
DimmWitted: A Study of Main-Memory Statistical Analytics

Ce Zhang†‡ Christopher Ré†

†Stanford University
‡University of Wisconsin-Madison

{czhang, chrismre}@cs.stanford.edu

ABSTRACT

We perform the first study of the tradeoff space of access
methods and replication to support statistical analytics us-
ing first-order methods executed in the main memory of a
Non-Uniform Memory Access (NUMA) machine. Statistical
analytics systems differ from conventional SQL-analytics in
the amount and types of memory incoherence that they can
tolerate. Our goal is to understand tradeoffs in accessing the
data in row- or column-order and at what granularity one
should share the model and data for a statistical task. We
study this new tradeoff space and discover that there are
tradeoffs between hardware and statistical efficiency. We
argue that our tradeoff study may provide valuable infor-
mation for designers of analytics engines: for each system
we consider, our prototype engine can run at least one pop-
ular task at least 100× faster. We conduct our study across
five architectures using popular models, including SVMs, lo-
gistic regression, Gibbs sampling, and neural networks.

1. INTRODUCTION
Statistical data analytics is one of the hottest topics in

data-management research and practice. Today, even small
organizations have access to machines with large main mem-
ories (via Amazon’s EC2) or for purchase at $5/GB. As a
result, there has been a flurry of activity to support main-
memory analytics in both industry (Google Brain, Impala,
and Pivotal) and research (GraphLab, and MLlib). Each
of these systems picks one design point in a larger tradeoff
space. The goal of this paper is to define and explore this
space. We find that today’s research and industrial systems
under-utilize modern commodity hardware for analytics—
sometimes by two orders of magnitude. We hope that our
study identifies some useful design points for the next gen-
eration of such main-memory analytics systems.

Throughout, we use the term statistical analytics to refer
to those tasks that can be solved by first-order methods–a
class of iterative algorithms that use gradient information;

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 12
Copyright 2014 VLDB Endowment 2150-8097/14/08.

these methods are the core algorithm in systems such as ML-
lib, GraphLab, and Google Brain. Our study examines an-
alytics on commodity multi-socket, multi-core, non-uniform
memory access (NUMA) machines, which are the de facto
standard machine configuration and thus a natural target for
an in-depth study. Moreover, our experience with several
enterprise companies suggests that, after appropriate pre-
processing, a large class of enterprise analytics problems fit
into the main memory of a single, modern machine. While
this architecture has been recently studied for traditional
SQL-analytics systems [9], it has not been studied for sta-

tistical analytics systems.
Statistical analytics systems are different from traditional

SQL-analytics systems. In comparison to traditional SQL-
analytics, the underlying methods are intrinsically robust to
error. On the other hand, traditional statistical theory does
not consider which operations can be efficiently executed.
This leads to a fundamental tradeoff between statistical ef-

ficiency (how many steps are needed until convergence to
a given tolerance) and hardware efficiency (how efficiently
those steps can be carried out).

To describe such tradeoffs more precisely, we describe the
setup of the analytics tasks that we consider in this paper.
The input data is a matrix in R

N×d and the goal is to find
a vector x ∈ R

d that minimizes some (convex) loss function,
say the logistic loss or the hinge loss (SVM). Typically, one
makes several complete passes over the data while updating
the model; we call each such pass an epoch. There may be
some communication at the end of the epoch, e.g., in bulk-
synchronous parallel systems such as Spark. We identify
three tradeoffs that have not been explored in the literature:
(1) access methods for the data, (2) model replication, and
(3) data replication. Current systems have picked one point
in this space; we explain each space and discover points
that have not been previously considered. Using these new
points, we can perform 100× faster than previously explored
points in the tradeoff space for several popular tasks.

Access Methods. Analytics systems access (and store) data
in either row-major or column-major order. For example,
systems that use stochastic gradient descent methods (SGD)
access the data row-wise; examples include MADlib [13]
in Impala and Pivotal, Google Brain [18], and MLlib in
Spark [33]; and stochastic coordinate descent methods (SCD)
access the data column-wise; examples include GraphLab [21],
Shogun [32], and Thetis [34]. These methods have essen-
tially identical statistical efficiency, but their wall-clock per-
formance can be radically different due to hardware effi-

1283

Node 2!

L3 Cache!

RAM!

Core3! Core4!

N!

d!

(a) Memory Model for DimmWitted!

Data A! Model x!
Machine!

Node 1!

L3 Cache!

RAM!

Core1! Core2!

d!

(d) NUMA Architecture!(c) Access Methods!

Row-wise! Col.-wise! Col.-to-row!

