
Special issue: 3D image and video technology

Progress in Informatics, No. 7, pp.11–20, (2010) 11

Research Paper

Diminished reality using plane-sweep algorithm
with weakly-calibrated cameras

Songkran JARUSIRISAWAD1, Takahide HOSOKAWA2, and Hideo SAITO3

1,2,3Department of Infomation and Computer Science, Keio University

ABSTRACT

We present a plane-sweep algorithm for removing occluding objects in front of the objective

scene from multiple weakly-calibrated cameras. Projective grid space (PGS), a weak cameras

calibration framework, is used to obtain geometrical relations between cameras. Plane-sweep

algorithm works by implicitly reconstructing the depth maps of the targeted view. By exclud-

ing the occluding objects from the volume of the sweeping planes, we can generate new views

without the occluding objects. The results show the effectiveness of the proposed method and

it is fast enough to run in several frames per second on a consumer PC by implementing the

proposed plane-sweep algorithm in graphics processing unit (GPU).

KEYWORDS
Diminished reality, plane-sweep, real-time, video-based rendering, Graphics processing unit

(GPU)

1 Introduction
Augmented reality (AR) [1], [2] is a term of the tech-

nology that composites the computer generated image

to the real image viewed by the user. AR supplements

the computer generated image to the real scene, rather

than completely replacing it. Ideally, the rendered vir-

tual object should coexist in the scene realistically so

that the viewer cannot distinguish between the real and

the virtual ones.

In contrast, the goal of diminished reality research

(so-called mediated reality [3]) is to generate the im-

ages in which some real objects are deliberately re-

moved. This means that whatever is behind the object

should be rendered when the occluding objects are re-

moved. The information about occluded area normally

comes from either the other camera views or from the

same camera view but at the different frames in which

the occluded area is seen.

This paper proposed a new method of diminished

reality from multiple weakly-calibrated cameras using

plane-sweep algorithm. Plane-sweep algorithms have

Received September 30, 2009; Revised December 15, 2009; Accepted January

4, 2010.
1) songkran@hvrl.ics.keio.ac.jp, 2)hosokawa@hvrl.ics.keio.ac.jp,
3)saito@hvrl.ics.keio.ac.jp

been proposed in the literatures [4]–[7] to generate free

viewpoint videos. In this paper, we adapted plane-

sweep algorithm to use for diminished reality applica-

tions with weakly-calibrated cameras. Fig. 1 illustrates

what our proposed system does. From several cameras,

user can create new view images between any cameras

while also remove the occluding object to reveal the

Fig. 1 Overview of the proposed system.

DOI: 10.2201/NiiPi.2010.7.3

c©2010 National Institute of Informatics

12 Progress in Informatics, No. 7, pp.11–20, (2010)

hidden area behind.

We utilize projective grid space (PGS) [8], a weak

cameras calibration framework, to obtain the geomet-

rical relation between multiple cameras. Thus, our

method does not need the information about cameras’

intrinsic parameters or the Euclidean information of a

scene. The proposed plane-sweep algorithm in PGS

can render image in which the occluding object is re-

moved at any viewpoint between two reference views.

We also implemented our method on GPU to reduce the

computation time.

The rest of this paper is organized as follows. We

firstly survey about previous works of diminished real-

ity. Then projective grid space framework that we use

for weak cameras calibration is explained in section 3.

We describe conventional plane-sweep algorithm in the

Euclidean space that was used for rendering free view-

point video in section 4. Then we explain our proposed

plane-sweep algorithm on PGS for diminished reality

application in section 5. Section 6 presents the imple-

mentation detail on GPU. Finally, we show the experi-

mental results and conclusion.

2 Related works
Several researchers have used “Diminished Real-

ity” term in the past. Mann and Fung [9] proposed

the method in which planar objects are removed from

a video sequence and replaced with another texture.

Wang and Adelson [10] divided video sequence from a

single camera into several layers using motion analysis.

