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Abstract

 Background—Dimethyl fumarate (DMF) alters the phenotype of circulating immune cells 

and causes lymphopenia in a subpopulation of treated MS patients.

 Objective—To phenotypically characterize circulating leukocytes in DMF-treated MS 

patients.

 Methods—Cross-sectional observational comparisons of peripheral blood from DMF-treated 

MS patients (n=17 lymphopenic, 24 non-lymphopenic), untreated MS patients (n=17) and healthy 

controls (n=23) that was immunophenotyped using flow cytometry. Longitudinal samples were 

analyzed for 13 DMF-treated patients.

 Results—Lymphopenic DMF-treated patients had significantly fewer circulating CD8+ and 

CD4+ T-cells, CD56dim NK cells, CD19+ B-cells and plasmacytoid dendritic cells compared to 

controls. CXCR3+ and CCR6+ expression was disproportionately reduced among CD4+ T-cells 

while the proportion of T regulatory cells was unchanged. DMF did not affect circulating CD56hi 

NK-cells, monocytes or myeloid dendritic cells. Whether lymphopenic or not, DMF-treated 

patients had a lower proportion of circulating central and effector memory T cells and concomitant 

expansion of naïve T cells compared to controls.

 Conclusions—DMF shifts the immunophenotypes of circulating T cells, causing reduction of 

memory cells and relative expansion of naïve cells regardless of absolute lymphocyte count. This 

may represent one mechanism of action of the drug. Lymphopenic patients had disproportionate 

loss of CD8+ T cells, which may affect their immunocompetence.
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 Introduction

Dimethyl fumarate (DMF) was FDA approved in 2013 for the treatment of relapsing 

multiple sclerosis (MS). In clinical trials, absolute lymphocyte counts (ALC) typically 

dropped by about 30% and a subset of patients (5-6%) developed severe lymphopenia with 

an ALC of <500 while on drug (1, 2). DMF-induced lymphopenia is even more common in 

clinical practice. In a small clinical cohort, half of patients treated for >12 months developed 

lymphocyte counts below the lower limit of normal; CD8+ T cells were preferentially lost 

(3). In another study, older patients (over 55 years of age), patients with lower baseline ALC, 

and patients with recent natalizumab (NTZ) exposure appeared to be at higher risk of 

lymphopenia (4).

The mechanism by which DMF acts to reduce relapses in MS is multifactorial and may 

include lymphocyte depletion. Indeed, MS is viewed as a lymphocyte-mediated disease (5). 

Depleting autoreactive cells and inhibiting their access to the CNS are known mechanisms 

for other MS disease modifying therapies (DMTs).

Nevertheless, lymphopenia is also a risk factor for infection. While opportunistic infections 

are uncommon, progressive multifocal leukoencephalopathy (PML) has been identified 

among patients taking DMF and related fumarate compounds (6-9). Affected patients were 

lymphopenic and had been treated with fumarates for years. Fatal West Nile encephalitis, 

disseminated varicella zoster, and Kaposi sarcoma have also been associated with fumarates 

(10-12).

A better understanding of DMF-induced lymphopenia is necessary to understand the 

mechanism of this immune-modulating drug and to predict and manage complications that 

may arise with long term use. To this end, an extensive immunophenotypic analysis of blood 

leukocytes in lymphopenic and non-lymphopenic DMF-treated patients compared to 

untreated MS patients and healthy individuals was performed.

 Methods

 Subject selection

This was a cross-sectional, observational study. We enrolled 41 MS patients who had been 

stable on DMF (Tecfidera, Biogen, Weston, MA; 240mg p.o. bid) for ≥6 months, including 

17 patients with grade 2-3 lymphopenia (ALC of <800 cells/µl) according to the common 

terminology criteria for adverse events (http://evs.nci.nih.gov/ftp1/CTCAE/

CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf). Lymphopenic patients were 

specifically recruited. We also recruited 17 MS patients who were not taking DMT and 23 

healthy volunteers to serve as controls. Patients who had received steroids within the last 3 

months were excluded. Blood samples were drawn between 8:30 AM and 1:30 PM. EDSS 

scores were retrospectively determined for MS patients based on clinical documentation at 

the time of enrollment. Serial specimens were obtained from 13 subjects. The time between 

blood draws was 4-6 months (median 6 months). Two patients made their initial donation 

after taking DMF for only 3-4 months; data from those initial samples were included only in 

the longitudinal portion of the analysis. This study was approved by the Washington 
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University Human Research Protection Office and all subjects provided written informed 

consent.

