? (k" -mod) for some n; and
where d is the maximal i such that there is A1 < --- < A; € A [CPS, Theorem 3.9].
It follows from Lemma 3.5 that dimD?(C) < d.

Remark 7.29 It would interesting to classify algebraic triangulated categories of
dimension 1. Which differential graded / finite dimensional algebras can have such
a derived category ? This relates to work on quasi-tilted algebras.

7.2.3 The following Lemma is related to the non-commutative [BoVdB, Lemma
4.2.4].

Lemma 7.30 Let X be a quasi-projective scheme over a field and L an ample sheaf.
Then, there are r,l > 0 such that for any n € Z, we have L®" € smd({G[i]}|i|§r)*l,
where G = L& @ LOTL @ ... L®. If X is regular;, then we can take | =
14+ dimX.

Proof: Pick s > 0 such that £®* is very ample and let i : X — PY be a
corresponding immersion (i.e., £L® ~ i*O(1)). Beilinson’s resolution of the
diagonal (cf example 7.7) shows that for every i < 0, there is an exact sequence
of vector bundles on PV

0->0310)—>0Vi—->01H)V;—> > 0ON)®Vy >0

where Vj,..., Vy are finite dimensional vector spaces. By restriction to X, we obtain
an exact sequence

@si /7! ° es AT
0L S0 V)— LRV — - "— L ® Vy — 0.

We get a similar exact sequence for i > 0 by dualizing. This shows the first part of
the Lemma with / = N 4 1.

Assume now X is regular of dimension d. Then, Ext4 1 (M, L®") =0, where
M = coker f?~!. Consequently, £L® is a direct summand of the complex

fO fl fd—l
0>0QVy > LYQV, > - —> LZ @V, —0.
Dualizing, we see that, for i > 0, then L£®5% g a direct summand of a complex
0—>£®_Sd®Vd S LPRV >0 Vy— 0.

The Lemma follows. L]
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Proposition 7.31 Let X be a regular quasi-projective scheme over a field and L
an ample sheaf. Then, DP(X-qcoh) = (ams(G)) (1 4dimx)2 and Db(X-coh) =
(G)2(1+dimx)2 for some r > 0, where G = L& & - & L®". In particular,
dim D®(X-coh) < 2(1 + dimX)? — L.
Proof: By Lemma 7.30, there is r > 0 such that smd({£%"};ez) C (ams(G)) 1 +dimx
for all i, where G = L& @ --- @ L®". Let C € D?(X-qcoh). Up to isomorphism,
we can assume C is a bounded complex with terms in smd({£®};cz), because
X is regular. Now, proceeding as in the proof of Proposition 7.24, we get C €
(smd({L® }ez))2+2dimx - O
In the case of a curve, we have a slightly better (though probably not optimal)
result, as in Proposition 7.27:

Proposition 7.32 Let X be a regular quasi-projective curve over a field. Then,
dim D? (X -coh) < 3.

Lemma 7.33 Let X be a separated scheme of finite type over k and U an open
subscheme of X. We have dim D? (U-coh) < dim D? (X -coh).

Proof: Lemma 3.4 gives the result, via the exact sequence 0 — Df,’(_U(X -coh) —
D?(X-coh) — D?(U-coh) — 0. O
Proposition 7.34 Let X be a quasi-projective scheme over k. Then, the following
assertions are equivalent

(i) X is regular
(ii) every object of D?(X-qcoh) is isomorphic to a bounded complex of locally
free sheaves
(iii) D®(X-coh) = X -perf
(iv) X-perf is strongly finitely generated
Proof: Tt is clear that (ii))=(i) and (iii)=().
By Proposition 7.31, we have (i)=(ii)—(@iv).
Assume (iv). Since X-perf is strongly finitely generated, it follows from
Lemmas 3.3 and 3.4 that U -perf is strongly finitely generated for any affine open U

of X because the restriction functor X -perf — U-perf has dense image (Theorem
5.3). So, U is regular by Proposition 7.25, hence X is regular. So, (iv)=>(i). O