The occluding layer then can be simply removed and

replaced with the layers below. Lepetit and Berger [11]

proposed a semi-interactive method for outlining the

occluding objects over a video sequence for diminished

reality applications. The user has to outline the occlud-

ing object in some key-frames, then the algorithm can

predict the contours in other frames. Hill et al. im-

plemented diminished reality platform that runs in real-

time using graphics processing unit (GPU) [12].

In the mention works, single camera is used to cap-

ture the scene. Information that is used to fill the area

hidden by the occluding object comes from the other

frames of the same camera where the occluded area is

seen.

There are also several works that proposed method

for diminished reality from multiple cameras. Zokai et

al. [13] proposed a paraperspective projection model to

generate the background behind the occluding object

from multiple calibrated views. However, it requires

the user to select the regions of obstacles which is not

suitable for dynamic scenes.

Jarusirisawad et al. [14] proposed a diminish reality

system that can remove the occluding object while also

render free viewpoint images from pure rotation and

zoom cameras. The limitation is that the static back-

ground must be approximated and segmented to several

planes manually at the first frame. Silhouette of occlud-

ing object must also be labeled by the user.

The mentioned diminished reality researches have

some restrictions in each work. For example, they as-

sume that cameras must be previously calibrated, oc-

cluding objects or the objective scene must not move or

manual operation is necessary.

In this paper, we present a new method for online di-

minished reality. It allows both occluding objects and

objective scenes to move. Moreover, we do not need to

know intrinsic parameters of the cameras. This is dif-

ferent from most of the previous works which assume

that cameras are strongly calibrated.

This paper is the extension of our previous work

in [15]. In [15], the rendered views are limited to the

viewpoint of the capturing cameras and the background

image must be captured in advance. In this paper, our

method does not need to capture the background image

beforehand and the rendered images can be synthesized

at the virtual viewpoint between real cameras.

3 Projective grid space
This section describes weak cameras calibration

framework for our plane-sweep method. To imple-

ment the plane-sweep algorithm, we need to project 3D

points onto image frame of each camera including the

virtual one. Projective grid space allows us to define

that 3D space and find the projection without knowing

cameras’ intrinsic parameters or the Euclidean informa-

tion of a scene.

Projective grid space (PGS) [8] is a 3D space defined

by image coordinate of two arbitrarily selected cam-

eras, called basis camera 1 and basis camera 2. To

distinguish this 3D space from the Euclidean one, we

denote the coordinate system in PGS by P-Q-R axis.

Fig. 2 shows the definition of PGS. x and y axis in the

image of basis camera 1 corresponds to the P and Q

axis, while x axis of the basis camera 2 corresponds to

Fig. 2 Definition of Projective Grid Space.

Diminished reality using plane-sweep algorithm with weakly-calibrated cameras 13

Fig. 3 Weakly calibrating non-basis camera using trifocal
tensor.

the R axis in PGS.

Homogeneous coordinate X = (p, q, r, 1)T in PGS is

projected on image coordinate x = (p, q,1) and x′ =

(r, s, 1) of the basis camera 1 and the basis camera 2

respectively. Because x and x′ are the projection of the

same 3D point, x′ must lie on the epipolar line of x.

Thus, s coordinate of x′ is determined from x′T Fx = 0

where F is the fundamental matrix from basis camera 1

to basis camera 2.

Other cameras (non-basis cameras) are said to be

weakly calibrated once we can find the projection of

a 3D point from the same PGS to those cameras. Either

fundamental matrices or trifocal tensor between basis

cameras and non-basis camera can be used for that task.

The key idea is that 3D points in PGS will be projected

onto both two basis cameras first to make 2D-2D point

correspondence. Then, this correspondence is trans-

ferred to a non-basis camera by either intersection of

epipolar lines computed from fundamental matrices or

point transfer by trifocal tensor (Fig. 3).

However point transfer using fundamental matrices

gives less accuracy if a 3D point lies near the trifocal

plane (plane that defined by three camera centers). For

example, if three cameras are in the same horizontal

line, 3D points in front of cameras will lie on trifocal

plane. Even in the less severe case, transfered point

will also become inaccurate for the points lying near

this plane. Thus, trifocal tensors are used for weakly

calibrating non-basis cameras in our implementation of

PGS. For more detail of using fundamental matrices for

point transfer please refer to [8].