 Leukocyte phenotyping

Fresh whole blood was labeled with CD25, CD45RA, CD45RO, CD86 (clone FUN-1), 

CCR7 (clone 150503; all from BD Biosciences), Foxp3 (clone 259D), CXCR3 (clone 

G025H7), BDCA-2 (clone 201), BDCA-4 (clone 12C2), Lin-1, CD1c (clone L161; all from 

Biolegend), CCR6 (clone R6H1), CD56 (clone CMSSB), C14 (clone 61D3), CD3 (clone 

SK7), CD62L (clone DREG-56; all from eBioscience), HLA-DR, CD4 and CD8 (Beckman 

Coulter). Fluorescent eBeads (eBioscience) were added to allow calculation of absolute cell 

numbers and flow cytometry was performed using a Beckman Coulter Gallios instrument 

with 10 fluorescent channels.

 Statistical analysis

Statistical analysis was performed using GraphPad Prism 6 (La Jolla, CA) and SPSS version 

23.0 (IBM Corp, Armonk, NY). Because most of the data were not normally distributed, 

comparisons between groups were performed using Kruskal-Wallis ANOVA with Dunn's 

multiple comparison test for differences between groups. We also performed multiple linear 

regression analyses to control for age between the groups. Results were considered 

significant at p<0.05.

 Results

Flow cytometric analysis of peripheral immune cells was performed in 41 DMF treated MS 

patients, 17 untreated MS controls and 23 healthy controls (HC) (Supplementary Table 1). 

DMF treated MS patients included 17 patients with grade 2-3 lymphopenia based on routine 

laboratory testing (DMF-L; mean ALC 594 cells/µl, range 300-800) and 24 patients with 

normal lymphocyte counts (DMF-N; mean ALC 1493 cells/µl, range 900-3300). Groups had 

similar baseline demographics including age (mean 46, range 25-69), sex, and EDSS 

(median 2.75, range 0-6.5) (Supplementary Table 1). There were no significant differences 

between DMF groups in terms of prior treatments (most patients had transitioned to DMF 

from interferons or glatiramer) or number of prior disease modifying therapies. 

Lymphopenic patients had a slightly longer exposure to DMF compared to non-lymphopenic 

patients and had carried a diagnosis of MS for longer than untreated MS controls 

(Supplementary Table 1). The duration of MS did not differ between lymphopenic and non-

lymphopenic DMF treated patients.

Absolute cell counts for all T-lymphocyte populations, including CD4+, CD8+ and T 

regulatory cells (T-regs; CD4+ CD25+ Foxp3+), were significantly reduced in lymphopenic 

DMF-treated patients compared to HC and MS controls (Figure 1A-C, Table 1). Non-

significant trends for lower T-lymphocyte counts in non-lymphopenic DMF-treated patients 

compared to the control groups were observed. Despite reduced absolute numbers of 

circulating T-regs among lymphopenic patients, the proportion of T-regs did not change 

between treatment groups (Table 2, Figure 1B, H). Relative reduction in CD8+ T-cells was 
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particularly marked in lymphopenic patients, evidenced by an increased CD4/CD8 ratio 

(Figure 1I, Table 1).

Among other immune cell subsets, lymphopenic DMF-treated patients had significantly 

fewer CD56dim natural killer cells (NK cells; CD3− CD56dim) compared to HC and MS 

controls. Numbers of CD56dim NK cells were also reduced in non-lymphopenic DMF 

treated patients compared to HC (Figure 1E). CD19+ B cells and plasmacytoid dendritic 

cells (pDCs; Lin1− HLADR+ CD1c− BDCA4+ BDCA2+) were reduced compared to 

controls in lymphopenic DMF-treated patients (Figure 1D, G). There were no differences in 

the absolute numbers of CD14+ monocytes, CD56hi NK cells, or myeloid DCs (Lin1− 

HLADR+ CD1c+ BDCA4− BDCA2−) compared to controls (Figure 1F, H; Table 1).

Given the variable treatment intervals, we subdivided DMF treated patients into those treated 

for 6-12 months (n=11 for DMF-N and n=5 for DMF-L) and those treated for >12 months 

(n=16 for DMF-N and n=12 for DMF-L; three patients contributed samples to both the 6-12 

month subgroup and the >12 month subgroup). No significant differences between these 

groups were observed for any lymphocyte subset (data not shown).