Read set of data!

Write set of model!

(b) Pseudocode of SGD!

Procedure:!

 m <-- initial model!

 while not converge!

 foreach row z in A:!

 m <-- m Ð " grad(z, m)!

 test convergence !

Input: Data matrix A, stepsize "!

 Gradient function grad.!

Output: Model m.!

Epoch!

L1/L2! L1/L2! L1/L2! L1/L2!

Figure 1: Illustration of (a) DimmWitted’s Memory Model, (b) Pseudocode for SGD, (c) Different Statistical
Methods in DimmWitted and Their Access Patterns, and (d) NUMA Architecture.

ciency. However, this tradeoff has not been systematically
studied. To study this tradeoff, we introduce a storage ab-
straction that captures the access patterns of popular statis-
tical analytics tasks and a prototype called DimmWitted.
In particular, we identify three access methods that are used
in popular analytics tasks, including standard supervised
machine learning models such as SVMs, logistic regression,
and least squares; and more advanced methods such as neu-
ral networks and Gibbs sampling on factor graphs. For dif-
ferent access methods for the same problem, we find that the
time to converge to a given loss can differ by up to 100×.

We also find that no access method dominates all oth-
ers, so an engine designer may want to include both access
methods. To show that it may be possible to support both
methods in a single engine, we develop a simple cost model
to choose among these access methods. We describe a sim-
ple cost model that selects a nearly optimal point in our
data sets, models, and different machine configurations.

Data and Model Replication. We study two sets of trade-
offs: the level of granularity, and the mechanism by which
mutable state and immutable data are shared in analytics
tasks. We describe the tradeoffs we explore in both (1) mu-
table state sharing, which we informally call model replica-

tion, and (2) data replication.

(1) Model Replication. During execution, there is some
state that the task mutates (typically an update to the
model). We call this state, which may be shared among
one or more processors, a model replica. We consider three
different granularities at which to share model replicas:

• The PerCore approach treats a NUMA machine as a
distributed system in which every core is treated as an
individual machine, e.g., in bulk-synchronous models
such as MLlib on Spark or event-driven systems such as
GraphLab. These approaches are the classical shared-
nothing and event-driven architectures, respectively.
In PerCore, the part of the model that is updated by
each core is only visible to that core until the end of
an epoch. This method is efficient and scalable from
a hardware perspective, but it is less statistically ef-
ficient, as there is only coarse-grained communication
between cores.

• The PerMachine approach acts as if each processor has
uniform access to memory. This approach is taken in
Hogwild! and Google Downpour [10]. In this method,
the hardware takes care of the coherence of the shared

state. The PerMachine method is statistically efficient
due to high communication rates, but it may cause
contention in the hardware, which may lead to subop-
timal running times.

• A natural hybrid is PerNode; this method uses the
fact that PerCore communication through the last-level
cache (LLC) is dramatically faster than communica-
tion through remote main memory. This method is
novel; for some models, PerNode can be an order of
magnitude faster.

Because model replicas are mutable, a key question is how

often should we synchronize model replicas? We find that it
is beneficial to synchronize the models as much as possible—
so long as we do not impede throughput to data in main
memory. A natural idea, then, is to use PerMachine sharing,
in which the hardware is responsible for synchronizing the
replicas. However, this decision can be suboptimal, as the
cache-coherence protocol may stall a processor to preserve
coherence, but this information may not be worth the cost
of a stall from a statistical efficiency perspective. We find
that the PerNode method, coupled with a simple technique
to batch writes across sockets, can dramatically reduce com-
munication and processor stalls. The PerNode method can
result in an over 10× runtime improvement. This technique
depends on the fact that we do not need to maintain the
model consistently: we are effectively delaying some updates
to reduce the total number of updates across sockets (which
lead to processor stalls).

(2) Data Replication. The data for analytics is immutable,
so there are no synchronization issues for data replication.
The classical approach is to partition the data to take ad-
vantage of higher aggregate memory bandwidth. However,
each partition may contain skewed data, which may slow
convergence. Thus, an alternate approach is to replicate the
data fully (say, per NUMA node). In this approach, each
node accesses that node’s data in a different order, which
means that the replicas provide non-redundant statistical
information; in turn, this reduces the variance of the esti-
mates based on the data in each replicate. We find that for
some tasks, fully replicating the data four ways can converge
to the same loss almost 4× faster than the sharding strategy.

