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DIMERS ON SURFACE GRAPHS AND SPIN STRUCTURES. I

DAVID CIMASONI AND NICOLAI RESHETIKHIN

Abstract. Partition functions for dimers on closed oriented surfaces are known
to be alternating sums of Pfaffians of Kasteleyn matrices. In this paper, we
obtain the formula for the coefficients in terms of discrete spin structures.
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Introduction

Dimer models on graphs have a long history in statistical mechanics [6, 15].
States in dimer models are perfect matchings between vertices of the graph where
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only adjacent vertices are matched. The probability of a state is determined by
assigning weights to edges.

Dimer models also have many interesting mathematical aspects involving com-
binatorics, probability theory [11, 3], real algebraic geometry [10, 9], etc... One
of the remarkable facts about dimer models is that the partition function can be
written as a linear combination of 22g Pfaffians of N ×N matrices, where N is the
number of vertices in the graph and g the genus of a surface where the graph can
be embedded.

The matrices in the Pfaffian formula for the dimer partition function are called
Kasteleyn matrices. They involve certain orientations of edges of the graph known
as Kasteleyn orientations. Two Kasteleyn orientations are called equivalent if one
can be obtained from the other by a sequence of moves reversing orientations of all
edges adjacent to a vertex.

The number of non-equivalent Kasteleyn orientations of a surface graph of genus
g is 22g and is equal to the number of non-equivalent spin structures on the surface.
The Pfaffian formula expresses the partition function of the dimer model as an
alternating sum of Pfaffians of Kasteleyn operators, one for each equivalence class
of Kasteleyn orientations. This formula was proved in [6] for the torus, and it was
stated in [7] that for other surfaces, the partition function of the dimer model is
equal to the sum of 22g Pfaffians. The formal combinatorial proof of this fact and
the exact description of coefficients for all oriented surfaces first appeared in [12]
and [16] (see also [4]). A combinatorial proof of such formula for non-orientable
surfaces can also be found in [16].

The partition function of free fermions on a Riemann surface of genus g is also a
linear combination of 22g Pfaffians of Dirac operators. Each term in this sum cor-
responds to a spin structure [1]. Assuming that dimer models are discretizations of
free fermions on Riemann surfaces, one should expect a relation between Kasteleyn
orientations and spin structures and between the Kasteleyn operator for a given
Kasteleyn orientation and the Dirac operator in the corresponding spinor bundle.
Numerical evidence relating the critical dimer model on a square and triangular
lattices in the thermodynamical limit with Dirac operators can be found in [2] for
g = 2.

An explicit construction relating a spin structure on a surface with a Kasteleyn
orientation on a graph with dimer configuration was suggested in [11]. Furthermore,
for bipartite graphs with critical weights, the Kasteleyn operator can be naturally
identified with a discrete version of the Dirac operator [8]. This gives an interesting
relation between dimer models and the theory of discrete meromorphic functions
[14].

In this paper we investigate further the relation between Kasteleyn orientations
and spin structures, and use this relation to give a geometric proof of the Pfaffian
formula for closed surfaces. Below is a brief summary of our main results.

Recall some basic notions. A dimer configuration on a graph Γ is a perfect
matching on vertices where matched vertices are connected by edges. Given two
such configurations D and D′, set ∆(D,D′) = (D∪D′)\ (D∩D′). A surface graph
is a graph Γ embedded into a surface Σ as the 1-squeletton of a CW-decomposition
of Σ. A Kasteleyn orientation of a surface graph is an orientation of edges of the
graph, such that the product or relative orientations of boundary edges of each face
is negative (see Section 3).
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One of our results is that any dimer configuration D on a surface graph Γ ⊂ Σ
induces an isomorphism of affine H1(Σ; Z2)-spaces

(1) ψD : (K(Γ)/ ∼) −→ Q(H1(Σ; Z2), ·) , [K] 7−→ qK
D

from the set of equivalence classes of Kasteleyn orientations on Γ ⊂ Σ onto the set
of quadratic forms on (H1(Σ; Z2), ·), where · denotes the intersection form on Σ.
Furthermore, ψD = ψD′ if and only if D and D′ are equivalent dimer configurations
(that is, ∆(D,D′) is zero in H1(Σ; Z2)).

Since the affine space of spin structures on Σ is canonically isomorphic to the
affine space of such quadratic forms, this establishes an isomorphism between equiv-
alence classes of Kasteleyn orientations and spin structures.

This correspondence implies easily the following identity. Let D0 be a fixed
dimer configuration on a graph Γ. Realize Γ as a surface graph Γ ⊂ Σ of genus
g. Let K be any Kasteleyn orientation on Γ ⊂ Σ, and let AK be the associated
Kasteleyn matrix. Then,

(2) Pf(AK) = εK(D0)
∑

α∈H1(Σ;Z2)

(−1)qK
D0

(α) Zα(D0),

where qK
D0

is the quadratic form associated to K and D0 via (1), εK(D0) is some
sign depending on K and D0, and

Zα(D0) =
∑

D

w(D),

the sum being on all dimer configurations D such that ∆(D0, D) is equal to α in
H1(Σ; Z2).

It follows that the partition function of a dimer model on Γ is given by

(3) Z =
1

2g

∑

[K]

Arf(qK
D0

)εK(D0)Pf(AK),

were the sum is taken over the 22g equivalence classes of Kasteleyn orientations on
Γ ⊂ Σ, and Arf(qK

D0
) = ±1 denotes the Arf invariant of the quadratic form qK

D0
.

Note that the sign Arf(qK
D0

)εK(D0) does not depend on D0.

The paper is organized as follows. In Section 1, we introduce the dimer model
on a graph Γ and define composition cycles. Section 2 deals with dimers on surface
graphs Γ ⊂ Σ and the definition of an equivalence relation for dimer configurations
on surface graphs. In Section 3, we recall the definition of a Kasteleyn orientation.
We then show that a surface graph Γ ⊂ Σ admits such an orientation if and only
if the number of vertices of Γ is even. We prove that, in such a case, the set
of equivalence classes of Kasteleyn orientations on Γ ⊂ Σ is an affine H1(Σ; Z2)-
space. Finally, we give an algorithmic procedure for the construction of the 22g

non-equivalent Kasteleyn orientations on a given surface graph Γ ⊂ Σ of genus
g. The core of the paper lies in Section 4, where we establish the correspondence
(1) stated above. This result is used in Section 5 to obtain equations (2) and (3).
We also give a formula for the local correlation functions of a dimer model. In
the appendix, we collect formulae expressing dimer models in terms of Grassman
integrals.
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1. The dimer model

1.1. Dimer configurations and composition cycles on graphs. Let Γ be a
finite connected graph. A perfect matching on Γ is a choice of edges of Γ such that
each vertex of Γ is adjacent to exactly one of these edges. In statistical mechanics,
a perfect matching on Γ is also known as a dimer configuration on Γ. The edges of
the perfect matching are called dimers. An example of a dimer configuration on a
graph is given in Figure 1.