Within CD4+ and CD8+ lymphocyte subsets, we assessed the proportion of naïve, central 

memory (TCM) and effector memory (TEM) populations. DMF treatment was associated 

with relative expansion of the CD4+ and CD8+ naïve (CD45RA+ CCR7+) T cell subset and 

loss of TCM(CD45RA− CCR7+) and TEM(CD45RA− CCR7−) subsets for both lymphopenic 

and non-lymphopenic patients (Table 2, Figure 2A, B). We confirmed these findings using 

an alternate method of identifying TCM(CD45RO+ CD62L+) and TEM(CD45RO+ CD62L−). 

Using this definition, we again observed that the fractions of circulating TCM and TEM were 

significantly decreased for both groups of DMF-treated patients when compared to healthy 

and MS controls with concurrent relative expansion of naïve T cell populations 

(Supplementary Figure 1). Analyses of serial blood samples from a subset of our cohort 

demonstrated that these lymphocyte populations were generally stable over time (Figure 2 

C-D). A trend for recovery of the effector memory CD4+ T-cell population with time was 

observed in some subjects; all other subsets were unchanged during ongoing DMF exposure.

L-selectin (CD62L) is downregulated on T cells as they differentiate and become activated. 

Moreover, low numbers of circulating CD62L+ CD4+ T cells may be a biomarker for PML 

risk among NTZ treated patients (13). Thus, circulating CD62L+ CD4+ lymphocytes were 

compared between groups. Both lymphopenic and non-lymphopenic DMF-treated patients 

had expansion of the CD62L+ CD4+ lymphocyte population compared to untreated MS 

controls and HC (Table 2).

Our cohort included a wide age range, and age has previously been linked to DMF-induced 

lymphopenia (4). Therefore, we performed multiple linear regression models to account for 

age. After controlling for age, DMF treatment remained a significant predictor for numbers 

of CD4+ and CD8+ T-cells, T-reg, CD56dim NK (p≤0.001 for all), and pDC (p=0.004) as 

well as for percentages of CD4+ and CD8+ naïve, TCM and TEM (p<0.001 for all). However, 

DMF was not a significant predictor for CD19+ cell number after controlling for age 

(p=0.123). Interestingly, age was an independent predictor of CD8+ (including naïve and 
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TEM subsets) and plasmacytoid DC cells but did not contribute to other circulating 

lymphocyte subpopulations.

CXCR3 has been considered a surrogate marker for CD4+ T-helper (Th) 1-type pro-

inflammatory lymphocytes, while CCR6 has been considered a surrogate marker for IL-17 

producing Th17-type lymphocytes. Both subsets are thought to be pathogenic in MS 

(14-16). We examined expression of these chemokine receptors on CD4+ and CD8+ T cells. 

Among lymphopenic DMF-treated patients, a smaller fraction of circulating CD4+ T cells 

expressed CXCR3 and CCR6 when compared to controls (Table 2; Figure 3A-B). Despite 

reductions in CD8+ numbers with DMF treatment, there were no changes in the proportions 

of CXCR3 or CCR6-expressing CD8+ T cells (Figure 3C-D).

 Discussion

We performed extensive immune phenotyping of peripheral immune cells in DMF-treated 

patients with and without lymphopenia as well as in HC and untreated MS controls and 

demonstrated reductions of multiple circulating immune cell subsets, particularly CD4+ and 

CD8+ T lymphocytes, among lymphopenic DMF-treated patients. Moreover, we 

demonstrated that DMF shifts the immunophenotype of circulating T cells, causing selective 

reductions of circulating central and effector memory CD4+ and CD8+ lymphocytes 

regardless of absolute lymphocyte counts. These data may help elucidate the mechanism of 

action for DMF as well as provide additional information about the immunocompetence of 

patients taking DMF.

Memory T lymphocytes are responsible for mounting a rapid, robust immune response to a 

previously encountered antigen. In the healthy immune system, antigen-specific TEM rapidly 

migrate to areas of infection or inflammation and have immediate effector function while 

TCM home to secondary lymphoid tissue, proliferate in response to antigenic stimulation and 

differentiate into TEM. Presumably, the majority of autoreactive T cells in MS are memory 

cells (17). Indeed, this is the premise behind recent trials of stem cell transplant in MS; by 

eradicating autoreactive memory populations and “rebooting” the immune system using 

autologous stem cells, patients have achieved long lasting remission and in some cases, 

reversal of disability (18, 19). Depleting memory T cells may therefore be a key mechanism 

for DMF efficacy analogous to an established mechanism of action for other MS therapies. 