7.3. Nilpotent ideals

Lemma 7.35 Let A be a noetherian ring and I a nilpotent (two-sided) ideal of A
with I" = 0. Let M € D?((A/I)-mod) such that D?((A/I)-mod) = (M),. Then,
D?(A-mod) = (M), .
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In particular, dim D? (A-mod) < r(1 + dim D?((A/1)-mod)) — 1.
Proof: Let C be a bounded complex of finitely generated A-modules. We have
a filtration 0 = I"C C I""!C C .- C IC C C whose successive quotients are

bounded complexes of finitely generated (A/7)-modules and the Lemma follows.
O

We have a geometric version as well.

Lemma 7.36 Let X be a separated noetherian scheme, I a nilpotent ideal sheaf
with I" = 0 and i : Z — X the corresponding closed immersion. Let M €
D?(Z-coh) such that D?(Z-coh) = (M),. Then, D® (X-coh) = ( ixM ).
Similarly, for M € DP(Z-qcoh) such that D? (Z-qcoh) = ( ams(M) ),, then
D?(X-qcoh) = (ams(ixM)) .

In particular, diim D® (X -coh) < r(1 +dim D®(Z-coh)) — 1.

For an artinian ring A, the Loewy length 11(A) of A is the smallest integer i such
that J(A)' = 0, where J(A) is the Jacobson radical of A.

From Lemma 7.35, we deduce

Proposition 7.37 Let A be an artinian ring. Then, D?(A-mod) = (4/J (A))uca)-
In particular, dim D? (A-mod) < 11(4) — 1.

7.4. Finiteness for derived categories of coherent sheaves

Let k be a field.

7.4.1 The following Theorem is due to Kontsevich, Bondal and Van den Bergh for
X non singular [BoVdB, Theorem 3.1.4].

Theorem 7.38 Let X be a separated scheme of finite type over a perfect field k.
Then, there is E € D?(X-coh) and d € N such that

D(X-qcoh) = (ads(E)) 4, Db(X—qcoh) = (ams(FE))4 and D®(X-coh) = (E)a.

In particular, dim D? (X -coh) < oo.

Let us explain how the Theorem will be proved. It is enough to consider the case
where X is reduced. Then, the structure sheaf of the diagonal is a direct summand
of a perfect complex up to a complex supported on Z x X, where Z is a closed
subscheme with smooth dense complement. We conclude by induction by applying
the Theorem to Z.

Let us start with two Lemmas.

Lemma 7.39 Let A and B be two finitely generated commutative k-algebras, where
d—2
k is perfect. Let M be a finitely generated (B ® A)-module and - — P~! —
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d-! d° .
P% — M — 0 be an exact complex with P’ finitely generated and projective.

If M is flat as an A-module and B is regular of dimension n, then kerd ™" is a
projective (B ® A)-module.

Proof: Leti > 1, m a maximal ideal of 4 and n a maximal ideal of B. We have

Tor?®4 (kerd ", B/n® A/m) =~ Tor’SA(M,B/n® A/m)

:Torf+i(M ®4A/m,B/n)=0

since B is regular with dimension n. It follows that kerd ™" is projective (cf [Ma,
§18, Lemma 5]). OJ

Lemma 7.40 Let X be a separated noetherian scheme and Z a closed subscheme
of X, given by the ideal sheaf T of Ox. Forn > 1, let Z, be the closed subscheme
of X with ideal sheaf " and i,, : Z, — X the corresponding immersion.

Then, given C € D%(X—coh), there isn > 1 and C, € D?(Z,-coh) such that

C ~i,u.Cy.
Proof: Let F be a coherent sheaf on X supported by Z. Then, 7" F = 0 for some n
and it follows that F — inx(i,;y F). More generally, a bounded complex of coherent
sheaves on X that are supported by Z is isomorphic to the image under i, of a
bounded complex of coherent sheaves on Z,, for some n.