Figure 1. A dimer configuration on a graph.

In order to have a perfect matching, a graph Γ clearly needs to have an even
number of vertices. However, there are connected graphs with an even number
of vertices but no perfect matching. We refer to [13] for combinatorial aspects of
matchings. Throughout the paper and unless otherwise stated, we will only consider
finite graphs which admit perfect matchings. In particular, all the graphs will have
an even number of vertices.

Given two dimer configurationsD and D′ on a graph Γ, consider the subgraph of
Γ given by the symmetric difference (D∪D′)\(D∩D′). The connected components
of this subgraph are called (D,D′)-composition cycles or simply composition cycles.
Clearly, each composition cycle is a simple closed curve of even length. This is
illustrated in Figure 2, where the two dimer configurations are shown in black and
traced lines.

1.2. Edge weight system. Let D(Γ) denote the set of dimer configurations on a
graph Γ. A weight system on D(Γ) is a positive real-valued function on this set. A
weight system w defines a probability distribution on all dimer configurations:

Prob(D) =
w(D)

Z(Γ;w)
,

where
Z(Γ;w) =

∑

D

w(D)
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Figure 2. An example of composition cycles: dimers from D are
in solid, and dimers from D′ are in traced lines. On this example,
there is one (D,D′)-composition cycle of length 2, one of length 4,
and one of length 6.

is the partition function. This probabilistic measure is the Gibbs measure for the
dimer model on the graph Γ with the weight system w.

We shall focus on a particular type of weight system called edge weight system.
Assign to each edge e of Γ a positive real number w(e), called the weight of the
edge e. The associated edge weight system on D(Γ) is given by

w(D) =
∏

e∈D

w(e),

where the product is over all edges occupied by dimers of D. In statistical mechan-
ics, these weights are called Boltzmann weights . Their physical meaning is

w(e) = exp
(

−
E(e)

T

)

,

where E(e) is the energy of dimer occupying the edge e and T is the temperature.

1.3. Local correlation functions. Let e be an edge of Γ. The characteristic
function of e is the function σe on D(Γ) given by

σe(D) =

{

1 if e ∈ D;

0 otherwise.

The expectation values of products of characteristic functions are called local
correlation functions, or dimer-dimer correlation functions:

< σe1 · · ·σek
>=

Z(e1, . . . , ek; Γ;w)

Z(Γ;w)
,

where

Z(e1, . . . , ek; Γ;w) =
∑

D

∏

e∈D

w(e)

k
∏

i=1

σei
(D) =

∑

D∋e1,...,ek

w(D).

Note that < σe1 · · ·σek
>= 0 if some edges ei 6= ej share a common vertex. Note

also that σe · σe = σe. Therefore, it may be assumed that ei 6= ej for i 6= j.
For any dimer configuration D,

〈

∏

e∈D

σe

〉

=
w(D)

Z(Γ;w)
,
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so we can reconstruct the weight system if we know all local correlation functions.
In this sense, local correlation functions carry all the information about the Gibbs
measure.

2. Dimers on surface graphs

2.1. Surface graphs. Let Σ be a connected oriented closed surface. By a surface
graph, we mean a graph Γ embedded in Σ as the 1-squeleton of a cellular decompo-
sition X of Σ. We shall assume throughout the paper that the surface Σ is endowed
with the counter-clockwise orientation.

Any finite connected graph can be realized as a surface graph. Indeed, such a
graph Γ always embeds in a closed oriented surface of genus g, for g sufficiently large.
If the genus is minimal, one easily checks that Γ induces a cellular decomposition
of the surface Σ.

We will be interested mostly in large graphs. In this paper we will focus on
graphs embedded into a surface of fixed genus.

2.2. Equivalent dimer configurations. A dimer configuration on a surface graph
Γ ⊂ Σ is simply a dimer configuration on the graph Γ. Such a dimer configuration
can be regarded as a 1-chain in the cellular chain complex of X with Z2-coefficients:

cD =
∑

e∈D

e ∈ C1(X ; Z2).

By definition, ∂cD =
∑

v∈Γ v ∈ C0(X ; Z2), the sum being on all vertices v of Γ.
Therefore, given any pair of dimer configurations D and D′ on Γ ⊂ Σ, cD + cD′ is
a 1-cycle:

∂(cD + cD′) = ∂cD + ∂cD′ =
∑

v∈Γ

(v + v) = 0 ∈ C0(X ; Z2).

This 1-cycle is nothing but the union of all (D,D′)-composition cycles. Let ∆(D,D′)
denote its homology class in H1(X ; Z2) = H1(Σ; Z2). We shall say that two dimer
configurations D and D′ are equivalent if ∆(D,D′) = 0 in H1(Σ; Z2).

Note that these concepts make perfect sense when Γ is the 1-squeleton of any
CW-complex, not necessarily the cellular decomposition of an oriented closed sur-
face.

3. Kasteleyn orientations on surface graphs

Let Γ ⊂ Σ be a surface graph. The counter-clockwise orientation of Σ induces
an orientation on each 2-cell, or face of X . An orientation K of the edges of Γ is
called a Kasteleyn orientation if for each face f of X ,

(4)
∏

e∈∂f

εK
f (e) = −1,

where the product is taken over all boundary edges of f , and

εK
f (e) =

{

1 if e is oriented by K as the oriented boundary of the face f ;

−1 otherwise.

This is illustrated in Figure 3.
Define the operation of orientation changing at a vertex as the one which flips

the orientation of all the edges adjacent to this vertex, as illustrated in Figure 4.
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.

Figure 3. A Kasteleyn orientation on the boundary edges of a face.

It is clear that such an operation brings a Kasteleyn orientation to a Kasteleyn
orientation. Let us say that two Kasteleyn orientations are equivalent if they are
obtained one from the other by a sequence of orientation changes at vertices.

Figure 4. Orientation change at a vertex.

3.1. Existence of a Kasteleyn orientation.

Theorem 3.1. There exists a Kasteleyn orientation on a surface graph Γ ⊂ Σ if
and only if the number of vertices of Γ is even.

Proof. Let ω be any orientation of the edges of Γ, and let cω ∈ C2(X ; Z2) be defined
by the equation

(−1)cω(f) = −
∏

e∈∂f

εω
f (e).

