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Introduction
Nonalcoholic fatty liver disease (NAFLD) is defined by the pres-
ence of hepatic steatosis (via histology or imaging) when there are 
no causes for secondary hepatic fat accumulation, and it is histo-
logically further classified into nonalcoholic fatty liver (NAFL) and 
nonalcoholic steatohepatitis (NASH) (1). NAFLD is frequently cor-
related with metabolic risk factors such as obesity, diabetes melli-
tus (DM), and dyslipidemia (1) and has recently been reported as 
an independent risk factor for atherosclerosis (2–4). However, the 
interplay between NAFLD, diabetes, and cardiovascular disease 
(CVD) remains poorly understood (5), and circulating markers of 
early disease might highlight at-risk populations.

We aimed to investigate the early systemic changes correlated 
with NAFLD and hypothesized that nontargeted metabolite pro-
filing might provide an orthogonal view into hepatic pathology. As 
nontargeted metabolomic profiling covers a far greater portion of 

the metabolome (thousands of potential metabolites) than does tar-
geted profiling (generally several hundred a priori–defined metab-
olites), it consequently offers greater potential for discovery. How-
ever, the metabolite identities of the underlying peaks of interest 
remain unknown until several challenging steps are completed.

High accurate-mass metabolite databases such as the Human 
Metabolome Database (HMDB) (6) and METLIN (7) and chemi-
cal databases such as ChemSpider (8) and PubChem (9) have been 
expanding in size. Searching these databases often provides a long 
list of potential matches for each unknown mass (reported as a mass/
charge [m/z] ratio). However, unless the investigator is armed with 
additional information about the putative metabolite, refining this list 
can be difficult, with few success stories thus far (10). If commercial 
standards are not available, unambiguous identification can require 
labor-intensive, iterative synthesis of candidate molecules and subse-
quent comparative analysis using liquid chromatography coupled to 
accurate-mass tandem mass spectrometry (LC-MS/MS) (11).

One approach that has the potential to inform and refine this 
process is the incorporation of genetic data. Because metabolites 
play key roles as markers and effectors of cardiometabolic dis-
eases, recent studies have sought to annotate the genetic deter-
minants of circulating metabolite levels (12–19). For example, we 
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correlated with liver fat and many other pheno-
types, as well as GWAS data, is being made publicly 
available via dbGaP (http://www.ncbi.nlm.nih.gov/
gap). In age- and sex-adjusted analyses, the most 
highly significant correlation was between CT- 
defined liver fat and an unknown metabolite with 
a mass-to-charge (m/z) ratio of 202.1185 (Table 2) 
(P value = 2.28 × 10–24). This correlation was high-
ly significant after adjustment for multiple covari-
ates including age, sex, smoking history, alcohol 
consumption, HDL concentration, triglyceride 
concentration, homeostasis model assessment of 
insulin resistance (HOMA-IR), hypertension, glu-
cose, and BMI (β coefficient = 0.174, P value = 1.16 
× 10–10) and remained so after further adjustment 
for liver function tests (alanine transaminase [ALT] 
and aspartate transaminase [AST]; P value = 4.12 
× 10–8). Receiver- operator characteristic (ROC) 
curves showed that this peak also improved discrim-

ination for liver fat as compared with AST and ALT (P = 0.014;  
Supplemental Figure 4; supplemental material available online 
with this article; https://doi.org/10.1172/JCI95995DS1). Of note, 
there were no significant associations between SNPs in the PNP-
LA3 locus and levels of this unknown metabolite (representative 
SNP rs738409; P = NS).

GWAS informs the identification of m/z 202.1185. We searched 
the Human Metabolome Database (6) for a list of possible candi-
date matches for m/z 202.1185 (Supplemental Figure 1A). How-
ever, comparison of MS/MS fragmentation of multiple authentic 

reported a GWAS of 217 plasma metabolite traits measured in 
2,076 participants of the Framingham Heart Study (FHS). Further, 
and as corroborated by other published metabolite GWAS, many 
of the strongest associations we identified were at loci that encode 
transporters or enzymes with a direct biochemical relationship 
with the metabolite (20, 21). Therefore, we hypothesized that in 
the context of nontargeted profiling, a genetic association with an 
unknown metabolite could aid in its identification by highlighting 
a specific enzymatic reaction. Here, we first identified metabolite 
peaks correlated with hepatic fat as assessed by CT in a commu-
nity-based population free of cardiometabolic disease. In GWAS, 
our top metabolite peak mapped to a specific aminotransferase, 
providing the key insight required for its unambiguous identifica-
tion. We then validated the putative biomarker in a biopsy-prov-
en cohort of NAFLD and determined its predictive capability for 
future cardiometabolic disease in other cohorts. In addition, all 
data (for known metabolites and unidentified peaks) are being 
made publicly available through the database of Genotypes and 
Phenotypes (dbGaP; accession number: pht005145.v1.p10)  
(http://www.ncbi.nlm.nih.gov/gap; representative summary data 
for metabolite peaks correlated with hepatic fat as well as GWAS 
data for the top finding are also included in this article). This 
resource enables researchers to cross-reference their own metabo-
lites of interest in a richly phenotyped cohort and use the available 
genetic data to inform the identification of unknown peaks — the 
most challenging step in nontargeted metabolomics.