Let F be a coherent sheaf on X. Let Fz be the subsheaf of F of sections
supported by Z. By Artin-Rees’ Theorem [Ma, §11.C Theorem 15], there is an
integer r such that (Z" F)NFz =Z™ " (Z"NFz) form > r. Since F7 is a coherent
sheaf supported by Z, there is an integer d such that Z¢ F; = 0. So, (Z"t¢F) N
Fz = 0. It follows that the canonical map Fz — F/(Z" ¢ F) is injective.

We prove now the Lemma by induction on the number of terms of C that are
not supported by Z.

s—1

LetC=0—>C" i) -« —> C*® — 0 be a complex of coherent sheaves on X
with cohomology supported by Z and take i minimal such that C’ is not supported
by Z.

Since C'~! and H'(C) are supported by Z, it follows that kerd’ is supported
by Z. So, there is an integer n such that the canonical map kerd’ — C'/(Z"C')
is injective. Let R be the subcomplex of C with non zero terms R’ = Z"C' and
Ri*! = d"(Z"C'") — a complex homotopy equivalent to 0. Let D = C/R. Then,
the canonical map C — D is a quasi-isomorphism. By induction, D is quasi-
isomorphic to a complex of coherent sheaves on Z, for some n and the Lemma
follows. O
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Proof of Theorem 7.38: We have D?(X-qcoh)¢ = D?(X-coh) (Corollary 6.17).
So, the assertion about D?(X-coh) follows immediately from the one about
D?(X-qcoh) by Corollary 3.14. We give the proof only for the case D?(X-qcoh),
the case of D(X-qcoh) is similar and easier. By Lemma 7.36, it is enough to prove
the Theorem for X reduced.

Assume X is reduced and let d be its dimension. We now prove the Theorem
by induction on d (the case d = 0 is trivial).

Let U be a smooth dense open subscheme of X. The structure sheaf Oay of
the diagonal AU in U x X is a perfect complex by Lemma 7.39. By Thomason
and Trobaugh’s localization Theorem (Theorem 5.3), there is a perfect complex C
on X x X and a morphism f : C — Oax @& Oax|[l] whose restriction to U x X
is an isomorphism. Let G be a compact generator for D(X-qcoh). Then, G X G is
a compact generator for D((X x X)-qcoh) [BoVdB, Lemma 3.4.1]. So, there is r
such that C € (G X G), by Theorem 4.22 (3).

Let D be the cone of f. Then, H*(D) is supported by Zx X, where Z = X —-U..
It follows that there is a closed subscheme Z’ of X with underlying closed subspace
Z, a bounded complex D’ of coherent Oz «x-modules and an isomorphism (i x
id)« D’ 5 Din DY((X x X)-coh), where i : Z' — X is the closed immersion
(Lemma 7.40). By induction, there is M € D?(Z’-coh) and an integer [ such that
DY (Z’-qcoh) = (ams(M));.

Let p; and p, be the first and second projections X x X — X and 7 : Z'x X —
Z' be the first projection. Let F € D?(X-qcoh). We have a distinguished triangle

Rp1+(C ®" p3F) — F & F[1] > Rp1+(D Q" p3F) »> .

Since C is perfect, we have C @' p3F € D?((X ® X)-qcoh), hence Rp1.(C ®"
p5F) has bounded cohomology. It follows that Rp1«(D ®" p3F) has bounded
cohomology as well. We have

Rp1+(D®"p3 F) =~ Rp14(i xid)« (D'@VL(i xid)* p3 F)) ~ ix R4 (D' (O 7z ®F))

Note that Rrr.(D’ @ (Oz K F)) is an element of D?(Z’-qcoh). So, Rp1+(D @
p3F) € (ams(ixM));.