Note that ω is Kasteleyn if and only if cω = 0. Let V , E and F denote the
number of vertices, edges and faces in X , respectively. Since Σ is closed, its Euler
characteristic is even, and we get the equality mod 2

0 = χ(Σ) = V + E + F = V +
∑

f∈F

cω(f).

Here, each edge e contributes to the number cω(f) where f is the face whose oriented
boundary contains e with the orientation opposite to ω. Therefore, the number of
faces f such that cω(f) = 1 has the parity of V . Hence, if V is even, then cω(f) = 1
for an even number of faces, so cω is a 2-coboundary. In other words, cω = δσ for
some σ ∈ C1(X ; Z2). Let K be the orientation of the edges of Γ which agrees with
ω on e if and only if σ(e) = 0. Clearly, cK = 0, so K is a Kasteleyn orientation.
Conversely, let us assume that there is a Kasteleyn orientation K. This means that
cK(f) = 1 for none of the faces. By the argument above, V is even. �

A more constructive proof of this result will be given in Section 3.3.
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3.2. Uniqueness of Kasteleyn orientations. Let V be a vector space. Recall
that an affine V -space is a set S endowed with a map S × S → V , (a, b) 7→ a − b
such that:

(i) for every a, b and c in S, we have (a− b) + (b− c) = a− c ;
(ii) for every b in S, the map S → V given by a 7→ a− b is a bijection.

In other words, an affine V -space is a V -torsor : it is a set endowed with a freely
transitive action of the abelian group V .

Theorem 3.2. Let Γ ⊂ Σ be a surface graph with an even number of vertices.
Then, the set of equivalence classes of Kasteleyn orientations on Γ ⊂ Σ is an affine
H1(Σ; Z2)-space.

Corollary 3.3. There are exactly 22g equivalence classes of Kasteleyn orientations
on Γ ⊂ Σ, where g denotes the genus of Σ. �

Proof of the theorem. Let K(Γ) denote the set of Kasteleyn orientations on Γ ⊂ Σ.
By Theorem 3.1, it is non-empty. Consider the map ϑ : K(Γ)× K(Γ) → C1(X ; Z2)
given by ϑK,K′(e) = 0 if K and K ′ agree on the edge e, and ϑK,K′(e) = 1 otherwise.
Since K and K ′ are Kasteleyn orientations,

(−1)ϑK,K′(∂f) =
∏

e∈∂f

(−1)ϑK,K′ (e) =
∏

e∈∂f

εK
f (e) ·

∏

e∈∂f

εK′

f (e) = (−1)(−1) = 1

for any face f . Therefore, δϑK,K′(f) = ϑK,K′(∂f) = 0, that is, ϑK,K′ is a 1-cocycle.

Thus, we get a map K(Γ)×K(Γ)
ϑ
→ H1(Σ; Z2). Note that ϑK,K′ +ϑK′,K′′ = ϑK,K′′

for any K,K ′,K ′′ ∈ K(Γ). Also, one easily checks that ϑK,K′ = 0 in H1(Σ; Z2)
if and only if there is a sequence of vertices such that K is obtained from K ′ by
reversing the orientation around all these vertices, i.e., if and only if K ∼ K ′. It
follows that we have a map

(K(Γ)/ ∼) × (K(Γ)/ ∼) −→ H1(Σ; Z2), ([K], [K ′]) 7→ [K] − [K ′] := [ϑK,K′ ]

such that for any K ′ in K(Γ), the map (K(Γ)/ ∼) → H1(Σ; Z2) given by [K] 7→
[K] − [K ′] is injective. Finally, let us check that this map is onto. Fix a class in
H1(Σ; Z2), and represent it by some 1-cycle σ ∈ Z1(X ; Z2). Let K be the same
orientation as K ′ whenever σ(e) = 0, and the opposite when σ(e) = 1. Obviously,
ϑK,K′ = σ. Furthermore, K is Kasteleyn since K ′ is and δσ = 0. Indeed, given a
face f ,

0 = (δσ)(f) = σ(∂f) = ϑK,K′(∂f),

so 1 =
∏

e∈∂f (−1)ϑK,K′ (e) = (−1)
∏

e∈∂f ε
K
f (e). This concludes the proof. �

3.3. How to construct Kasteleyn orientations. Given a surface graph Γ ⊂ Σ
with an even number of vertices, we know that there are exactly 22g non-equivalent
Kasteleyn orientations on Γ. However, the proof given above is not really con-
structive. For this reason, we now give an algorithm for the construction of these
Kasteleyn orientations. The successive steps of the algorithm are illustrated in
Figure 5.

(0) Let Γ ⊂ Σ be a surface graph with an even number of vertices, and let g
denote the genus of Σ.

(1) Consider a system α = α1∪· · ·∪α2g of simple closed curves on Γ such that
Σ cut along α is a 2-disc Σ′. (Note that such curves exist since Γ induces
a cellular decomposition of Σ.)
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(2) The surface graph Γ ⊂ Σ induces a graph Γ′ ⊂ Σ′ which is the 1-squeleton
of a cellular decomposition of the 2-sphere S2. Fix a spanning tree T of the
graph dual to the surface graph Γ′ ⊂ S2, rooted at the vertex corresponding
to the face S2\Σ′.

(3) Orient the edges of Γ′ which do not intersect T respecting the following
condition: whenever two edges of Γ′ in ∂Σ′ are identified in Σ, their ori-
entations agree. Now, every edge in ∂Σ′ is oriented, except one. Let us
denote it by e∗.

(4) Orient edges of Γ′ such that the Kasteleyn condition (4) holds for the faces
corresponding to the leaves of T . Moving down the tree (from the leaves
to the root), orient each crossing edge such that the Kasteleyn condition
holds for all faces left behind.

This gives a Kasteleyn orientation of Γ′ ⊂ Σ′. By the condition in step 3, it induces
a Kasteleyn orientation on Γ ⊂ Σ, provided that the orientation of the last edge
e∗ satisfies this condition. It turns out to be the case if and only if the number
of vertices of Γ is even. (This is an easy consequence of Theorem 3.1.) Therefore,
we have constructed a Kasteleyn orientation K on Γ ⊂ Σ. To obtain the 22g

non-equivalent ones, proceed as follows.

(5) Consider a family of simple closed curves β1, . . . , β2g on Σ avoiding the
vertices of Γ, and forming a basis of H1(Σ; Z2).

(6) Consider the Kasteleyn orientation K, and some subset I ⊂ {1, . . . , 2g}.
For all i ∈ I, change the orientation of all the edges in Γ that intersect βi.

The resulting orientation KI is clearly Kasteleyn, as ∂f ·βi is even for every face f
and index i. Furthermore, one easily checks that KI and KJ are non-equivalent if
I 6= J . Hence, we have constructed the 22g non-equivalent Kasteleyn orientations
on Γ ⊂ Σ.