Results
m/z 202.1185 is correlated with CT-defined liver fat. We applied 
nontargeted LC-MS discovery (see Methods) to a cohort of 1,066 
FHS Generation III participants (Table 1). Of these, 470 partic-
ipants underwent a CT scan as part of a comprehensive assess-
ment of adipose depots, including liver fat, which was quantified 
using the liver-to-phantom ratio (LPR) (22). The top-20 metabo-
lite peaks that correlated with hepatic fat (age- and sex-adjusted)  
are shown in Table 2. The list includes glutamate, which has 
been previously correlated with cross-sectional and incident 
cardiometabolic disease (23). A comprehensive list of all peaks 

Table 2. Top-20 metabolite peaks correlated with liver fat  
(age- and sex-adjusted)

Metabolite m/z RT β SE P value
1 5836 202.1185 7.79 0.0197 0.00193 2.28 × 10–24

2 474 551.5034 1.61 0.0204 0.00211 4.08 × 10–22

3 1648 386.2536 1.99 0.0212 0.00243 3.41 × 10–18

4 606 606.6179 1.66 0.0195 0.00226 7.11 × 10–18

5 523 612.5556 1.63 0.0192 0.00229 6.69 × 10–17

6 578 634.6491 1.65 0.0191 0.00229 7.59 × 10–17

7 613 578.5864 1.66 0.019 0.00228 8.28 × 10–17

8 5893 116.1073 7.87 0.0187 0.00231 5.80 × 10–16

9 5830 223.972 7.77 0.0193 0.00242 1.26 × 10–15

10 5826 261.9278 7.77 0.0195 0.00246 2.61 × 10–15

11 Glutamate 148.0603 7.8 0.0171 0.00217 3.46 × 10–15

12 4388 795.5713 5.54 0.0179 0.00228 4.00 × 10–15

13 468 577.5186 1.61 0.0172 0.0022 6.35 × 10–15

14 537 313.2733 1.63 0.017 0.00218 7.38 × 10–15

15 510 341.3046 1.62 0.0164 0.00213 1.72 × 10–14

16 4507 575.5026 5.65 0.0191 0.00251 2.92 × 10–14

17 418 549.4876 1.57 0.0167 0.00222 5.82 × 10–14

18 4477 747.5711 5.62 0.017 0.00227 5.86 × 10–14

19 612 632.6336 1.66 0.0171 0.00228 5.88 × 10–14

20 4478 603.534 5.62 0.0167 0.00222 6.25 × 10–14

β, effect size for 1-unit increase in metabolite levels on liver fat (negative 
LPR); SE, standard error.

Table 1. Baseline characteristics of FHS, MDC, and JHS cohorts

Clinical characteristics FHS MDC JHS
 

(n = 1,066)
Cases 

(n = 196)
Controls 
(n = 126)

Cases 
(n = 133)

Controls 
(n = 465)

Age, yr, mean ± SD 40 ± 9 57 ± 6 58 ± 6 61 ± 10 62 ± 11
Female, n (%) 526 (53%) 106 (54%) 70 (56%) 86 (65%) 279 (60%)
BMI, kg/m2, mean ± SD 26.6 ± 5.3 28.6 ± 5.2 27.9 ± 4.3 33.4 ± 6.8 30.2 ± 6.0
Waist, in., mean ± SD 36.3 ± 5.7 36.4 ± 6.1 35.4 ± 5.8 41.5 ± 5.4 39.0 ± 5.6
SBP, mmHg, mean ± SD 117 ± 14 147 ± 19 142 ± 16 132 ± 20 129 ± 16
DBP, mmHg, mean ± SD 75 ± 9 90 ± 10 88 ± 9 77 ± 9 75 ± 9
HOMA-IR, mean ± SD 1.05 ± 0.84 2.8 ± 1.7 2.2 ± 1.6 4.7 ± 2.4 3.3 ± 1.9
Glucose, mg/dl, mean ± SD 96 ± 19 99 ± 8 95 ± 7.5 98 ± 10 91 ± 8
HDL, mg/dl, mean ± SD 60 ± 18 48 ± 13 50 ± 16 51 ± 14 54 ± 16
Triglycerides, mg/dl, mean ± SD 109 ± 66 148 ± 67 135 ±63 118 ± 57 100 ± 53
Creatinine, mg/dl, mean ± SD 0.80 ± 0.15 0.99 ± 0.28 0.95 ± 0.15 1.0 ± 0.6 1.0 ± 0.2
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DMGV is correlated with biopsy-proven 
NASH. To better evaluate the relationship 
between DMGV levels and hepatic patholo-
gy, we profiled plasma samples from a cohort 
of patients with biopsy-proven NASH and 
biopsy-proven normal histology matched 
for age, sex, and BMI (controls; Table 3). 
DMGV levels were significantly elevated in 
patients with NASH as compared with lev-
els in matched controls (n = 36 per group, 
2.48 ± 1.31 vs. 1.71 ± 0.99 AU, P = 0.007) 
(Figure 3A). We performed multiple logistic 
regression of the correlation of DMGV with 

biopsy-proven NASH, adjusting for clinical and biochemical 
factors. DMGV remained significantly correlated with biop-
sy-proven NASH in the presence of the following covariates: 
age and sex (odds ratio [OR] = 1.97, P = 0.009); age, sex, and 
BMI (OR = 1.96, P = 0.011); and age, sex, and ALT, a marker of 
liver injury (OR = 1.98; P = 0.016).