Summary of Contributions. We are the first to study the
three tradeoffs listed above for main-memory statistical an-
alytics systems. These tradeoffs are not intended to be an
exhaustive set of optimizations, but they demonstrate our

1284

main conceptual point: treating NUMA machines as dis-

tributed systems or SMP is suboptimal for statistical ana-

lytics. We design a storage manager, DimmWitted, that
shows it is possible to exploit these ideas on real data sets.
Finally, we evaluate our techniques on multiple real datasets,
models, and architectures.

2. BACKGROUND
In this section, we describe the memory model for

DimmWitted, which provides a unified memory model to
implement popular analytics methods. Then, we recall some
basic properties of modern NUMA architectures.

Data for Analytics. The data for an analytics task is a
pair (A, x), which we call the data and the model, respec-
tively. For concreteness, we consider a matrix A ∈ R

N×d.
In machine learning parlance, each row is called an exam-

ple. Thus, N is often the number of examples and d is often
called the dimension of the model. There is also a model,
typically a vector x ∈ R

d. The distinction is that the data
A is read-only, while the model vector, x, will be updated
during execution. From the perspective of this paper, the
important distinction we make is that data is an immutable
matrix, while the model (or portions of it) are mutable data.

First-Order Methods for Analytic Algorithms. DimmWit-

ted considers a class of popular algorithms called first-order

methods. Such algorithms make several passes over the data;
we refer to each such pass as an epoch. A popular exam-
ple algorithm is stochastic gradient descent (SGD), which
is widely used by web-companies, e.g., Google Brain [18]
and VowPal Wabbit [1], and in enterprise systems such as
Pivotal, Oracle, and Impala. Pseudocode for this method
is shown in Figure 1(b). During each epoch, SGD reads a
single example z; it uses the current value of the model and
z to estimate the derivative; and it then updates the model
vector with this estimate. It reads each example in this loop.
After each epoch, these methods test convergence (usually
by computing or estimating the norm of the gradient); this
computation requires a scan over the complete dataset.

2.1 Memory Models for Analytics
We design DimmWitted’s memory model to capture the

trend in recent high-performance sampling and statistical
methods. There are two aspects to this memory model: the
coherence level and the storage layout.

Coherence Level. Classically, memory systems are coher-
ent: reads and writes are executed atomically. For analytics
systems, we say that a memory model is coherent if reads
and writes of the entire model vector are atomic. That is,
access to the model is enforced by a critical section. How-
ever, many modern analytics algorithms are designed for an
incoherent memory model. The Hogwild! method showed
that one can run such a method in parallel without locking
but still provably converge. The Hogwild! memory model
relies on the fact that writes of individual components are
atomic, but it does not require that the entire vector be
updated atomically. However, atomicity at the level of the
cacheline is provided by essentially all modern processors.
Empirically, these results allow one to forgo costly locking
(and coherence) protocols. Similar algorithms have been

Algorithm! Access Method! Implementation!

Stochastic Gradient Descent! Row-wise! MADlib, Spark, Hogwild!!

Stochastic Coordinate Descent!
Column-wise!

GraphLab, Shogun, Thetis!
Column-to-row!

Figure 2: Algorithms and Their Access Methods.

proposed for other popular methods, including Gibbs sam-
pling [15, 31], stochastic coordinate descent (SCD) [29, 32],
and linear systems solvers [34]. This technique was applied
by Dean et al. [10] to solve convex optimization problems
with billions of elements in a model. This memory model is
distinct from the classical, fully coherent database execution.
The DimmWitted prototype allows us to specify that a

region of memory is coherent or not. This region of memory
may be shared by one or more processors. If the memory
is only shared per thread, then we can simulate a shared-
nothing execution. If the memory is shared per machine, we
can simulate Hogwild!.

Access Methods. We identify three distinct access paths
used by modern analytics systems, which we call row-wise,
column-wise, and column-to-row. They are graphically il-
lustrated in Figure 1(c). Our prototype supports all three
access methods. All of our methods perform several epochs,
that is, passes over the data. However, the algorithm may
iterate over the data row-wise or column-wise.

• In row-wise access, the system scans each row of the
table and applies a function that takes that row, ap-
plies a function to it, and then updates the model.
This method may write to all components of the
model. Popular methods that use this access method
include stochastic gradient descent, gradient descent,
and higher-order methods (such as l-BFGS).

• In column-wise access, the system scans each column j

of the table. This method reads just the j component
of the model. The write set of the method is typically
a single component of the model. This method is used
by stochastic coordinate descent.

• In column-to-row access, the system iterates conceptu-
ally over the columns. This method is typically applied
to sparse matrices. When iterating on column j, it
will read all rows in which column j is non-zero. This
method also updates a single component of the model.
This method is used by non-linear support vector ma-
chines in GraphLab and is the de facto approach for
Gibbs sampling.