.

.

0. 1.

2. 3. 4.

Γ ⊂ Σ

α1

α2

T Γ
′
⊂ S2 e∗

Figure 5. An example of the explicit construction of a Kasteleyn orientation.

4. Kasteleyn orientations as discrete spin structures

We saw in Corollary 3.3 that there are exactly 22g non-equivalent Kasteleyn
orientations on a surface graph Γ ⊂ Σ, where g denotes the genus of Σ. It is known
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that this is also the number of non-equivalent spin structures on Σ. This relation
between the number of Kasteleyn orientations and the number of spin structures
is not accidental. Kasteleyn orientations of surface graphs can be regarded as
discrete versions of spin structures. This statement will be made precise in the
present section. (See in particular Corollary 4.4.)

4.1. The quadratic form associated to a Kasteleyn orientation. Let V be
a finite dimensional vector space over the field Z2, and let ϕ : V × V → Z2 be a
fixed bilinear form. Recall that a function q : V → Z2 is a quadratic form on (V, ϕ)
if

q(x+ y) = q(x) + q(y) + ϕ(x, y)

for all x, y ∈ V . Note that the difference (that is, the sum) of two quadratic forms
on (V, ϕ) is a linear form on V . Therefore, one easily checks that the set Q(V, ϕ) of
quadratic forms on (V, ϕ) is an affine V ∗-space, where V ∗ denotes the dual of V .

Fix a Kasteleyn orientation K on a surface graph Γ ⊂ Σ. Given an oriented
simple closed curve C on Γ, set

εK(C) =
∏

e∈C

εK
C (e),

where εK
C (e) is equal to +1 (resp. −1) if the orientations on the edge e given by

C and K agree (resp. do not agree). For a fixed dimer configuration D on Γ, let
ℓD(C) denote the number of vertices v in C whose adjacent dimer of D sticks out
to the left of C in Σ.

Theorem 4.1. Given a class α ∈ H1(Σ; Z2), represent it by oriented simple closed
curves C1, . . . , Cm in Γ. If K is a Kasteleyn orientation on Γ ⊂ Σ, then the function
qK
D : H1(Σ; Z2) → Z2 given by

(−1)qK
D (α) = (−1)

∑

i<j Ci·Cj

m
∏

i=1

(−εK(Ci))(−1)ℓD(Ci)

is a well-defined quadratic form on (H1(Σ; Z2), ·), where · denotes the intersection
form.

We postpone the proof of this result to the next subsections. Let us first inves-
tigate some of its consequences.

Proposition 4.2. (i) Let D be a fixed dimer configuration on Γ. If K and K ′ are

two Kasteleyn orientations on Γ ⊂ Σ, then qK
D − qK′

D maps to [K] − [K ′] via the
canonical isomorphism Hom(H1(Σ; Z2); Z2) = H1(Σ; Z2).
(ii) Let K be a fixed Kasteleyn orientations on Γ ⊂ Σ. If D and D′ are two
dimer configurations on Γ, then qK

D − qK
D′ ∈ Hom(H1(Σ; Z2); Z2) is given by α 7→

α · ∆(D,D′).

Proof. Let C be a simple closed curve in Γ representing a class α in H1(Σ; Z2). By
definition,

(−1)(q
K
D −qK′

D )(α) =
∏

e∈C

εK
C (e)

∏

e∈C

εK′

C (e) =
∏

e∈C

(−1)ϑK,K′ (e) = (−1)ϑK,K′ (C).

This proves the first point. To check the second one, observe that

(−1)(q
K
D −qK

D′ )(α) = (−1)ℓD(C)+ℓD′ (C).

Clearly, ℓD(C) + ℓD′(C) ≡ C · ∆(D,D′) (mod 2), giving the proposition. �
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Corollary 4.3. Any dimer configuration D on a surface graph Γ ⊂ Σ induces an
isomorphism of affine H1(Σ; Z2)-spaces

ψD : (K(Γ)/ ∼) −→ Q(H1(Σ; Z2), ·) , [K] 7−→ qK
D

from the set of equivalence classes of Kasteleyn orientations on Γ ⊂ Σ onto the set
of quadratic forms on (H1(Σ; Z2), ·). Furthermore, ψD = ψD′ if and only if D and
D′ are equivalent dimer configurations.

Proof. The first part of Proposition 4.2 exactly states that ψD is an isomorphism
of affine H1(Σ; Z2)-spaces. By the second part, ψD = ψD′ if and only if the ho-
momorphism H1(Σ; Z2) → Z2 given by the intersection with ∆(D,D′) is zero. By
Poincaré duality, this is the case if and only if ∆(D,D′) = 0. �

4.2. Spin structures on surfaces. Recall that the fundamental group of SO(n)
is infinite cyclic if n = 2 and cyclic of order 2 if n ≥ 3. Hence, SO(n) admits a
canonical 2-fold cover, denoted by Spin(n) → SO(n).

Let M be an oriented n-dimensional Riemannian manifold, and let PSO → M
be the principal SO(n)-bundle associated to its tangent bundle. A spin structure
on M is a principal Spin(n)-bundle P → M together with a 2-fold covering map
P → PSO which restricts to the covering map Spin(n) → SO(n) on each fiber.
Equivalently, a spin structure on M is a cohomology class ξ ∈ H1(PSO; Z2) whose
restriction to each fiber F gives the generator of the cyclic group H1(F ; Z2).

It is well-known that such a spin structure exists if and only if the second Stiefel-
Whitney class of M vanishes. In such a case, the set S(M) of spin structures on M
is endowed with a natural structure of affine H1(M ; Z2)-space.

The 2-dimensional case is particularly easy to deal with for several reasons. First
of all, any compact orientable surface Σ admits a spin structure, as its second Stiefel-
Whitney class is always zero. Furthermore, spin structures can be constructed using
a certain class a vector fields, that we now describe.

Let f be a non-vanishing vector field on Σ \ σ, where σ is some finite subset of
Σ. Recall that the index of the singularity x ∈ σ of f is defined as the degree of the
circle map t 7→ f(γx(t))/|f(γx(t))|, where γx : S1 → Σ \ σ is a (counter-clockwise)
parametrization of a simple closed curve separating x from the other singularities
of f . Let us denote by Vev(Σ) the set of vector fields on Σ with only even index
singularities. We claim that any such vector field f defines a spin structure ξf on
Σ. Indeed, consider a 1-cycle c in PSO (that is, a closed framed curve in Σ) and
let us assume that c avoids the singularities of f . Then, let ξf (c) ∈ Z2 be the
winding number modulo 2 of f along c with respect to the framing of c. Since all
the singularities of f have even index, ξf (c) = 0 if c is a 1-boundary, and ξf (c) = 1
if c is a small simple closed curve with tangential framing. Therefore, it induces
a well-defined cohomology class ξf ∈ Hom(H1(PSO; Z2); Z2) = H1(PSO; Z2) which
restricts to the generator of the cohomology of the fibers. So ξf is a spin structure
on Σ, and we have a map

Vev(Σ) −→ S(Σ) , f 7−→ ξf .