Fingolimod depletes circulating naïve T cells and TCM (20) and the number of circulating 

TCM is a biomarker of response to fingolimod (21). Similarly, we have now shown that DMF 

reduces circulating TCM in MS patients. Unlike fingolimod, DMF expands the proportion of 

naïve T cells in the circulation and reduces TEM.

Reduction in circulating CD62L+ CD4+ lymphocytes has been proposed as a possible 

biomarker of PML risk for NTZ treated patients. Schwab and colleagues showed that this T 

cell subset was markedly diminished in NTZ-treated patients who subsequently developed 

PML when compared to controls and to NTZ-treated patients who did not develop PML 

(13). Given recent concerns about possible PML risk with DMF therapy, we assessed this T 

cell population among our cohort and found that CD62L+ CD4+ lymphocytes were relatively 

expanded among patients taking DMF. The role of L-selectin (CD62L) in MS is 
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controversial (22); it is an adhesion molecule that is downregulated as T cells mature and 

become activated (23). The expansion of CD62L+ populations in DMF-treated individuals 

thus parallels the expansion of naïve T cells. Whether loss of circulating CD62L+ CD4+ T 

cells is a biomarker for PML risk in DMF-treated patients deserves investigation. Indeed, the 

mechanism of DMF-induced T cell redistribution requires further study. In vitro data suggest 

that fumarates induce T cell apoptosis as well as impair lymphocyte proliferation and DC 

differentiation (24, 25). Future studies should investigate lymphocyte differentiation and 

maturation in patients taking DMF to further explore the phenomenon of drug-induced T 

lymphocyte redistribution.

We observed loss of several other immune subsets in DMF-treated patients when compared 

to controls. NK cells are subdivided into the CD56dim population, which has enhanced 

killing activity, and the CD56hi population, which secretes large amounts of cytokines but is 

not cytotoxic (26). Recent work has illustrated that CD56hi NK-cells are immunoregulatory; 

these are expanded by daclizumab, a monoclonal antibody currently undergoing trials for 

MS. CD56hi NK cell expansion is thought to contribute to the efficacy of daclizumab in MS 

(27). Patients taking DMF maintained this immunomodulatory CD56hi population. In 

contrast, CD56dim NK-cells were decreased in both lymphopenic and non-lymphopenic 

patients. Little is known about the role of CD56dim NK cells in MS, although one study 

suggested that this population expands in progressive MS (28).

We also observed a modest decrease in pDCs among lymphopenic DMF-treated patients 

compared to HC. This versatile cell type performs many immune functions including 

production of type 1 interferons; pDCs may be either immunogenic or tolerogenic, 

depending on the specific microenvironment (29). pDCs have been identified in MS lesions, 

but their role in the disease remains controversial (30). Further study is needed to confirm 

these findings and to explore the possible functional consequences.

In addition to altering T-lymphocyte subpopulations and depleting multiple types of 

circulating immune cells, DMF selectively reduced the proportion of circulating CXCR3+ 

CD4+ and CCR6+ CD4+ cells, but not T-regs, among lymphopenic patients. The CXCR3+ 

CD4+ population was also reduced in non-lymphopenic DMF-treated patients. These 

chemokine receptors are sometimes considered surrogate markers for Th1 and Th17 type 

pro-inflammatory lymphocytes, respectively; both T cell subsets have been implicated in MS 

pathogenesis (14-16). Selective depletion of Th1 and Th17 cells would be expected to be 

protective in MS and could contribute to the therapeutic effect of DMF. Nevertheless, 

despite the loss of CXCR3+ and CCR6+ cells among lymphopenic patients taking DMF, 

these patients have not shown a superior clinical response to the drug to date (4, 31)

Spencer and colleagues recently addressed DMF-induced immunophenotypic changes in a 

small cohort of patients that was followed longitudinally (3). Like us, they found a 

disproportionate reduction in CD8+ T cells relative to CD4+ T cells. They also reported 

time-dependent reductions in CD8+, CD4+ and CD19+ lymphocytes, with no alteration in 

the levels of CD56+ NK cells, monocytes and other WBC types. They did not examine T cell 

subsets (i.e. regulatory or memory T cell populations). Our cross-sectional observational 

study covered a larger group of subjects and was designed to include DMF-treated patients 
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with and without clinical lymphopenia as well as untreated MS controls and HC. We 

confirmed reductions in CD8+ T cells and CD4+ T cells as well as a slight reduction in 

CD19+ B cell numbers when compared to controls; after controlling for age, however, DMF 

treatment did not affect CD19+ numbers. Although Spencer et al. demonstrated a reduction 

in CD19+ cells over time, the absolute cell numbers typically remained within normal limits. 