3.1 Weakly calibrating non-basis camera using trifocal
tensor

Trifocal tensor τ
jk

i
is a homogeneous 3×3×3 array

(27 elements) that satisfies

li = l′jl
′′
k τ

jk

i
(1)

where li,l
′
j

and l′′
k

are corresponding lines in the first,

second and third image respectively. For more informa-

tion about the tensor notation, please refer to Appendix.

Trifocal tensor can be estimated from point corre-

spondences or line correspondences between three im-

ages. In case of using only points correspondences,

at least 7 point correspondences are necessary to esti-

mate the trifocal tensor using the normalized linear al-

gorithm [16].

Given point correspondence x and x′, we can find

corresponding point x′′ in the third camera by equation

(2).

x′′k = xil′jτ
jk

i
(2)

where l′ is the line in the second camera which pass

though point x′.

We can choose any line l′ which pass point x′ except

the epipolar line corresponding to x. If l′ is selected

as the epipolar line corresponding to x, then point x′′ is

undefined because xil′
j
τ

jk

i
= 0k. A convenient choice for

selecting the line l′ is to choose the line perpendicular

to epipolar line of x.

To summarize, considering Fig. 3, given a 3D point

X = (p, q, r, 1)T in PGS and tensor τ defined by basis

camera 1, basis camera 2 and non-basis camera we can

project point X to non-basis camera as the following

1. Project X = (p, q, r, 1)T to x = (p, q,1)T and

x′ = (r, s, 1)T on basis camera 1 and basis camera 2

respectively. s is found by solving x′T Fx = 0.

2. Compute epipolar line l′e = (l1, l2, l3)T of x on basis

camera 2 from l′e = Fx.

3. Compute line l′ which pass x′ and perpendicular to

l′e by l′ = (l2,−l1,−rl2 + sl1)T .

4. The transfered point in non-basis camera is x′′k =

xil′
j
τ

jk

i
.

4 Plane-sweep in the euclidean space
Before explaining about our contribution of the

plane-sweep algorithm in projective grid space for di-

minished reality in Section 5, this section gives a gen-

eral idea about conventional plane-sweep algorithms in

the Euclidean space of the calibrated cameras.

The plane-sweep algorithm was previously proposed

for creating novel views of a scene from several in-

put images [4], [6], [7], [17]. Considering a scene where

the objects are exclusively Lambertian surfaces, the

viewer should place the virtual camera camx some-

where around the real video cameras and define a near

plane and a far plane such that every object of the scene

lies between these two planes. Then, the space be-

tween near and far planes is divided into several par-

allel planes πk as depicted in Fig. 4.

Plane-sweep algorithm is based on the following as-

14 Progress in Informatics, No. 7, pp.11–20, (2010)

Fig. 4 Plane-sweep algorithm in the Euclidean space.

sumption: a point lying on a plane πk whose projection

on every input camera provides a similar color will po-

tentially correspond to the surface of an object. Consid-

ering an object in a scene lying on one of these planes

πk at point P, this point will be seen by every camera

as the same color, i.e., the object color. Now consider

another point P′ lying on a plane but not on the surface

of the object, this point will probably not be seen by the

capturing cameras as the same color. Fig. 4 illustrates

this principal idea of the plane-sweep algorithm.

During the new view creation process, every plane

πk is computed in a back to front order. Each point P

on a plane πk is projected onto input images. A score

and a representative color are computed according to

the matching of the colors found. A good score means

every camera see a similar color. The computed scores

and colors are projected onto the virtual camera camx.

The pixel color in the virtual view will be updated only

if the projected point p provides a better score than the

current one. Then the next plane πk+1 is computed. The

final new view image is obtained once every plane has

been computed. This method is detailed in [4], [6], [7]

with some variations in score functions and constraints.