We shall need one last result about spin structures on surfaces, due to D. Johnson
[5]. Given a spin structure ξ ∈ S(Σ), let qξ : H1(Σ; Z2) → Z2 be the function defined
as follows. Represent α ∈ H1(Σ; Z2) by a collection of disjoint regular simple closed
curves γ1, . . . , γm : S1 →֒ Σ. For all i and all t ∈ S1, complete the unit tangent
vector γ̇i(t)/|γ̇i(t)| to a positive orthonormal basis of Tγi(t)Σ. This gives disjoint
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framed closed curves in Σ, that is, a 1-cycle c in PSO. Set qξ(α) = ξ(c) + m.
Johnson’s theorem asserts that qξ is a well-defined quadratic form on (H1(Σ; Z2), ·),
where · denotes the intersection form. Furthermore, the map

S(Σ) −→ Q(H1(Σ; Z2), ·) , ξ 7−→ qξ

is an isomorphism of affine H1(Σ; Z2)-spaces.

4.3. Proof of Theorem 4.1. Let Γ ⊂ Σ be a surface graph, with Σ right-hand
oriented. Given a Kasteleyn orientation K and a dimer configuration D on Γ ⊂ Σ,
Kuperberg [11] constructs a vector field f(K,D) ∈ Vev(Σ) as follows. Around each
vertex of Γ, make the vectors point to the vertex. At the middle of each edge, make
the vector point 90 degrees clockwise relative to the orientation K of the edge.
Extend this continuously to the whole edges, as described in Figure 6.

.

Figure 6. Kuperberg’s construction.

The Kasteleyn condition (4) ensures that the vector field extends to the faces
with one singularity of even index in the interior of each face. However, this vector
field f̃(K) has an odd index singularity at each vertex of Γ. This is where the dimer
configurationD enters the game: contract the odd index singularities in pairs along
the dimers of D. The resulting vector field f(K,D) has even index singularities:
one in the interior of each face of Σ, and one in the middle of each dimer of D.

Gathering the results of the previous section and Kuperberg’s construction, we
get the following composition of maps:

K(Γ) × D(Γ) −→ Vev(Σ) −→ S(Σ) −→ Q(H1(Σ; Z2), ·) , (K,D) 7−→ qξf(K,D)
.

We are left with the proof that, given any Kasteleyn orientation K and dimer con-
figuration D, the resulting quadratic form q = qξf(K,D)

coincides with the function

qK
D defined in the statement of Theorem 4.1. So, given α ∈ H1(Σ; Z2), represent

it by a collection of simple closed curves C1, . . . , Cm in Γ. (This is always possi-
ble as Γ induces a cellular decomposition of Σ.) Since q is a quadratic form and
α =

∑m
i=1[Ci],

(−1)q(α) = (−1)
∑

i<j
Ci·Cj

m
∏

i=1

(−1)q([Ci]).

Therefore, we just need to check that if C is an oriented simple closed curve in Γ,
then (−1)q([C])+1 = εK(C)(−1)ℓD(C). Consider the oriented regular curve γ in Σ
which follows C slightly on its left, and goes around the middle of each dimer it
meets, except if it meets the same dimer twice. In this case, γ stays close to C, as
illustrated in Figure 7. Clearly, γ is a regular oriented simple closed curve in Σ.
Furthermore, it is homologous to C and it avoids all the singularities of f(K,D).
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We now have to check that the winding number ω of f(K,D) along γ with respect
to its tangential framing satisfies (−1)ω = εK(C)(−1)ℓD(C). One easily check that
ω is equal (mod 2) to the winding number ω0 of f(K,D) along γ0, where γ0 is the
regular curve which goes around the middle of each dimer it meets, including the
ones it meets twice. By construction of f(K,D), ω0 is equal to the winding number

ω̃ of f̃(K) along γ̃, where γ̃ is the regular curve which avoids all the dimers of D
and all the vertices of Γ, as described in Figure 7.

γ
C

γ0
C

γ̃
C

Figure 7. The oriented simple closed curve C ⊂ Γ and its associ-
ated regular curves γ, γ0 and γ̃. The curve C is in solid, the dimers
are in traced lines.

The latter winding number ω̃ can be computed locally by cutting γ̃ into pieces:
one piece γ̃e for each edge e of C, and one piece γ̃v for each vertex v of Γ adjacent
to a dimer of D sticking out to the left of C. The theorem now follows from the
following case study.

1. Let us assume that e is an edge of C such that εK
C (e) = +1. In this case,

the vector field f̃(K) along γ̃e in the tangential framing of γ̃e defines a curve which
is homotopically trivial, as illustrated in Figure 8. Hence, its contribution to ω̃ is
null.

2. Consider now the case of an edge e of C such that εK
C (e) = −1. This time,

f̃(K) along γ̃e defines a simple close curve around the origin (see Figure 8). Its
contribution to ω̃ is equal to 1 (mod 2).

3. Let v be a vertex of C with a dimer of D sticking out of v to the left of
C. Then, the vector field f̃(K) along γ̃v induces a simple closed curve around the
origin, so its contribution to ω̃ is equal to 1 (mod 2). The case illutrated in Figure
8 is when K orients the dimer from v to its other boundary vertex. The other case
is similar.

Gathering all the pieces, the winding number of f̃(K) along γ̃ is equal to
∏

e∈C ε
K
C (e)(−1)ℓD(C). This concludes the proof of Theorem 4.1. �

Using Johnson’s theorem, we have the following immediate consequence of Corol-
lary 4.3.

Corollary 4.4. Any dimer configuration D on a surface graph Γ ⊂ Σ induces an
isomorphism of affine H1(Σ; Z2)-spaces

ψD : (K(Γ)/ ∼) −→ S(Σ)
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1. 2. 3.