We also performed correlation analysis of DMGV levels 
with steatosis, hepatocyte ballooning, lobular inflammation, 
and NAFLD activity score (NAS) (which is a composite of all 3 
parameters) in the age-, sex-, and BMI-matched patients. Of 
these parameters, DMGV was most significantly correlated with 
hepatocyte ballooning (Table 4). Taken together, these data 
extend the imaging findings by further tying levels of this small 
molecule to hepatic pathology.

DMGV predicts future development of type 2 diabetes. We next 
examined whether baseline DMGV levels in disease-free indi-
viduals could predict future type 2 diabetes (T2D). In the FHS 
Generation 3 cohort, in which the correlation between DMGV 
and hepatic fat was identified, baseline DMGV levels were cor-
related with incident T2D in the 19 subjects who developed 
overt disease in the ensuing 6 years of follow-up (OR = 1.86,  
P = 0.0005). To extend this observation made with a small num-
ber of incident cases, we measured DMGV levels in 196 individ-
uals with incident T2D and 126 controls in the Malmö Diet and 
Cancer (MDC) study, with a mean follow-up of 12.8 years (Table 
1). DMGV was a strong, independent predictor of T2D in the rep-
lication cohort (OR = 1.6 per SD increment, P = 8.6 × 10–4, n = 322, 
adjusting for age, sex, glucose, and BMI; Table 5). We then inves-
tigated whether DMGV levels predicted incident DM in a third 
cohort, in this case, African American participants in the Jackson 
Heart Study (JHS). We measured DMGV in 133 cases of incident 
DM and 465 controls. In this group as well, we found that DMGV 
was an independent predictor of T2D, even after adjusting for 
age, sex, BMI, and baseline fasting glucose (mean follow-up 7.5 
years, OR = 1.3 per SD increment, P = 0.03, n = 598) (Table 5). Of 
note, in both cohorts, DMGV was predictive of incident disease, 
even after further adjustment for levels of branched-chain ami-
no acids (BCAAs), emerging biomarkers of prediabetes (29, 30) 
(MDS: OR = 1.6 per SD increment; P = 9.2 × 10–4; n = 322; JHS:  
OR = 1.3 per SD increment; P = 0.03; n = 598).

DMGV levels are significantly decreased following weight loss 
surgery. We assessed whether DMGV levels track with weight 
loss following bypass surgery, which has been shown to improve 
NAFLD (31). We performed metabolomic profiling on our tar-

chemical standards for potential matches with the MS/MS frag-
mentation of m/z 202.1185 failed to make a definitive identifica-
tion (representative illustration in Supplemental Figure 1B).

To further inform the m/z data, we performed a GWAS on 
this unknown metabolite peak by imputation of 15.6 million SNPs 
(see Methods). We found that m/z 202.1185 was significantly  
(P = 3.79 × 10-9) associated with multiple SNPs near the gene encod-
ing for alanine glyoxylate aminotransferase 2 (AGXT2) (Figure 1 
and Supplemental Figure 2). AGXT2 was originally described in 
the context of transamination of alanine and glyoxylate, resulting 
in the formation of pyruvate and glycine (Supplemental Figure 3A) 
(24). However, subsequent studies have shown that this enzyme 
can catalyze the transamination of other previously unanticipated 
metabolite pairs, including β-aminoisobutyric acid (BAIBA) and 
pyruvate, asymmetric dimethylarginine (ADMA) and glyoxylate, 
as well as alanine and Υ,δ-dioxovaleric acid (DOVA) (25). There-
fore, we sought to determine whether m/z 202.1185 was either a 
product or substrate of AGXT2-mediated transamination.

Metabolite databases can also be searched using the fragment 
ions instead of the parent mass of a compound. We searched the 
METLIN database (7) using the 2 dominant fragments of 202.1185: 
70.0659 and 71.0612, with a mass error tolerance of 5 or fewer 
parts per million (ppm) (Supplemental Figure 1C). ADMA was 
suggested as the potential candidate metabolite. While the chro-
matographic retention time (RT) as well as mass ruled out ADMA 
as the actual parent mass, we determined that the product of a 
transamination reaction (causing the substitution of an amine with 
a carbonyl group) (Figure 2A) of ADMA by AGXT2 would have an 
m/z within 1 ppm of our unknown metabolite, which is well with-
in the acceptable mass error using this technology (26). Although 
this compound is not present in metabolite databases (HMDB [ref. 
6], METLIN [ref. 7]) or chemical (ChemSpider [ref. 8], PubChem 
[ref. 9]), it has been described in the literature before and labeled  
α-keto-δ-(NGNG-dimethylguanidino)-valeric acid (DMGV) (27, 28).

Confirmation of DMGV as the correct identity of m/z 202.1185. 
Given the lack of an authentic standard, DMGV was synthesized 
by reflux of ADMA with trifluoroacetic acid anhydride and then 
hydrolysis using sodium hydroxide, followed by purification with 
preparative chromatography. We spiked DMGV into human plas-
ma, and reacquired data using the LC-MS platform alongside a 
human plasma sample. We performed MS/MS fragmentation of 
both the standard and the unknown. As demonstrated in Figure 2, 
B and C, the chromatographic RT and the MS/MS fragmentation 
spectra match exactly.