DimmWitted is free to iterate over rows or columns in es-
sentially any order (although typically some randomness in
the ordering is desired). Figure 2 classifies popular imple-
mentations by their access method.

2.2 Architecture of NUMA Machines
We briefly describe the architecture of a modern NUMA

machine. As illustrated in Figure 1(d), a NUMA machine
contains multiple NUMA nodes. Each node has multiple
cores and processor caches, including the L3 cache. Each
node is directly connected to a region of DRAM. NUMA

1285

W
o

r
k

e
r
!

R
A

M
!

6GB/s!

QPI 11GB/s!

Name
(abbrv.)!

#Node!
#Cores/!

Node!
RAM/!

Node (GB)!
CPU !

Clock (GHz)!
LLC!
 (MB)!

local2 (l2)! 2! 6! 32! 2.6! 12!

local4 (l4)! 4! 10! 64! 2.0! 24!

local8 (l8)! 8! 8! 128! 2.6! 24!

ec2.1 (e1)! 2! 8! 122! 2.6! 20!

ec2.2 (e2)! 2! 8! 30! 2.6! 20!

local2!

W
o

r
k

e
r
!

R
A

M
!

6GB/s!

Figure 3: Summary of Machines and Memory Band-
width on local2 Tested with STREAM [6].

Data A!

M
ach

in
e
!

!
"

!
"

Data !

Replica!
Model !

Replica!
Worker!

Read! Update!

Execution Plan!

Model x!

O
p
tim
izer

!

Figure 4: Illustration of DimmWitted’s Engine.

nodes are connected to each other by buses on the main
board; in our case, this connection is the Intel Quick Path
Interconnects (QPIs), which has a bandwidth as high as
25.6GB/s.1 To access DRAM regions of other NUMA nodes,
data is transferred across NUMA nodes using the QPI. These
NUMA architectures are cache coherent, and the coherency
actions use the QPI. Figure 3 describes the configuration
of each machine that we use in this paper. Machines con-
trolled by us have names with the prefix “local”; the other
machines are Amazon EC2 configurations.

3. THE DIMMWITTED ENGINE
We describe the tradeoff space that DimmWitted’s op-

timizer considers, namely (1) access method selection, (2)
model replication, and (3) data replication. To help un-
derstand the statistical-versus-hardware tradeoff space, we
present some experimental results in a Tradeoffs paragraph
within each subsection. We describe implementation details
for DimmWitted in the full version of this paper.

3.1 System Overview
We describe analytics tasks in DimmWitted and the ex-

ecution model of DimmWitted given an analytics task.

System Input. For each analytics task that we study, we
assume that the user provides data A ∈ R

N×d and an initial
model that is a vector of length d. In addition, for each
access method listed above, there is a function of an ap-
propriate type that solves the same underlying model. For
example, we provide both a row- and column-wise way of
solving a support vector machine. Each method takes two
arguments; the first is a pointer to a model.

• frow captures the the row-wise access method, and its
second argument is the index of a single row.

1www.intel.com/content/www/us/
en/io/quickpath-technology/
quick-path-interconnect-introduction-paper.html

Tradeoff! Strategies! Existing Systems!

Access!
 Methods!

Row-wise! SP, HW!

Column-wise!
GL!

Column-to-row!

Model!
 Replication!

Per Core! GL, SP!

Per Node!

Per Machine! HW!

Data !
Replication!

Sharding! GL, SP, HW!

Full Replication!

Figure 5: A Summary of DimmWitted’s Tradeoffs
and Existing Systems (GraphLab (GL), Hogwild!
(HW), Spark (SP)).

• fcol captures the column-wise access method, and its
second argument is the index of a single column.

• fctr captures the column-to-row access method, and
its second argument is a pair of one column index and
a set of row indexes. These rows correspond to the
non-zero entries in a data matrix for a single column.2

Each of the functions modifies the model to which they re-
ceive a pointer in place. However, in our study, frow can
modify the whole model, while fcol and fctr only modify a
single variable of the model. We call the above tuple of func-
tions a model specification. Note that a model specification
contains either fcol or fctr but typically not both.

Execution. Given a model specification, our goal is to gen-
erate an execution plan. An execution plan, schematically
illustrated in Figure 4, specifies three things for each CPU
core in the machine: (1) a subset of the data matrix to op-
erate on, (2) a replica of the model to update, and (3) the
access method used to update the model. We call the set of
replicas of data and models locality groups, as the replicas
are described physically; i.e., they correspond to regions of
memory that are local to particular NUMA nodes, and one
or more workers may be mapped to each locality group. The
data assigned to distinct locality groups may overlap. We
use DimmWitted’s engine to explore three tradeoffs:

(1) Access methods, in which we can select between
either the row or column method to access the data.