C C

C

e e

v

Figure 8. Computation of the local winding numbers.

from the set of equivalence classes of Kasteleyn orientations on Γ ⊂ Σ onto the
set of spin structures on Σ. Furthermore, ψD = ψD′ if and only if D and D′ are
equivalent dimer configurations. �

5. Pffafian formulae for the partition function and correlation

functions

5.1. The Kasteleyn matrix and its Pfaffian. Let K be a Kasteleyn orientation
on a surface graph Γ ⊂ Σ with an even number of vertices. Enumerate these vertices
by 1, 2, . . . , N = 2n. The Kasteleyn matrix is the 2n× 2n skew-symmetric matrix
AK(Γ;w) = AK whose entry aK

ij is the total weight of all edges from i to j minus
the total weight of all edges from j to i. More formally,

aK
ij =

∑

e

εK
ij (e)w(e),

where the sum is on all edges e in Γ between the vertices i and j, εK
ij (e) = 0 if i = j,

and

εK
ij (e) =

{

1 if e is oriented by K from i to j;

−1 otherwise,

if i 6= j.
Consider a dimer configuration D on Γ given by edges e1, . . . , en matching ver-

tices iℓ and jℓ for ℓ = 1, . . . , n. It determines an equivalence class of permutations
σ : (1, . . . , 2n) 7→ (i1, j1, . . . , in, jn) with respect to permutations of pairs (iℓ, jℓ)
and transpositions (iℓ, jℓ) 7→ (jℓ, iℓ). We will write this as σ ∈ D. Given such a
permutation σ, define

εK(D) = (−1)σ
n

∏

ℓ=1

εK
iℓjℓ

(eℓ),

where (−1)σ denotes the sign of the permutation σ. Note that this expression does
not depend on the choice of σ ∈ D, but only on the dimer configuration D.

Theorem 5.1. Let Γ ⊂ Σ be a surface graph with an even number of vertices. For
any dimer configuration D0 on Γ and any Kasteleyn orientation K on Γ ⊂ Σ,

(5) εK(D0)Pf(AK) =
∑

α∈H1(Σ;Z2)

(−1)qK
D0

(α) Zα(D0),
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where qK
D0

is the quadratic form on H1(Σ; Z2) associated to K and D0, and

Zα(D0) =
∑

D

w(D),

the sum being on all dimer configurations D such that ∆(D0, D) = α.

Proof. Recall that the Pfaffian of a skew-symmetric matrix A = (aij) of size 2n is
given by

Pf(A) =
∑

[σ]∈Π

(−1)σaσ(1)σ(2) · · · aσ(2n−1)σ(2n),

where the sum is on the set Π of matchings of {1, . . . , 2n}. Therefore,

Pf(AK) =
∑

[σ]∈Π

(−1)σaK
σ(1)σ(2) · · · a

K
σ(2n−1)σ(2n)

=
∑

[σ]∈Π

(−1)σ
∑

e1

εK
σ(1)σ(2)(e1)w(e1) · · ·

∑

en

εK
σ(2n−1)σ(2n)(en)w(en)

=
∑

D

(−1)σ
n

∏

ℓ=1

εK
σ(2ℓ−1)σ(2ℓ)(eℓ)w(eℓ)

=
∑

D

εK(D)w(D),

where the sum is on all dimer configurations D on Γ. Hence,

εK(D0)Pf(AK) =
∑

D

εK(D0)ε
K(D)w(D).

Let us denote by e1, . . . , en the edges of Γ occupied by dimers ofD, and by e01, . . . , e
0
n

the edges occupied by dimers of D0. Fix permutations σ and τ representing the
dimer configurations D and D0, respectively, and set ν = τ ◦ σ−1. By definition,

εK(D0)ε
K(D) = (−1)τ

n
∏

ℓ=1

εK
τ(2ℓ−1)τ(2ℓ)(e

0
ℓ) · (−1)σ

n
∏

ℓ=1

εK
σ(2ℓ−1)σ(2ℓ)(eℓ)

= (−1)ν
n

∏

ℓ=1

εK
ν(σ(2ℓ−1))ν(σ(2ℓ))(e

0
ℓ)ε

K
σ(2ℓ−1)σ(2ℓ)(eℓ).

Note that the permutation ν depends on the choice of σ ∈ D and τ ∈ D0, but it
always brings the perfect matching D to D0. Moreover, one can choose represen-
tatives σ ∈ D and τ ∈ D0 such that ν is the counter-clockwise rotation by one
edge of every (D0, D)-composition cycle C1, . . . , Cm. For this particular choice of
representatives, we have

εK(D0)ε
K(D) = (−1)

∑

m
i=1(length(Ci)+1)

m
∏

i=1

εK(Ci) =

m
∏

i=1

(−εK(Ci)).

Here, we use the fact that the length of a permutation cycle is the length of the
corresponding composition cycle, and that the length of each composition cycle is
even. Recall the quadratic form qK

D0
of Theorem 4.1. Since the Ci’s are disjoint

(D0, D)-composition cycles, Ci · Cj = 0 and ℓD0(Ci) = 0 for all i, j. Therefore,

m
∏

i=1

(−εK(Ci)) = (−1)qK
D0

(∆(D0,D)).
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The theorem follows. �

5.2. The partition function. Given a dimer configuration D0, Theorem 5.1 pro-
vides 22g linear equations (one for each equivalence class of Kasteleyn orientation)
with 22g unknowns (the functions Zα(D0)). We want to use these equations to
express the dimer partition function Z =

∑

α Zα(D0) in terms of Pfaffians.
Let V ×V → Z2, (α, β) 7→ α ·β be a non-degenerate bilinear form on a Z2-vector

space V . Recall that the Arf invariant of a quadratic form q : V → Z2 on (V, ·) is
given by

Arf(q) =
1

|V |

∑

α∈V

(−1)q(α).

Lemma 5.2. Let q, q′ be two quadratic forms on (V, ·). Then,

Arf(q)Arf(q′) = (−1)q(∆) = (−1)q′(∆),

where ∆ ∈ V satisfies (q + q′)(α) = ∆ · α for all α ∈ V .

Proof. First note that q + q′ is a linear form on V . Since the bilinear form · is
non-degenerate, there exists ∆ ∈ V such that (q + q′)(α) = α · ∆ for all α ∈ V .

Furthermore, (q+q′)(∆) = ∆·∆ = 0, so (−1)q(∆) = (−1)q′(∆). Let us now compute
the product of the Arf invariants:

Arf(q)Arf(q′) =
1

|V |

∑

α,β∈V

(−1)q(α)+q′(β) =
1

|V |

∑

α,β∈V

(−1)q(α)+q′(β+∆).

Using the equality

q(α) + q′(β + ∆) = q(α) + q′(β) + q′(∆) + β · ∆

= q(α) + q(β) + q′(∆) = q(α+ β) + α · β + q(∆),

we obtain

Arf(q)Arf(q′) =
(−1)q(∆)

|V |

∑

α,β

(−1)q(α+β)+α·β

=
(−1)q(∆)

|V |

(

∑

α

1 +
∑

α6=β

(−1)q(α+β)+α·β
)

.