5 Plane-sweep in projective grid space
for diminished reality

In this paper, the goal is not only to generate novel

view images but also to remove unwanted objects from

the output images. We propose a method that apply

plane-sweep algorithm to use with projective grid space

(weakly-calibrated cameras) for diminished reality ap-

plication. From the user point of view, they can easily

remove occluding object from the rendered image by

defining near and far planes to exclude unwanted ob-

jects from this volume. We proposed a score compu-

Fig. 5 Defining virtual camera in Projective Grid Space.

tation of color consistency that take into account the

outlier colors of occluding objects.

To do a plane-sweep in PGS, we need to define a

position of a virtual camera, define the planes in 3D

space and then compute new view images. These steps

are different from conventional plane-sweep algorithm

in the Euclidean space because in our case, cameras’

intrinsic parameters are unknown. In this section, we

describe the detail of each step.

5.1 Defining virtual camera position
To perform a plane-sweep algorithm, 3D point on

a plane must be projected to a virtual camera. In the

calibrated cameras cases, projection matrix of a vir-

tual camera can be defined from camera’s pose (extrin-

sic parameters) because intrinsic camera parameters are

known. This allows virtual camera to be moved any-

where around a scene.

In our case where PGS is used, intrinsic parameters

of any camera are unknown. Method for defining vir-

tual camera in calibrated case is not applicable to our

case. In our method, the position of the virtual cam-

era is limited to only between two real reference cam-

eras. A ratio r from 0 to 1 is used for defining distance

between these reference cameras. Fig. 5 illustrate this

definition. In Fig. 5, a ratio r equals to 0 (respectively

1) means the virtual camera has the same position as

camera 1 (respectively camera 2).

To find the projection of 3D point X in PGS on a

virtual camera, 3D point X is projected onto both real

reference cameras first. The position of the same 3D

point in the virtual camera is calculated using linear in-

terpolation. If the projected points in the real reference

camera 1 and 2 are x1 and x2 respectively, the projected

point x3 in a virtual camera is calculated from (3) as in

Fig. 5.

x3 = (1 − r)x1 + rx2 (3)

Note that we use view interpolation [18] that does not

Diminished reality using plane-sweep algorithm with weakly-calibrated cameras 15

Fig. 6 Defining planes for doing plane-sweep in Projective
Grid Space.

guarantee the physical validity of the scene. To get a

physically valid rendered view, a prewarp step is nec-

essary [19], [20]. However, cameras in our system are

set to be horizontal, and be parallel to each other. Thus

the rendered image does not have much distortion even

without such a prewarp step.

5.2 Defining planes in PGS

We define the near and far planes along the R axis (x

image coordinate of basis camera 2) as shown in Fig. 6.

This approach makes the 3D near and far planes adjust-

ment become easy since we can visualize them directly

from the image of basis camera 2. These planes are ad-

justed so that the occluding object is excluded from the

volume defined by these planes.

This is different from the case of the normal plane-

sweep algorithm in the Euclidean space in which full

calibration is used. In that case, the actual depth of a

scene has to be measured so that near and far planes

cover only volume of interest.

In our approach, basis camera 2 will not be used for

the color consistency testing in plane-sweep algorithm

because every planes would be projected as a line in

this image.

5.3 Computing new view images and removing occlud-
ing objects

If pixel p in a virtual camera is back projected to a

plane πk at a point P, we want to find the projection of

P on every input image to decide the color of pixelp

based on the color observed in the other cameras. As

illustrated in Fig. 7, the projection of 3D point P lying

on πk on input image i can be performed by a homog-

raphy matrix Hi. Thus, the projection pi of a 3D point

Fig. 7 Estimating homography matrices for plane-sweep.

P on the camera i is calculated from

xi = HiH
−1
x x (4)

where x and xi are the position of the pixel p and pi

respectively.

Homography Hi, where i is a camera number, can be

estimated from at least four point correspondences. In

our situation, we select four image corners of the basis

camera 1 as shown in Fig. 7. Then, we project these

points onto every real cameras as described in section 3

for making 2D-2D point correspondences. Then, all ho-

mographies used for the plane-sweep method can be es-

timated from these correspondences. During the score

computation, we estimate these homographies instead

of projecting every 3D points one by one to reduce the

computation time.