Figure 1. m/z 202.1185 is associated with the gene AGXT2. Manhattan plot of the GWAS for m/z 
202.1185 revealed an association with several SNPs at the AGXT2 locus. See also Supplemental Figure 2.
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(SBP), diastolic blood pressure (DBP), total cholesterol, LDL 
cholesterol, and triglycerides. Compared with baseline, DMGV 
levels were significantly decreased at both the 2-month (2.23 ± 
1.77 vs. 1.67 ± 1.18 AU, P = 0.01, n = 39) and 6-month (2.23 ± 1.77 
vs. 1.33 ± 1.17 AU, P = 0.0003, n = 39) time points (Figure 3B). 
Of note, there was no significant correlation between baseline 
levels of DMGV and levels of ALT (ρ = 0.08, P = 0.58), a marker 
of liver injury. These data suggest that DMGV may report on a 
different pathway related to liver disease.

geted platform using plasma samples from a clinical cohort of 
39 roux-en-Y gastric bypass (RYGB) patients. All patients had 
NAFLD defined by biopsy at the time of operation and had 
blood samples taken at this time. Patients returned to the clinic 
2 and 6 months after their operation and had clinical param-
eters measured and plasma taken for clinical biochemistry 
(Table 6). At both 2 and 6 months after RYGB, patients had dra-
matic weight loss and also significant improvements in meta-
bolic parameters, such as glucose levels, systolic blood pressure 

Figure 2. Discovery and confirmation of 
the identity of m/z 202.1185 as DMGV. (A) 
Schematic illustration of the transamination of 
ADMA to DMGV by AGXT2. (B) The chromato-
graphic RT of m/z 202.1185 matches exactly 
that of the DMGV standard. (C) The MS/MS 
fragmentation spectrum of m/z 202.1185 
matches exactly that of the DMGV standard. 
See also Supplemental Figures 1 and 3.
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ate, ADMA, and alanine (25). Our group and oth-
ers have previously reported associations between 
common variants in the AGXT2 gene with circu-
lating metabolite levels in human blood (17, 20, 
32) and urine (17). Our data therefore extend the 
findings of previous studies by demonstrating that 
DMGV is a bona fide product of AGXT2 metabo-
lism in humans. We have previously shown that 
knockdown of agxt2 in zebrafish using morpholi-
nos modulates cholesterol and triacylglycerol 
metabolism (20). Quantitative trait locus analyses 
performed in inbred mouse strains have also sug-
gested a potential role for Agxt2 and related path-
ways in liver metabolism (33), while SNPs in the 
AGXT2 locus have nominal association with dia-
betes. BAIBA, a substrate of AGXT2, is inversely 
correlated with cardiometabolic traits in humans 

and causes browning of white fat and hepatic β oxidation in 
cells and mice (32). Preliminary experimental studies in our 
laboratory demonstrated increased expression of AGXT2 in 
the livers of mice fed a high-fat diet (HFD), with a commen-
surate increase in circulating DMGV levels (Supplemental 
Figure 5). Our working model is that, during NAFLD devel-

Discussion
There is an important need for early biomarkers of cardiometabolic 
disease. While investigators have begun to apply unbiased metab-
olomics techniques to human samples, replicated findings of dis-
ease-predictive markers are few. To address this gap in knowledge, 
we used nontargeted metabolomic profiling, an unbiased, hypothe-
sis-generating approach aimed to optimize the opportunity for novel 
insight. Once we determined the unknown metabolite peak of the 
strongest correlation with NAFLD, we incorporated genomic data 
to help identify the metabolite and to help place the metabolite in 
a pathway. Using this integrative approach, we identified what we 
believe to be a completely novel correlation of a poorly understood 
metabolite — DMGV — with liver fat. We first confirmed the correla-
tion of DMGV with bona fide early liver disease as assessed by biopsy 
and then demonstrated that baseline levels of DMGV predict incident 
diabetes as early as 12 years before disease onset. Further, DMGV lev-
els fall significantly (P = 0.0003) with weight loss (following gastric 
bypass surgery), which has been shown to improve NAFLD.

DMGV has been measured in the blood of rats and humans in 
2 prior studies (27, 28), but it has never been correlated with met-
abolic disease and had not been added to biochemical databases. 
In our analyses, DMGV was an independent predictor of future 
T2D in the FHS, MDC, and JHS cohorts. All individuals in these 
cohorts were free of diabetes at the time of blood sampling, min-
imizing interference from concomitant lifestyle or medical inter-
ventions. Furthermore, DMGV remained predictive of future dia-
betes in the MDC and JHS cohorts after correcting for age, sex, 
BMI, and fasting glucose levels.

As weight loss is a cornerstone of NAFLD therapy and 
weight loss surgery is correlated with high rates of NASH regres-
sion (31), it was important to determine whether DMGV was 
modulated by this intervention. In the RYGB cohort, patients 
lost significant (P < 0.0001) weight at both 2 months and 6 
months after their operation. DMGV was significantly reduced 
at both 2 months (P = 0.01) and 6 months (P = 0.0003) after the 
operation, and it is notable that DMGV levels did not correlate 
with ALT, a known marker of liver pathology.