Thus, the apparent discrepancy between our results is likely attributable to the longitudinal 

versus cross-sectional study design. Our phenotyping of T-regs, naïve, central memory and 

effector memory T cell subsets, CD56hi vs CD56dim NK cells and dendritic cells greatly 

extends the findings previously reported.

Few opportunistic infections have been reported with DMF. Despite this, the observed 

reductions of several WBC types suggest that clinicians should maintain vigilance. Concerns 

remain about the long term safety of reducing T lymphocytes in general and memory T cells 

in particular. CD4+ T cell depletion is associated with a variety of opportunistic infections 

(32, 33). CD8+ T cells are major effectors of viral immunity and contribute to immune 

surveillance of the CNS (34). It is possible that viral infections may become more prevalent 

in the setting of DMF-associated CD8+ T cell reduction; recent reports of West Nile 

encephalitis and disseminated varicella zoster in DMF treated patients substantiate this (10, 

11). Redistributing naïve and memory T lymphocyte populations relative to one another is 

also likely to have functional consequences (35) .

Our data are limited by the cross sectional, observational design of this study. Although 

serial data from a subset of our study group on DMF for 3 months or more demonstrated 

stability of lymphocyte subsets during DMF therapy, pre-treatment immunophenotyping was 

not available. Examination of the recovery of immune cell phenotypes after discontinuation 

of DMF over time would have been desirable as well, but these data were not interpretable 

as patients who stopped DMF due to lymphopenia typically began other DMTs immediately 

thereafter. Moreover, we assessed circulating lymphocytes. It is possible that DMF alters 

immune cell compartmentalization and that lymphocytes are merely being redirected to 

another location rather than being permanently lost. Additional work will need to identify 

the mechanisms of DMF-induced lymphopenia and selective memory T cell loss as well as 

any functional consequences.

In summary, we have shown that DMF induces redistribution of CD4+ and CD8+ naïve and 

memory T cells with relative loss of circulating TCM and TEM cells in patients exposed to 

the drug, regardless of their absolute lymphocyte count. Moreover, it causes loss of CD4+ 

and CD8+ T-lymphocytes from the bloodstream, with particular reductions of Th1 and Th17-

like cells, in a subset of MS patients.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Frequencies of circulating leukocytes in DMF treated MS patients compared to 
controls

Absolute numbers of immune subsets were compared among healthy controls (n=23), 

untreated MS controls (n=17), DMF-treated patients without lymphopenia (DMF-N; n=24), 

and lymphopenic DMF-treated patients (DMF-L; n=17) using flow cytometry (A-G). 

CD4/CD8 ratio (I) was calculated based on % of total CD3+ gated cells. Error bars represent 

mean and standard deviation. Kruskal Wallis ANOVA with Dunn's multiple comparison test 

was used to compare between groups. T-reg: T regulatory cell; NK: natural killer cell; DC: 

dendritic cell * p<0.05, ** p<0.01, *** p<0.001; **** p<0.0001
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Figure 2. DMF effects on naïve and memory T cell distribution

Proportions of CD4+ and CD8+ naïve (CD45RA+ CCR7+), central memory (CD45RA− 

CCR7+) and effector memory (CD45RA− CCR7−) T cells were identified using flow 

cytometry. Distributions for each subset are shown in A-B. A subset of DMF-treated patients 

(n=13) provided longitudinal samples, and the naïve and memory T-cell distributions are 

shown over time (C-D). Solid lines represent the group mean for MS control group and 

dotted lines represent the group mean for the healthy control group. Stars represent samples 

obtained from lymphopenic patients (C-D). Error bars represent mean and standard 

deviation. Kruskal Wallis ANOVA with Dunn's multiple comparison test was used to 

compare between groups. * p<0.05, ** p<0.01, *** p<0.001; **** p<0.0001.
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Figure 3. DMF effects on circulating CXCR3+ and CCR6+ on T cells

Expression of the Th1 chemokine receptor CXCR3 and the Th17 chemokine receptor CCR6 

was determined on CD4+ (A, B) and CD8+ (C, D) lymphocytes. Error bars represent mean 

and standard deviation. Kruskal Wallis ANOVA with Dunn's multiple comparison test was 

used to compare between groups. * p<0.05, ** p<0.01, *** p<0.001; **** p<0.0001.