Considering Fig. 6, the pixel color of the projection

of point P the lies on the object’s surface may not be the

color of point P due to occlusion. Virtual view render-

ing algorithm must determine and exclude the color of

the occluding object when rendering new view image.

Our score function that we use is motivated by [6].

Algorithm 1 summarizes the score function that we

used to compute new views while remove unwanted ob-

ject from the scene. The algorithm iterates by com-

puting color consistency score and average color. At

the end of iteration, the view that has the color farthest

from the average color is removed (this view probably

see the occluding object’s color). Then the algorithm

starts to compute color consistency score and average

color again from the current views set. The algorithm

terminates when it is confident with the current result

(color consistency score is less than some threshold) or

when there are two views or less in the current iteration.

Our color consistency score is defined by a variance

of colors from current views set plus the constance k

times the number of excluded views. The latter term is

added to bias the score so that with an equal variance,

the color from the set that has a higher cardinal is pre-

ferred.

16 Progress in Informatics, No. 7, pp.11–20, (2010)

Algorithm 1 : Plane-sweep algorithm in projective grid
space.

forech pixel p in camx do
• scorep = ∞

• project pixel p to n input images excluding basis

camera 2 . c j is the color from this projection on the

j-th camera

forech plane πk in PGS do
• S = {1, 2, .., n}

repeat
• compute the average color :

colorS =
1
|S |

∑
j∈S c j

• compute the color consistency score :

scoreS =
∑

j∈S (c j − colorS)2
+ k(n − |S |)

if scoreS < scorep then
• scorep = scoreS

• colorp = colorS

end

• S = S − {c f } where c f is the

farthest color from colorS

until scorep < Threshold || |S | ≤ 2
end

end

Fig. 8 Images from camera 1 to 6.

Fig. 9 Result when defining planes to cover all objects in
the scene.

Fig. 10 Result when defining planes to cover only oc-
cluded object.

Occluding object in a scene can be removed by defin-

ing near and far planes so that occluding object does not

lie in these planes. Different alignment of planes gives

the different rendering results. To illustrate this effect,

we show example results that are generated from the

different planes defining. Six cameras are used to cap-

ture input images. Camera 6 is selected as a camera

for defining planes. Fig. 8 shows input images from all

cameras.

Figs. 9 and 10 show the different results when de-

fine planes differently. In Fig. 9, planes are defined to

include the whole scene while in Fig. 10, planes are de-

fine to exclude the occluding object. We can see that

the objects lying outside the planes are removed from

the rendered image using our proposed method.

6 Implementing plane-sweep algorithm
on GPU

To achieve a fast computation (several frames per

second), we implemented our plane-sweep algorithm

in projective grid space on GPU. Because GPU has a

massive parallel processing, using GPU can give much

more computation power in many application compar-

ing to CPU.

The algorithm 1 is a pseudo code that is easy to read

when think of a processing as a single thread. How-

ever, when this algorithm is implemented on GPU, this

algorithm must be converted to suite the predefined ren-

Diminished reality using plane-sweep algorithm with weakly-calibrated cameras 17

dering pipeline of the GPU. There are several ways to

convert this abstract algorithm to a shader program on

GPU so we explain our actual implementation in this

section.

We use OpenGL and GLSL in our implementation.

Input images are transfered to GPU as multi-textures.

In the drawing function of OpenGL, we do N-pass ren-

dering from near to far plane where N is the number

of planes. We use Orthographic projection and draw

square to cover the whole image of virtual camera. In

fragment program of GLSL, we can think that it is a

processing of a pixel p with the k-th plane as in algo-

rithm 1. In fragment program, we have to find the pro-

jection of this pixel p on all cameras. To do that, we

compute homographies as Equation 4 for each render-

ing pass in OpenGL and sent them to GPU as texture

matrices.

We apply these homographies in the fragment pro-

gram to compute the projection on all cameras and

compute the color consistency score as described in al-

gorithm1. Fragment color is assigned to be an average

color from the best views set. The score of fragment is

sent to the next rendering pipeline(frame buffer opera-

tion) via gl FragDepth while the average color is sent

via gl FragColor. Then we let OpenGL select the best

scores with the z-test and update the color in the frame

buffer. When rendering is done for all planes, we get

novel view in which the occluding object is also re-

moved in the frame buffer.