We are left with the proof that the latter sum is zero:
∑

α6=β

(−1)q(α+β)+α·β =
∑

γ 6=0

(−1)q(γ)
∑

α+β=γ

(−1)α·β =
∑

γ 6=0

(−1)q(γ)(n0
γ − n1

γ),

where ni
γ is the cardinality of the set

N i
γ = {(α, β) ∈ V × V |α+ β = γ and α · β = i}

for i = 0, 1. Since γ 6= 0 and (V, ·) is non-degenerate, there exists x ∈ V such that
x · γ = 1. Then, the map (α, β) 7→ (α + x, β + x) induces a bijection N0

γ → N1
γ .

Hence n0
γ = n1

γ for all γ 6= 0, and the lemma is proved. �

Using this lemma, it is easy to check that if dim(V ) = 2n, then there are exactly
22n−1 +2n−1 quadratic forms on (V, ·) with Arf invariant 1 and 22n−1−2n−1 forms
with Arf invariant −1.
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Theorem 5.3. The partition function of a dimer model on a surface graph Γ ⊂ Σ
for a closed surface of genus g is given by the formula

(6) Z =
1

2g

∑

[K]

Arf(qK
D0

)εK(D0)Pf(AK),

where the sum is taken over all equivalence classes of Kasteleyn orientations. Each
summand is defined for a Kasteleyn orientation but it depends only on its equiva-
lence class. Furthermore, the sign Arf(qK

D0
)εK(D0) does not depend on D0.

Proof. Recall that there is a free, transitive action of H1(Σ; Z2) on the set of equiv-
alence classes of Kasteleyn orientations on Γ ⊂ Σ (Theorem 3.2). Let us denote by
Kφ the result of the action of φ ∈ H1(Σ; Z2) on a Kasteleyn orientation K. Then,
by the first part of Proposition 4.2,

(−1)(q
K
D0

+q
Kφ
D0

)(α) = (−1)φ(α) =: χα(φ).

Here χα’s are characters of irreducible representations of H1(Σ; Z2).
By equation (5),

εKφ(D0)Pf(AKφ) =
∑

α∈H1(Σ;Z)

(−1)q
Kφ
D0

)(α)Zα(D0)

for all φ ∈ H1(Σ; Z). Multiplying these equations by (−1)q
Kφ
D0

(β) and taking the
sum over all φ ∈ H1(Σ; Z), we get

∑

φ

(−1)q
Kφ
D0

(β)εKφ(D0)Pf(AKφ) =
∑

φ

∑

α

(−1)q
Kφ
D0

(α)+q
Kφ
D0

(β)Zα(D0)

=
∑

α

(−1)qK
D0

(α)+qK
D0

(β)
∑

φ

χα(φ)χβ(φ)Zα(D0).

Using the orthogonality formula
∑

φ χα(φ)χβ(φ) = 22gδαβ , we obtain

Zα(D0) =
1

22g

∑

φ

(−1)q
Kφ
D0

(α)εKφ(D0)Pf(AKφ).

Therefore, the partition function Z =
∑

α Zα(D0) is given by

Z =
1

2g

∑

φ∈H1(Σ;Z2)

σKφPf(AKφ),

where

σKφ = εKφ(D0)
1

2g

∑

α∈H1(Σ;Z2)

(−1)q
Kφ
D0

(α) = εKφ(D0)Arf(q
Kφ

D0
).

This gives the formula

Z =
1

2g

∑

φ∈H1(Σ;Z2)

Arf(q
Kφ

D0
)εKφ(D0)Pf(AKφ).

Since H1(Σ,Z2) acts transitively and freely on the equivalence classes of Kasteleyn
orientations, equality (6) follows.

If K and K ′ are equivalent Kasteleyn orientations, then qK
D0

= qK′

D0
so Arf(qK

D0
) =

Arf(qK′

D0
). On the other hand, εK(D0) = (−1)µεK′

(D0) and Pf(AK) = (−1)µPf(AK′),
where µ is the number of vertices of Γ around which the orientation was flipped.
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Therefore, the summand Arf(qK
D0

)εK(D0)Pf(AK) does not depend on the choice of
the representative in the equivalence class [K].

Let us finally check that the sign Arf(qK
D0

)εK(D0) does not depend on D0. Let
D be another dimer configuration on Γ. By Proposition 4.2, Lemma 5.2 and the
proof of Theorem 5.1,

A(qK
D0

)εK(D0)A(qK
D )εK(D) = (−1)qK

D (∆(D0,D))Arf(qK
D0

)A(qK
D ) = 1.

This concludes the proof of the theorem. �

5.3. Local correlation functions. In order to express local correlation functions
< σe1 · · ·σek

> as combinations of Pfaffians, let us recall several facts of linear
algebra.

Let A = (aij) be a matrix of size 2n. Given an ordered subset I of the ordered
set α = (1, . . . , 2n), let AI denote the matrix obtained from A by removing the ith

row and the ith column for all i ∈ I. Also, let (−1)σ(I) denote the signature of the
permutation which sends α to the ordered set I(α\I). If A is skew-symmetric, then
for all ordered set of indices I = (i1, j1, . . . , ik, jk),

∂kPf(A)

∂ai1j1 · · ·∂aikjk

= (−1)σ(I)Pf(AI).

Furthermore, if A is invertible, then Pf(A) 6= 0 and

(−1)σ(I)Pf(AI) = (−1)kPf(A)Pf((A−1)α\I).

So, let e1, . . . , ek be edges of the graph Γ, and let iℓ, jℓ be the two boundary
vertices of eℓ for ℓ = 1, . . . , k. For simplicity, we shall assume that Γ has no
multiple edges. Finally, set I = (i1, j1, . . . , ik, jk). Applying the identities above to
the Kasteleyn matrices Aφ = AKφ , Theorem 5.3 gives

k
∏

ℓ=1

w(eℓ)
∂kZ

∂w(e1) · · · ∂w(ek)
=

1

2g

∑

φ

σKφ

k
∏

ℓ=1

aφ
iℓjℓ

∂k

∂aφ
i1j1

· · ·∂aφ
ikjk

Pf(Aφ)

=
1

2g

∑

φ

σKφ

k
∏

ℓ=1

aφ
iℓjℓ

(−1)σ(I)Pf(Aφ
I )

If the Kasteleyn matrix is invertible for any Kasteleyn orientation of Γ, this
expression is equal to

(−1)k

2g

∑

φ

σKφ

k
∏

ℓ=1

aφ
iℓjℓ

Pf(Aφ)Pf((Aφ)−1
α\I).