AGXT2 has been described as a promiscuous aminotrans-
ferase, catalyzing the transamination of several substrates 
(Supplemental Figure 3), including BAIBA, pyruvate, glyoxyl-

Table 3. Clinical and biochemical characteristics of biopsy-proven NASH cohort

Clinical characteristics Normal (n = 36) NASH (n = 36) P value
Age at biopsy, yr, mean ± SD 40 ± 9.7 43.1 ± 11.8 0.23
BMI, kg/m2, mean ± SD 46.5 ± 7.0 47.9 ± 7.4 0.44
AST, IU/l, median (range) 16.5 (0–61.0) 24.5 (13–179) <0.001
ALT, IU/l, median (range) 27.0 (14.0–147.00) 48 (19–288) <0.001
LDL, mg/dl, median (range) 89.8 (29.4–178.6) 91.6 (48.2–179.4) 0.92
Total cholesterol, mg/dl, median (range) 163 (80–160) 160 (101–276) 0.99
Trig, mg/dl, median (range) 91 (44–266) 125 (39–418) 0.03
HDL, mg/dl, median (range) 45 (25–105) 38.5 (25–73) 0.007
Insulin, mU/l, median (range) 20 (4–118) 32.5 (11–99) 0.002
Glucose, median (range) 91 (65–224) 119.5 (74–263) 0.01
HOMA-IR, median (range) 4.8 (0.9–65.3) 8.6 (2.4–40.1) 0.001
  

Figure 3. DMGV levels are elevated in biopsy-proven NASH and are mod-
ulated following weight loss surgery. (A) DMGV was significantly elevated 
in biopsy-proven NAFLD cases compared with controls (Mann-Whitney U 
test, n = 36 per group, 2.48 ± 1.31 vs. 1.71 ± 0.99 AU, P = 0.007). (B) Levels of 
DMGV at each time point before and after RYGB, demonstrating a signif-
icant reduction at 2 months and 6 months (paired t tests, n = 39, P = 0.01 
and P = 0.0003, respectively). See also Supplemental Figures 1, 3, and 4.
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opment, decreased DDAH1 enzymatic activity (34–36) and 
decreased BAIBA levels in cardiometabolic disease (32) lead to 
an increased concentration of ADMA that binds AGXT2 more 
freely (due to decreased levels of BAIBA, the major substrate of 
AGXT2) and thereby leads to increased conversion to DMGV by 
AGXT2 (see Supplemental Figure 6). Furthermore, our murine 
liver AGXT2 expression studies suggest that in NALFD, AGXT2 
expression is increased and that, by implication, there is great-
er enzymatic activity causing conversion of ADMA to DMGV. 
Future studies must determine whether DMGV itself confers 
functional effects in model systems.

Others have also incorporated genetics to streamline the 
identification of unknown metabolites (37–39). A recent multi-
step approach (37) used a GWAS of known and unknown 
metabolites and correlation analysis of known metabolites with 
unknown ones, and then used published metabolic pathway 
information to guide the construction of networks that displayed 
these relationships as a function of metabolite class. The authors 
used this network information to refine a list of putative metab-
olite database matches for metabolites of interest, upon which 
they performed iterative comparison of unknowns with chemi-
cal standards, allowing identification of several of these metabo-
lites. One limitation of this approach is that metabolite databas-
es, while constantly increasing in size, remain incomplete, and 
thus metabolites such as DMGV that are not in these databases 
cannot be identified using this approach. Furthermore, this group 
leveraged previously reported disease correlations (37), where-
as our disease correlations were derived directly from our own 
study populations. Finally, we prioritized our unknown metab-
olites by correlation with disease (DMGV was the top unknown 
metabolite correlated with liver fat), focusing our workflow on 
disease biology from the outset.

Our study has potential limitations. Although the Malmö and 
Jackson cohorts allowed us to examine incident DM, none of the 
cohorts had phenotyping sufficient to study incident cases of 
NAFLD, so we were only able to perform cross-sectional analysis 
of NAFLD cases (defined by CT or biopsy). Second, in our larger 
cohort that used CT-defined liver fat, we were unable to stratify 
DMGV levels by severity of NAFLD, as CT cannot differentiate 
between NAFL and NASH.

Studies are underway to unambiguously identify other 
metabolites correlated with hepatic fat (Table 2) that might 
ultimately prove to be better disease markers or functionally 
relevant small molecules. More broadly, these studies suggest 
that unbiased metabolite profiling, informed by genetic infor-
mation, holds promise for the identification of biomarkers 
and pathways in cardiometabolic disease. Importantly, all the 
peak data, along with GWAS and phenotypic correlations, are 

being made publicly available online via 
dbGaP (accession number: pht005145.
v1.p10) as a resource for the scientific 
community (note: representative sum-
mary data for metabolite peaks correlat-
ed with hepatic fat as well as GWAS data 
for the top finding are all included in this 
article). We anticipate that this resource 
will serve as a powerful reference tool 

investigators can use to look up correlations of metabolites (or 
peaks) identified in their own studies in order to assess their 
correlations with key clinical parameters in humans and to inte-
grate these correlations with genetic information to aid unam-
biguous identification and pathway elucidation.