7 Experimental results
In this section, we show both qualitative and quan-

titative results of our proposed method. Fig. 11 shows

experimental setup.

We used the following hardware in the experiment.

• CPU: Intel Core2 DUO 3.0 GHz

• GPU: NVIDIA Quadro FX 570

• Webcams: Logicool Qcam Orbit QVR-1

Fig. 11 Experimental setup.

2D-2D correspondences for estimating relationship

among cameras can be selected from feature points in

a scene. In our experiment we wave a marker around

a scene and track the features for 2D-2D correspon-

dence before start rendering. In future work, we plan

to find these correspondences from natural features in

a scene in real-time so that the cameras can also be

moved freely during rendering.

In our experiment, we did not use hardware synchro-

nized cameras but just consumer web cameras. Because

the object did not move so fast, even without synchro-

nization our results still seem acceptable. In case that

the object move fast so that the images captured by

the multiple cameras become clearly unsynchronized,

more artifacts will appear in the result videos. In this

case, using the cameras with synchronization mecha-

nisms would solve the problem.

7.1 Running time

The computation time for rendering output image de-

pends on the number of cameras and planes that are

used for plane-sweep algorithm. The appropriate num-

ber of planes varies depending on the complexity of a

scene. Using higher number of planes makes process-

ing time become longer but usually gives a better result.

In our experiment, it is shown that using 60 planes or

more makes the visual result become satisfied.

Table 1 shows the running time for rendering out-

put images using different number of planes. When

implementing plane-sweep algorithm on GPU, most of

the computation is done by the graphic card, hence the

CPU is free for the video stream acquisition and other

processing.

7.2 Qualitative evaluation

In this experiment, the objective is to remove a mov-

ing stick from the output image and reveal the occluded

scene. We used six webcams with resolutions 320×240

pixels. Output view was selected to be the same view

as camera 3 to compare with the input images. Fig. 12

shows input and output images from our method.

From the results, even not all part of occluding object

was perfectly removed, it can be said that 3D object

behind the occluding object is correctly reconstructed.

Table 1 Frame rates (frame/sec.) when using six cam-
eras.

Number of planes

20 40 60 80 100

Frame rates 10.00 6.67 3.49 2.47 1.76

18 Progress in Informatics, No. 7, pp.11–20, (2010)

Fig. 12 Result of removing occluding object from input camera 3.

Fig. 13 Rendered images at different views from the input
cameras. Six input images used for rendering these results
are the same as depicted in Fig. 8.

In the experiment, we used 80 planes for doing plane-

sweep. The average processing time was 2.5 fps.

Our proposed method can also remove occluding

object from the different views other than on the in-

put views as describe in Section 5. Fig. 13 shows the

rendering results at different viewpoint from the input

cameras.

7.3 Quantitative evaluation

This section gives quantitative quality measurements

of our result. We used the scene that consists of occlud-

ing object moving in front of a static background. By

using static background, we can have ground-truth ref-

erences to measure the accuracy of results. We used our

method to remove the occluding object from the input

images and compare with the ground-truth.

Views at one selected camera was rendered and com-

pare with ground-truth. PSNR (Peak Signal to Noise

Ratio) are computed to measure the errors in the ren-

dered images for 100 consecutive frames. Fig. 15

shows the PSNR of our results respect to the number

of planes used in scene reconstruction. Table 2 shows

the average PSNR over 100 frames.

Fig. 14 shows the different of the results when us-

ing different number of planes to reconstruct and render

output images in which occluding object is removed.

From the results, it is shown that increasing the num-

ber of planes in reconstruction gives a better result.

However, when enough planes has already been used,

increasing the number of planes would not give a sig-

nificant improvement.

Diminished reality using plane-sweep algorithm with weakly-calibrated cameras 19

Fig. 14 Comparison of using the different number of planes to render output images.

Fig. 15 PSNR error of the rendered images.

Table 2 PSNR error of the rendered images using differ-
ent number of planes.