Longbrake et al. Page 12

Mult Scler. Author manuscript; available in PMC 2017 July 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u

s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

Longbrake et al. Page 13

Table 1

DMF effects on absolute numbers of circulating leukocytes.

Cells/µl

Markers Examined by Flow Cytometry (No. of 
subjects)

Healthy Controls (n=23) MS Controls (n=17) DMF-N (n=24) DMF-L (n=17)

T-lymphocytes

CD3+CD4+ 474 (216-822) 482 (105-959) 346 (150-709) 140 (35-302)4, d

CD4+ CD25+ Foxp3+ (T-reg) 34 (5-77) 37 (14-85) 23 (7-73) 12 (4-42)3, d

CD3+CD8+ 145 (60-320) 140 (66-295) 105 (27-301) 20 (5-129)4, d

CD4/CD8 (mean, SD) 3.5 (2.3) 3.9 (2.6) 4.6 (2.8) 6.6 (3.2) 2, a

B-lymphocytes

CD19+ 122 (46-247) 131 (31-257) 129 (54-311) 79 (31-193)1, a

Monocytes

CD14+ 176 (65-330) 167 (59-313) 122 (29-352) 145 (56-242)

NK cells

CD3− CD56lo 111 (34-272) 88 (28-396) 51 (19-136)2 46 (14-98)4, a

CD3− CD56hi 8 (2-18) 6 (1-13) 9 (3-20) 8 (2-19)

Dendritic cells

Lin1− HLADR+ CD1c− BDCA4+ BDCA2+ 

(Plasmacytoid)

2 (1-4) 2 (0-4) 2 (0-5) 1 (0-2)2, a

Lin1− HLADR+ CD1c+ BDCA4− BDCA2− 

(Myeloid)

4 (0-8) 4 (1-14) 3 (0-9) 3 (0-8)
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Table 2

DMF effects on circulating T-cell subpopulations.

Percent

Markers Examined by Flow Cytometry (No. of 
subjects)

Healthy Controls (n=23) MS Controls (n=17) DMF-N (n=24) DMF-L (n=17)

CD4+ Subpopulations

CD4+ CD25+ Foxp3+ (T-reg) 7 (4-11) 8 (3-12) 7 (4-12) 8 (5-17)

CD4+ CD45RA+ CCR7+ (naïve) 42 (27-65) 35 (9-70) 57 (27-87)a 70 (30-82)2, d

CD4+ CD45RA− CCR7+ (TCM) 40 (21-58) 38 (25-63) 24 (11-62)1, a 16 (2-48)4, d

CD4+ CD45RA− CCR7− (TEM) 7 (3-13) 7 (3-17) 4 (1-18)a 3 (1-10)3, c

CD3+CD4+CXCR3+ 40 (21-50) 39 (20-75) 25 (14-58)2, a 23 (13-49)3, b

CD3+CD4+CCR6+ 13 (2-20) 11 (1-32) 7 (2-46) 5 (3-22)a

CD4+ CD62L+ 86 (80-94) 88 (79-94) 95 (76-99)3, b 97 (85-98)4, c

CD8+ Subpopulations

CD8+ CD45RA+CCR7+ (naïve) 39 (18-70) 36 (5-63) 58 (17-88)1, b 46 (20-88)

CD8+ CD45RA− CCR7+ (TCM) 10 (2-23) 12 (2-41) 4 (1-27)2, b 2 (1-17)4, d

CD8+ CD45RA− CCR7− (TEM) 26 (8-49) 22 (9-35) 10 (4-47)4, b 12 (1-46)1

CD3+CD8+CXCR3+ 87 (73-95) 90 (63-96) 86 (55-98) 88 (84-96)

CD3+CD8+CCR6+ 11 (4-32) 8 (2-23) 10 (1-48) 10 (3-27)

CD8+ CD62L+ 61 (37-86) 68 (31-81) 80 (39-97) 76 (41-97)
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