We have (G K G) ®" p3F ~ G K (G ®" F), hence Rp1+((GRG) ®" p3F) ~
G ®RT(G®"F) € (ams(G)) (note this has bounded cohomology). So, Rp;+(C QY
P3F) € (ams(G),.

Finally, F € (ams(i«M & G));4, and we are done. O

Remark 7.41 In Theorem 7.38, one can require E to be a sheaf (consider

@; H' (E)).
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Remark 7.42 Note that when X is smooth, then the proof shows the stronger
functorial result as in §3.2.2 — this is Kontsevich’s result. This stronger property
does not hold in general for singular X, cf the case X = Speck|[x]/x2.

Remark 7.43 Theorem 7.38 does not extend to the derived categories D z(X-coh).
For example, D ?0}(Allc -coh) is not strongly finitely generated.

Remark 7.44 Note that the proof works under the weaker assumption that X is a
separated scheme of finite type over k and the residue fields at closed points are
separable extensions of k.

We don’t know how to bound the dimension of D?(X-coh) for singular X.
When X is zero dimensional, then dim D? (X -coh) = 0 if and only if X is smooth.

We don’t know whether the inequality dim D? (X xY)-coh) < dim D? (X -coh)+
dim D? (Y -coh) holds for X,Y separated schemes of finite type over a perfect field.

Last but not least,we don’t know a single case where X is smooth
and dim D®?(X-con) > dim X. For example, we don’t know whether
dim D?(X-coh) = 1 or 2 for X an elliptic curve over an algebraically closed field.

We now deduce that stable derived categories are strongly finitely generated as
well.

Corollary 7.45 Let X be a separated scheme of finite type over a perfect field k
and T = D?(X-coh)/ X -perf. Then, dim7 < oo.

Assume X is Gorenstein, has enough locally free sheaves and its singular locus
is complete. Then T is Ext-finite, hence every locally finite cohomological functor
is representable.

Proof: The first statement is an immediate consequence of Theorem 7.38 and
Lemma 3.4. The fact that 7 is Ext-finite is [Or, Corollary 2.24 and its proof] and
the representability statement is Corollary 4.18. U

7.4.2 Let X be a projective scheme over a field k. Given C € X-perf and D €
D? (X -coh), then dim@; ., Hom(C, D[i]) < oc.

The following result is given by [BoVdB, Theorem A.1].
Lemma 7.46 An object D € D(X) is in D?(X-coh) if and only if for all C €
X -perf, we have dim@; ., Hom(C, D[i]) < oo.

Proof: The first implication has been recalled before.

Let D € D(X) such that Hom(—,D)x.pes is locally finite. Then,
Hom(—,D)|x.pert is locally finitely presented (Proposition 4.9), hence D €
D? (X -coh) (Proposition 6.12). O

Proposition 7.47 There is a fully faithful functor S : X-perf — DP(X-coh) and
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bifunctorial isomorphisms
Hom(C, D)* = Hom(D,S(C))
for C € X-perfand D € D(X).

Proof: The category D(X) is cocomplete and has a compact generator (Theorem
6.8). Corollary 4.23 shows the existence of a functor S : X -perf — D(X).

By Lemma 7.46, if C € X -perf, then S(C) € D?(X-coh). 0
Remark 7.48 Note that the last Proposition is the usual Grothendieck duality and
S = f'k ®“—, where f : X — Speck is the structural morphism.

We can now prove a “dual version” of Lemma 7.46 :

Lemma 7.49 An object C € D(X) is in X-perf if and only if for all D €
DY (X -coh), we have dim@; ., Hom(C, D[i]) < oc.
Proof: The first implication has been recalled before.

Let C € D(X) such that for all D € D?(X-coh), we have
dim@p, ., Hom(C, D[i]) < co. Let D’ € X-perf. Then,

Hom(D',C[i])* = Hom(C,S(D')[i]),
hence dim@P;.,Hom(D'.C[i]) < oco. It follows from Lemma 7.46 that C €

D?(X-coh).
Let x be a closed point of X. We have

dim@PHom(C.Oy[i]) = dim@HHom(Cx. Ogxyi]) < oo.