Number of planes Average PSNR(dB)

20 planes 28.22

60 planes 28.43

100 planes 28.49

8 Conclusion
In this paper we present a new online rendering

method for diminished reality using plane sweep algo-

rithm. By utilizing projective grid space (PGS), our

method has mainly two advantages over doing plane-

sweep in the Euclidean space. Firstly, our method does

not need information about cameras’ intrinsic parame-

ters. Secondly, Near and f ar planes in PGS are easily

defined since they are visualized from the image of ba-

sis camera 2. Plane-sweep algorithm in the Euclidean

space has to define these planes in the real 3D coordi-

nates which is sometimes difficult to measure or visual-

ize. Our system can render images at several frames per

second thanks to the implementation of plane-sweep al-

gorithm on GPU. The results show the effectiveness of

our proposed method.

References
[1] R. T. Azuma, “A survey of augmented reality,” Pres-

ence: Teleoperators and Virtual Environments, vol.6,

no.4, pp.355–385, 1997.

[2] R. T. Azuma, Y. Baillot, R. Behringer, S. Feiner,

S. Julier, and B. MacIntyre, “Recent advances in aug-

mented reality,” IEEE Computer Graphics and Applica-

tions, vol.21, no.6, pp.34–47, 2001.

[3] S. Mann, ‘mediated reality’. TR 260, M.I.T. Media

Lab Perceptual Computing Section, Cambridge, Mas-

sachusetts, 1994.

[4] R. T. Collins, “A space-sweep approach to true multi-

image matching,” In Proceedings of IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition, pp.358–363, 1996.

[5] S. Jarusirisawad, H. Saito, and V. Nozick, “Real-time

free viewpoint video from uncalibrated cameras using

plane-sweep algorithm,” In Proceedings of the IEEE In-

ternational Workshop on 3-D Digital Imaging and Mod-

eling (3DIM’09), Kyoto, Japan, October 2009.

[6] V. Nozick, S. Michelin, and D. Arques, “Real-time

plane-sweep with local strategy,” Journal of WSCG,

vol.14, no.1–3, pp.121–128, 2006.

[7] R. Yang, G. Welch, and G. Bishop, “Real-time

consensus-based scene reconstruction using commod-

ity graphics hardware,” In Proceedings of the 10th Pa-

cific Conference on Computer Graphics and Applica-

tions (PG 2002), p. 225, Washington, DC, USA, 2002.

IEEE Computer Society.

[8] H. Saito and T. Kanade, “Shape reconstruction in pro-

jective grid space from large number of images,” In Pro-

ceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’99),

vol.2, pp.49–54, June 1999.

[9] S. Mann and J. Fung, “Videoorbits on eye tap devices

for deliberately diminished reality or altering the vi-

sual perception of rigid planar patches of a real world

scene,” In International Symposium on Mixed Reality

(ISMR2001), March 14–15 2001.

[10] J. Y. A. Wang and E. H. Adelson, “Representing mov-

ing images with layers,” In IEEE Transactions on Im-

age Processing Special Issue: Image Sequence Com-

pression, September 1994.

[11] V. Lepetit and M.-O. Berger, “A semi-interactive and

intuitive tool for outlining objects in video sequences

with application to augmented and diminished reality,”

20 Progress in Informatics, No. 7, pp.11–20, (2010)

In Proceedings of International Symposium on Mixed

Reality, Yokohama, Japan, March 2001.

[12] R. Hill, J. Fung, and S. Mann, “A parallel mediated re-

ality platform,” In ICIP, pp.2865–2868, 2004.

[13] Y. G. Saivash Zokai, Julien Esteve, and N. Navab, “Mul-

tiview paraperspective projection model for diminished

reality,” In Proceedings of the Third IEEE and ACM In-

ternational Symposium on Mixed and Augmented Real-

ity (ISMAR 2003).

[14] S. Jarusirisawad and H. Saito, “Diminished reality

via multiple hand-held cameras,” In Proceedings of

ACM/IEEE International Conference on Distributed

Smart Cameras (ICDSC 2007), pp.251–258, Vienna,

Austria, September 2007.