Methods

Subjects
FHS. The FHS Generation 3 cohort enrolled 4,095 individuals from 
2002 to 2005 in a community-based longitudinal cohort study. 
Of 1,006 randomly selected participants, 470 underwent both 
CT scans of their liver and metabolomic profiling. Cardiometa-
bolic traits and routine biochemical test results were available for 
all these subjects. Genotyping was performed on the Affymetrix 
GeneChip Human Mapping 500K Array SetR and 50K Human 
Gene Focused PanelR, with parameters and data analysis as previ-
ously described (20). Briefly, we performed a GWAS on the metabo-
lite peak for m/z 202.1185 by imputation of 15.6 million SNPs (1000 
Genomes Phase I, version 3, CEU population, March 2012 release, 
build 37) using a hidden Markov model that was implemented in 
MACH/minimac (2012-5-29 release) (https://genome.sph.umich.
edu/wiki/Minimac).

Hospital-based cohort. The hospital-based NASH case-control 
cohort included patients and controls enrolled at Massachusetts Gen-
eral Hospital. Patients undergoing clinically indicated weight loss 
surgery had a standard-of-care liver biopsy performed at the time of 
surgery. Patients with other chronic liver conditions or alcohol use 
were excluded. Each biopsy was evaluated by a blinded, board-certi-
fied hepatopathologist according to the criteria established by Kleiner 
et al. (40). NASH was defined by the presence of at least grade 1 ste-
atosis, lobular inflammation, and hepatocyte ballooning. Normal liver 
histology had no evidence of steatosis, portal or lobular inflammation, 
hepatocyte ballooning, or fibrosis.

Table 4. Correlation of DMGV with NAFLD histological parameters (n = 72)

NAS Steatosis Ballooning Lobular inflammation
Spearman’s correlation coefficient (r) 0.30284 0.31114 0.33012 0.23351
P value 0.0103 0.0083 0.0049 0.05
 

Table 5. DMGV prediction of T2D in MDC and JHS cohorts

Model Model 1 Model 2
Adjusted for age, sex Adjusted for age, sex, BMI, glucose

MDC JHS MDC JHS
OR Q1 1.0 (referent) 1.0 (referent) 1.0 (referent) 1.0 (referent)
OR Q2 1.09 (0.58–2.04) 1.15 (0.6–2.1) 1.15 (0.61–2.19) 1.30 (0.8–2.2)
OR Q3 1.49 (0.79–2.81) 1.87 (1.09–3.2) 1.59 (0.81–3.13) 1.51 (0.9–2.5)
OR Q4 2.71 (1.37–5.38) 2.6 (1.54–4.39) 2.81 (1.34–5.87) 1.79 (1.0–3.04)
P for trend 0.003 0.00002 0.004 0.026

Q1, Quartile 1; Q2, Quartile 2; Q3, Quartile 3, Q4, Quartile 4.
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MDC study. We determined the predictive ability of DMGV in 
the MDC study, a Swedish population–based cohort of 28,449 indi-
viduals enrolled between 1991 and 1996. From this cohort, 6,103 
individuals were randomly selected to participate in the MDC Car-
diovascular Cohort (41). Fasting plasma samples were obtained from 
5,305 subjects in the MDC Cardiovascular Cohort, 564 of whom had 
prevalent diabetes or CVD prior to baseline measurements. Of note, 
456 subjects had missing covariate data, leaving 4,285 subjects eli-
gible for analysis. For these subjects, using a clinical endpoint of 
new-onset diabetes until December 2012, there were 126 controls 
and 196 cases of incident diabetes. The mean ± SD follow-up time 
was 12.8 ± 5.8 years. Clinical and biochemical characteristics of this 
cohort are described in Table 1, and detailed descriptions of the 
clinical assessment, diabetes definition, and subject selection have 
been previously described (30).

JHS. The JHS is a prospective, community-based cohort study 
designed to investigate determinants of CVD among African Amer-
icans living in the tricounty area (Hinds, Madison, and Rankin 
counties) of metropolitan Jackson, Mississippi. Metabolite profiles 
were available. Of the 5,306 JHS participants who completed the 
baseline clinic visit (2000–2004), 3,406 individuals were included 
in the NIH Trans-Omics for Precision Medicine (TOPMed) project 
on the basis of consent that allows genetic analysis and data sharing 
through the NCBI’s dbGaP database. From this cohort, DMGV levels 
were available for 1,052 participants, including 200 coronary heart 
disease (CHD) cases and 200 controls (matched by sex, age within 
2 years, and BMI within 3 units); 183 chronic kidney disease (CKD) 
cases and 202 controls (matched by sex, age within 2 years, and BMI 
within 3 units); and 267 randomly selected samples. Of the 1,052 
subjects with DMGV data, 327 had prevalent diabetes, 106 had miss-
ing information regarding diabetes status over the follow-up peri-
od, and 21 subjects had missing covariate data.  For the remaining 
subjects, using a clinical endpoint of new-onset diabetes until 2013, 
there were 465 controls and 133 cases of incident diabetes. The mean 
± SD follow-up time was 7.5 ± 1.4 years. The clinical and biochemical 
characteristics of this cohort are described in Table 1.