This shows that Cy is a perfect complex of O,-modules. Since C € D?(X-coh), we
deduce that C is perfect. U
Remark 7.50 As pointed out by Burban, this shows that if X and Y are projective
schemes over k, an equivalence D?(X-coh) = DP®(Y -coh) restricts to an equiva-
lence X -perf 5y -perf.
The following result was conjectured by Bondal — the first statement is
[BoVdB, Theorem A.1].
Corollary 7.51 Let X be a projective scheme over a perfect field k.
(i) Every locally finite cohomological functor (X-perf)°® — k-mod is repre-
sentable by an object of D (X -coh).

(ii) Every locally finite cohomological functor D?(X-coh) — k-mod is repre-
sentable by an object of X -perf.
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Proof: By Remark 4.30, a locally finite cohomological functor (X-perf)® —
k-mod is representable by an object of D(X) and Lemma 7.46 says that the object
must be in Db(X -coh). This shows (i).

By Theorem 7.38, D?(X-coh)® is strongly finitely generated. So, Proposition
4.9 and Corollary 4.17 show that every locally finite cohomological functor
D?(X-coh) — k-mod is representable by an object of D?(X-coh) and Lemma 7.49
says that the object must be in X -perf. This shows (ii). O

Remark 7.52 As pointed out by a referee, the image of S in Proposition 7.47
consists of complexes C such that dim@,;.,Hom(D,C[i]) < oo for all D €
D?(X-coh) (this follows from Corollary 7.51 (ii)). Cf [dNaVdB, Theorem A.4]
for a similar result in the setting of graded rings.

Remark 7.53 Similar results should hold for X quasi-projective, with D?(X-coh)
replaced by its full subcategory of objects with compact support.
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Corollary 7.45 is not correct and I would like to thank Dmitri Orlov for pointing
this out to me. We explain in this erratum a version for triangulated categories of
D-branes of type B in Landau-Ginzburg models.

We deduce from Theorem 7.38 that triangulated categories of D-branes of type
B in Landau-Ginzburg models are strongly finitely generated as well, following
Orlov’s description as triangulated categories of singularities [Or].

Let X be a smooth quasi-projective scheme of finite type over an algebraically
closed field k and W € H%(X,Oyx) a function such that the associated morphism
X — Al is flat and proper. Let DB(W) be the associated triangulated category of
D-branes on X [Or]: DB(W) =11, D?(X,,-coh)/ X, -perf, where w runs over the
finite set of points w € k such that the fiber X,, = W1 (w) is singular.

Corollary 1 Every cohomological functor from DB(W) to the category of finite
dimensional vector spaces over k is a direct summand of a representable functor.

Proof: By Theorem 7.38 and Lemma 3.4, the category DB(W) has finite dimen-
sion. Note that [2] is isomorphic to the identity functor in DB(W). The fact that 7
is Hom-finite is [Or, Corollary 1.24] and the representability statement is Theorem
2 below. O

We have a periodic version of Corollary 4.18.

Theorem 2 Let k be a commutative noetherian ring and T a k-linear triangulated
category. Assume

e there is a positive integer d such that [d] >~ 1dr

e 7 is Hom-finite, i.e., Hom;(X,Y) is a finitely generated k-module for all
X,YeT

o T is strongly finitely generated.
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A cohomological functor H : T — k-Mod is a direct summand of a repre-
sentable functor if and only if for all X € T, H(X) is a finitely generated k-module.

Proof: Let H : T — k-Mod be a functor such that for every X € 7, the k-module
H(X) is finitely generated. Given i € {0,...,d — 1}, let I; be a minimal finite
generating family of H(X[i]) as a k-module. We put D = @ X [i] @« k' and
we conclude as in the proof of Proposition 4.9 that H is locally ﬁn1tely presented.
So, the result follows from Theorem 4.16. O
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