[15] T. Hosokawa, S. Jarusirisawad, and H. Saito, “On-

line video synthesis for removing occluding objects us-

ing multiple uncalibrated cameras via plane sweep al-

gorithm,” In Proceedings of ACM/IEEE International

Conference on Distributed Smart Cameras (ICDSC

2009), Como, Italy, August 2009.

[16] R. I. Hartley and A. Zisserman, Multiple View Geom-

etry in Computer Vision, Cambridge University Press,

second edition, 2004.

[17] I. Geys, S. Roeck, and L. Gool, “The augmented audi-

torium: Fast interpolated and augmented view genera-

tion,” In Proceedings of the 2nd IEE European Confer-

ence on Visual Media Production, pp.94–103, 2005.

[18] S. Chen and L. Williams, “View interpolation for im-

age synthesis,” In Proceedings of ACM SIGGRAPH’93,

pp.279–288, 1993.

[19] S. Seitz and C. Dyer, “View morphing,” In SIGGRAPH

96, pp.21–30, 1996.

[20] S. M. Seitz and C. R. Dyer, “Physically-valid view syn-

thesis by image interpolation,” In Proceedings of the

IEEE Workshop on Representations of Visual Scenes,

pp.18–25, 1995.

Appendix
Tensor notation

This appendix gives an introduction to the tensors for

the reader who is unfamiliar with tensor notation. For

more details, please refer to [16].

A tensor is a multidimensional array that extends the

notion of scalar, vector and matrix. A tensor is writ-

ten using an alphabet with contravariant (upper) and co-

variant (lower) indexes. For example, the trifocal tensor

τ
jk

i
has two contravariant indexes and one covariant in-

dex.

Considering a representation of vector and matrix us-

ing tensor notation, entry at row i and column j of ma-

trix A is written using tensor notation as ai
j
, index i be-

ing contravariant (row) index and j being contravariant

(column) index. An image point represented by the ho-

mogeneous column vector x = (x1
, x2
, x3)T is written

using tensor notation as xi, while a line represented us-

ing the row vector l = (l1, l2, l3) is written as li.

Writing two tensors together means doing a contrac-

tion operation. The contraction of two tensors produce

a new tensor where each element is calculated from a

sum of product over the repeated index. For example

consider a matrix multiplication x̂ = Ax, this can be

written using tensor notation as x̂i
= ai

j
x j. This nota-

tion imply a summation over the repeated index j as

x̂i
=

∑
j ai

j
x j.

Songkran JARUSIRISAWAD
Songkran JARUSIRISAWAD re-

ceived the B.E. (First class honors)

degree in computer engineering from

Chulalongkorn University, Bangkok,

Thailand, in 2005. He earned the

M.E. and Ph.D. degrees in infor-

mation and computer science from Keio University,

Yokohama, Japan, in 2007 and 2009, respectively.

Currently, he is working at Freewill FX Co., Ltd.,

Bangkok, Thailand. His research interests include

computer vision, image based modeling and rendering.

Takahide HOSOKAWA
Takahide HOSOKAWA received

B.E. degree in Information and

Computer Science from Keio Uni-

versity, Japan, in 2009. He is now a

graduate student of Graduate School

of Science and Technology, Keio

University, Japan. His research interests include video

analysis and processing.

Hideo SAITO
Hideo SAITO received B.E., M.E.,

and Ph.D. degrees in Electrical Engi-

neering from Keio University, Japan,

in 1987, 1989, and 1992, respec-

tively. He has been on the faculty of

Department of Electrical Engineer-

ing, Keio University, since 1992. In 1997 to 1999, he

stayed in the Robotics Institute, Carnegie Mellon Uni-

versity as a visiting researcher. Since 2006, he has been

a Professor of Department of Information and Com-

puter Science, Keio University. He is currently the

leader of the research project “Technology to Display

3D Contents into Free Space”, supported by CREST,

JST, Japan. His research interests include computer vi-

sion, mixed reality, virtual reality, and 3D video analy-

sis and synthesis. He is a senior member of IEEE, and

IEICE, Japan.