Since

< σe1 · · ·σek
>=

w(e1) · · ·w(ek)

Z

∂kZ

∂w(e1) · · · ∂w(ek)
,

the correlation functions are given by

< σe1 · · ·σek
>= (−1)k

∑

φ σ
KφPf(Aφ)

∏

ℓ a
φ
iℓjℓ

Pf((Aφ)−1
α\I)

∑

φ σ
KφPf(Aφ)

.

if the Kasteleyn matrix is invertible for all possible Kasteleyn orientations of Γ.
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If Γ is a planar graph, then the Kasteleyn matrix is always invertible since its
Pfaffian is equal to the partition function. Therefore,

< σe1 · · ·σek
>= (−1)kaK

i1j1 · · ·a
K
ikjk

Pf((AK)−1
α\I),

where K is any Kasteleyn orientation on Γ ⊂ S2.
On the other hand, there are graphs where some Kasteleyn matrix is not in-

vertible. For example, consider a square lattice on a torus. Then, the Kasteleyn
matrix corresponding to the spin structure with Arf invariant −1 is not invertible
(see [15]).

Appendix A. Dimers and Grassman integrals

A.1. Grassman integrals and Pfaffians. Let V be an n-dimensional vector
space. Its exterior algebra ∧V = ⊕n

k=0 ∧k V is called the Grassman algebra of
V . The choice of a linear basis in V induces an isomorphism between ∧V and the
algebra generated by elements φ1, . . . , φn with defining relations φiφj = −φjφi.
The isomorphism identifies the linear basis in V with the generators φi.

Choose an orientation on V . Together with the basis in V , this defines a basis
in the top exterior power of V . The integral over the Grassman algebra of V of an
element a ∈ ∧V is the coordinate of a in the top exterior power of V with respect
to this basis. It is denoted by

∫

a dφ.

In physics, elements φ are called Fermionic fields. More precisely, they are called
neutral fermionic fields (or neutral fermions). They are called charged fermions if
there is an action of U(1) on V .

Recall that the Pfaffian of a skew symmetric matrix A of even size n is given by

Pf(A) =
1

2
n
2

(

n
2

)

!

∑

σ∈Sn

(−1)σaσ(1)σ(2) · · · aσ(n−1)σ(n),

where the sum is over all permutations σ ∈ Sn. (This formula is easily seen to be
equivalent to the one stated in Section 5.) Expanding the exponent into a power
series, one gets the following identity in ∧V :

π
(

exp
(1

2

n
∑

i,j=1

aijφi ∧ φj

))

= Pf(A)φ1 ∧ · · · ∧ φn,

where π : ∧ V → ∧nV is the projection to the top exterior power. In terms of
Grassmann integral, this can be expressed as

(7)

∫

exp
(1

2

n
∑

i,j=1

φiaijφj

)

dφ = Pf(A).

Let us now assume that the space V is polarized, i.e. that V = W ⊕W ∗ with W
some vector space and W ∗ its dual. Then, the Grassman algebra of V is isomorphic
to the tensor product of Grassman algebras for W and for W ∗ in the category of
super-vector spaces. That is, if the dimension of W is k, the Grassman algebra of V
is isomorphic to the algebra generated by ψi, ψ

∗
i , i = 1, . . . k with defining relations

ψiψj = −ψjψi, ψiψ
∗
j = −ψ∗

jψi, and ψ∗
i ψ

∗
j = −ψ∗

jψ
∗
i . Such an isomorphism is

specified by the choice of a linear basis in W . Note that such a choice induces a
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basis in V (take the dual basis in W ∗) and an orientation on V given by the ordering
ψ1, . . . , ψn, ψ

∗
1 , . . . , ψ

∗
n. The Grassmann integral of an element a ∈ ∧V with respect

to this choice of basis in W is denoted by
∫

a dψdψ∗.

Expanding the exponent, we obtain

(8)

∫

exp
(

k
∑

i,j=1

ψiaijψ
∗
j

)

dψdψ∗ = (−1)
k(k−1)

2 Det(A).

Comparing this formula with (7), we obtain the following well known identity

Pf

(

0 A
−At 0

)

= (−1)
k(k−1)

2 Det(A).

Now consider the space U = V ⊕ V ∗. Let φ1, . . . , φn be a basis in V and

φ∗1, . . . , φ
∗
n be the dual basis in V ∗. Using the change of variables χi =

φi+
√
−1φ∗

i√
2

,

χ∗
i =

φi−
√
−1φ∗

i√
2

, together with the equalities (7) and (8), we obtain

Pf(A)2 =

∫

exp
(1

2

n
∑

i,j=1

aijφiφj +
1

2

n
∑

i,j=1

aijφ
∗
iφ

∗
j

)

dφdφ∗

= (−1)
n(n−1)

2

∫

exp
(

n
∑

i,j=1

χiaijχ
∗
j

)

dχdχ∗

= Det(A).

One can easily derive other Pfaffian identites in a similar way .

A.2. Dimer models on graphs and Grassman integrals. Let Γ ⊂ Σ be a
surface graph, and let AK = (aK

ij ) be the Kasteleyn matrix associated with a
Kasteleyn orientation K on Γ ⊂ Σ. By Theorem 5.3 and identity (7), the partition
function for dimers on Γ is given by

Z =
1

2g

∑

[K]

Arf(qK
D0

)εK(D0)

∫

exp
(1

2

∑

i,j∈V (Γ)

φia
K
ijφj

)

dφ,

where V (Γ) denotes the set of vertices of Γ.
Recall that εK(D0) = (−1)σ

∏n
ℓ=1 ε

K
iℓjℓ

, where the dimer configurationD0 matches
vertices iℓ and jℓ for ℓ = 1, . . . , n, and σ is the permutation (1, . . . , 2n) 7→ (i1, j1, . . . , in, jn).
Taking into account the identity

(−1)σ
n

∏

ℓ=1

εK
iℓjℓ

dφ1 . . . dφ2n =

n
∏

ℓ=1

εK
iℓjℓ

dφiℓ
dφjℓ

,

the formula for the partition function can be written as

Z =
1

2g

∑

[K]

∫

exp
(1

2

∑

i,j∈V (Γ)

φia
K
ijφj

)

DKφ,

where

DKφ = Arf(qK
D0

)εK(D0) dφ = Arf(qK
D0

)

n
∏

ℓ=1

εK
iℓjℓ

dφiℓ
dφjℓ

.
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Similarly, local correlation functions can be written as

< σe1 · · ·σek
>=

1

2gZ

∑

[K]

∫

exp
(1

2

∑

i,j /∈I

φia
K
ijφj

)

k
∏

l=1

aK
iljl
φil
φjl
DKφ.

Here il and jl are the boundary vertices of the edge el, and I = (i1, j1, . . . , ik, jk).
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