Plasma samples
EDTA blood samples were collected and immediately centrifuged 
to separate cellular material from plasma. Aliquots of plasma were 
frozen on dry ice and stored at –80°C until analysis. Samples (10-
μl) were deproteinized with 90 μl acetonitrile/methanol/formic 
acid (75:25:0.2; v/v/v) (all from MilliporeSigma) containing the 
deuterated internal standards 25 μM phenylalanine-d8 (Cambridge 
Isotope Laboratories) and 10 μM valine-d8 (MilliporeSigma). After 
vortexing, the samples were centrifuged at 20,000 g at 4°C for 15 
minutes, and the supernatants were transferred to HPLC-quality 
glass vials with inserts (MicroSolv).

Metabolite profiling
Hybrid platform. Hydrophilic interaction liquid chromatographic 
(HILIC) analyses of water-soluble metabolites in the positive ion-
ization mode were conducted using an LC-MS system composed of 
a Shimadzu Nexera X2 U-HPLC (Shimadzu Corp.) coupled to a Q 
Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer (Thermo 
Fisher Scientific). Plasma samples (10-μl) were prepared via pro-
tein precipitation, with the addition of 9 volumes of acetonitrile/
methanol/formic acid (74.9:24.9:0.2; v/v/v) containing stable iso-
tope–labeled internal standards (valine-d8; MilliporeSigma) and 
phenylalanine-d8 (Cambridge Isotope Laboratories). The samples 
were centrifuged (10 min, 9,000 g, 4°C), and the supernatants were 
injected directly onto a 150 × 2 mm, 3-μm Atlantis HILIC column 
(Waters). The column was eluted isocratically at a flow rate of 250 
μl/min with 5% mobile phase A (10 mM ammonium formate and 
0.1% formic acid in water) for 0.5 minutes, followed by a linear gra-
dient to 40% mobile phase B (acetonitrile with 0.1% formic acid) 
for 10 minutes. MS analyses were carried out by electrospray ioniza-
tion in the positive ion mode using full-scan analysis over 70 to 800 
m/z at 70,000 resolution and a 3-Hz data acquisition rate. Other MS 
settings were: sheath gas 40, sweep gas 2, spray voltage 3.5 kV, cap-
illary temperature 350°C, S-lens RF 40, heater temperature 300°C, 
microscans 1, automatic gain control target 1 × 106, and maximum 
ion time 250 ms. Metabolite identities were confirmed using authen-

Table 6. Clinical and biochemical characteristics of RYGB cohort (n = 39)

Clinical characteristics Baseline 2 mo 6 mo P value
Sex, % male 25.6
Age, yr, mean ± SD 46.41 ± 12.54
Weight, lb, median (range) 283.3 (188.0–483.0) 240.1 (168.0–398.0) 202 (134.0–352.0) <0.0001
BMI, kg/m2, median (range) 45 (35.0–65.0) 38.7 (31.7–57.0) 32.5 (24.5–50.0) <0.0001
Creatinine, mg/dl, median (range) 0.9 (0.6–1.5) 0.8 (0.7–1.4) 0.8 (0.6–1.8) 0.4
SBP, mmHg, median (range) 122.0 (106.0–170.0) 117.0 (0.0–146.0) 120.0 (88.0–150.0) 0.04
DBP, mmHg, median (range) 80 (64–98) 76 (60–98) 72 (48–100) 0.01
Glucose, mg/dl, median (range) 108 (68–252) NA 89 (71–136) 0.001
HOMA-IR, mass units, median (range) 55.7 (29.2–369.6) NA 19.3 (3.3–149.3) <0.0001
Total cholesterol, mg/dl, median (range) 188 (103–267) NA 147 (102–222) < 0.0001
LDL, mg/dl, median (range) 96 (39–179) NA 80.5 (35–141) 0.02
HDL, mg/dl, median (range) 49 (33–84) NA 51 (33–85) 0.8
Triglycerides mg/dl, median (range) 133 (54–375) NA 87 (48–179) 0.0001
ALT IU/l, mean ± SD 42.3 ± 38.3 36.3 ± 21.6 23.6 12.5 0.006
AST IU/l, mean ± SD 31.1 ± 19.6 29.6 ± 9.8 24.1 ± 6.8 0.03
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with TRIzol-chloroform followed by column purification (RNeasy; 
QIAGEN). Reverse transcription was performed using the High- 
Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientif-
ic). Quantitative PCR (qPCR) of samples in duplicate were run on 
a QuantStudio 6 Flex machine (Applied Biosystems) using Power 
SYBR Green PCR Master Mix (Applied Biosystems). Agxt2 mRNA 
levels were normalized to TATA-binding protein levels using the 
following primers: Agxt2 forward, ACCCGAAGGTAAGTGCAGTG; 
Agxt2 reverse, CCAGGTCGTTGGCTTCTGAT; Tbp forward, GGG-
TATCTGCTGGCGGTTT; Tbp reverse, TGAAATAGTGATGCTG-
GGCACT. Plasma DMGV was measured by LC/MS as described 
above for human plasma.

Statistics
All metabolite levels were standardized to the nearest pooled plasma 
metabolite value within the cohort and then natural logarithmically 
transformed because of their non-normal distribution. Age- and sex-ad-
justed (and also BMI- and glucose-adjusted) regression analyses were 
performed in each study sample to examine the relation of each metab-
olite (predictor variable) with each clinical metabolic trait (response 
variables): CT-defined LPR, BMI, fasting glucose, log HOMA-IR, SBP, 
DBP, log triglycerides, and HDL cholesterol. Conditional regression 
analyses were performed with adjustment for age and sex. Taking into 
account the more than 5,000 metabolites that were measured on the 
Hybrid platform, we used a Bonferroni-corrected threshold of 1 × 10–5. 
On the targeted platform, in which we specifically focused on 1 metabo-
lite (DMGV), we used a P value threshold of 0.05.

For the FHS GWAS analyses, a linear mixed-effects model 
accounting for familial relatedness with an additive genetic mod-
el with 1 degree of freedom was used (43). Clinical and laboratory 
continuous variables were compared between 2 independent groups 
using a Mann-Whitney U test. In the RYGB cohort, in which the same 
patients were followed over 3 time points, which is essentially a paired 
analysis, we used a Wilcoxon signed-rank test to compare the base-
line with each time point. Categorical variables were compared using 
Fisher’s exact test. Statistical analyses were performed using SAS (SAS 
Institute) and GraphPad Prism 6 (GraphPad Software).

For the MDC analyses, plasma metabolite levels were trans-
formed into their natural logarithm (ln) and then standardized to 
multiples of 1 SD. Logistic regression analyses to test the correlation 
between metabolites and the incidence of diabetes during follow-up 
were performed in SPSS 22 in a model adjusted for age and sex, or for 
age, sex, BMI, and plasma glucose concentration, at baseline.

Study approval
The IRB of Massachusetts General Hospital approved all metabolom-
ic analyses in the human cohort studies, and all participants provided 
written informed consent before participating in the studies.
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tic reference standards. Raw data were processed using TraceFinder 
software (Thermo Fisher Scientific) and Progenesis QI (Nonlinear 
Dynamics). Product ion mass spectra (MS/MS) were collected using 
a Q Exactive Focus Hybrid Quadrupole Orbitrap Mass Spectrometer 
(Thermo Fisher Scientific). MS/MS spectra were collected on mass 
202.1182 m/z. The collision energies were 10, 20, and 40; the isola-
tion window was 1.4 m/z; and the resolution was 35,000. 

Synthesis and purification of DMGV
Synthesis of DMGV was done using the protocol described by Klein 
et al. (42). Briefly, ADMA (MilliporeSigma) was refluxed under anhy-
drous conditions with trifluoroacetic acid anhydride (MilliporeSigma) 
to make an ADMA-trifluoroacetamide intermediate, and then hydro-
lysis was performed with sodium hydroxide to yield the crude DMGV 
mixture. Purification was done by flash column chromatography using 
a Sephadex G-10 Gel (MilliporeSigma). Fractions that formed a pos-
itive reaction with 2,4-dinitrophenylhydrazine were combined and 
dried. Purity was assessed by LC-MS. 

DMGV assay on the targeted MS platform
Deproteinized plasma extracts were subjected to normal-phase HILIC 
using a 150 × 2.1 mm Atlantis HILIC column (Waters) and the follow-
ing mobile phases: mobile phase A: 10 mM ammonium formate and 
0.1% formic acid (v/v); and mobile phase B: acetonitrile with 0.1% for-
mic acid (v/v) (both from MilliporeSigma). The samples were injected 
directly onto the HILIC column that was eluted at a flow rate of 250 
μl/min with initial conditions of 5% mobile phase A and 95% mobile 
phase B, followed by a 10.5-minute linear gradient to 60% mobile 
phase A. The injection volume was 10 μl. The multiplexed LC system 
was composed of a 1200 Series Pump (Agilent Technologies) and an 
HTS PAL Autosampler (Leap Technologies) equipped with 2 injection 
ports and a column selection valve.

The LC system was connected to a 4000 QTrap Triple Qua-
dropole Mass Spectrometer (Applied Biosystems/Sciex) run in pos-
itive ion mode. Multiple reaction monitoring (MRM) transitions and 
chromatographic RTs were calculated for DMGV using infusion of 
authentic chemical standards. MS analyses were carried out using 
electrospray ionization (ESI) and MRM scans in positive ion mode. 
Declustering potentials and collision energies were optimized for 
DMGV by infusion of the reference standard prior to sample analyses. 
The dwell time for each transition was 30 ms, the ion spray voltage was 
5 kV, and the source temperature was 450°C.

Metabolite peaks were integrated using Sciex MultiQuant soft-
ware. All metabolite peaks were manually reviewed for peak quality 
in a blinded manner. In addition, pooled cellular extract samples were 
interspersed within each analytical run at standardized intervals every 
10 injections, enabling the monitoring and correction for temporal 
drift in MS performance. The nearest neighbor flanking pair of pooled 
plasma was used to normalize samples in a metabolite-by-metabolite 
manner. Internal standard peak areas were monitored for quality con-
trol, and individual samples with peak areas differing from the group 
mean by more than 2 SDs were reanalyzed.

Agxt2 mRNA expression in mice
Male C57BL/6J mice were fed a 60% HFD diet to induce NAFLD 
beginning at 8 weeks of age. At 14 weeks of age, the mice were sacri-
ficed and their livers removed and flash-frozen. RNA was extracted 
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