(2) Model replication, in which we choose how to create
and assign replicas of the model to each worker. When
a worker needs to read or write the model, it will read
or write the model replica that it is assigned.

(3) Data replication, in which we choose a subset of data
tuples for each worker. The replicas may be overlap-
ping, disjoint, or some combination.

Figure 5 summarizes the tradeoff space. In each section,
we illustrate the tradeoff along two axes, namely (1) the
statistical efficiency, i.e., the number of epochs it takes to
converge, and (2) hardware efficiency, the time that each
method takes to finish a single epoch.

3.2 Access Method Selection
In this section, we examine each access method: row-wise,

column-wise, and column-to-row. We find that the execu-
tion time of an access method depends more on hardware
efficiency than on statistical efficiency.

2Define S(j) = {i : aij 6= 0}. For a column j, the input to
fctr is a pair (j, S(j)).

1286

1287

1288

Model! Dataset! #Row! #Col.! NNZ!
Size!

(Sparse) !
Size!

(Dense)!
Sparse!

SVM!
!
LR!
!
LS!

RCV1! 781K! 47K! 60M! 914MB! 275GB! !!

Reuters! 8K! 18K! 93K! 1.4MB! 1.2GB! !!

Music! 515K! 91! 46M! 701MB! 0.4GB!

Forest! 581K! 54! 30M! 490MB! 0.2GB!

LP!
Amazon! 926K! 335K! 2M! 28MB! >1TB! !!

Google! 2M! 2M! 3M! 25MB! >1TB! !!

QP!
Amazon! 1M! 1M! 7M! 104MB! >1TB! !!

Google! 2M! 2M! 10M! 152MB! >1TB! !!

Gibbs! Paleo! 69M! 30M! 108M! 2GB! >1TB! !!

NN! MNIST! 120M! 800K! 120M! 2GB! >1TB! !!

Figure 10: Dataset Statistics. NNZ refers to the
Number of Non-zero elements. The # columns is
equal to the number of variables in the model.

quent from local NUMA memory in PerNode than in Per-

Machine. The PerNode approach dominates the PerCore ap-
proach, as reads from the same node go to the same NUMA
memory. Thus, we do not consider PerCore replication from
this point on.

Tradeoffs. Not surprisingly, we observe that FullReplication
takes more time for each epoch than Sharding. However,
we also observe that FullReplication uses fewer epochs than
Sharding, especially to achieve low error. We illustrate these
two observations by showing the result of running SVM on
Reuters using PerNode in Figure 9.

Statistical Efficiency. FullReplication uses fewer epochs,
especially to low-error tolerance. Figure 9(a) shows the
number of epochs that each strategy takes to converge to a
given loss. We see that, for within 1% of the loss, FullRepli-
cation uses 10× fewer epochs on a two-node machine. This
is because each model replica sees more data than Shard-

ing, and therefore has a better estimate. Because of this
difference in the number of epochs, FullReplication is 5×
faster in wall-clock time than Sharding to converge to 1%
loss. However, we also observe that, at high-error regions,
FullReplication uses more epochs than Sharding and causes a
comparable execution time to a given loss.

Hardware Efficiency. Figure 9(b) shows the time for
each epoch across different machines with different numbers
of nodes. Because we are using the PerNode strategy, which
is the optimal choice for this dataset, the more nodes a ma-
chine has, the slower FullReplication is for each epoch. The
slow-down is roughly consistent with the number of nodes
on each machine. This is not surprising because each epoch
of FullReplication processes more data than Sharding.

4. EXPERIMENTS
We validate that exploiting the tradeoff space that we de-

scribed enablesDimmWitted’s orders of magnitude speedup
over state-of-the-art competitor systems. We also validate
that each tradeoff discussed in this paper affects the perfor-
mance of DimmWitted.

4.1 Experiment Setup
We describe the details of our experimental setting.

Datasets and Statistical Models. We validate the per-
formance and quality of DimmWitted on a diverse set of

statistical models and datasets. For statistical models, we
choose five models that are among the most popular models
used in statistical analytics: (1) Support Vector Machine
(SVM), (2) Logistic Regression (LR), (3) Least Squares
Regression (LS), (4) Linear Programming (LP), and (5)
Quadratic Programming (QP). For each model, we choose
datasets with different characteristics, including size, spar-
sity, and under- or over-determination. For SVM, LR, and
LS, we choose four datasets: Reuters4, RCV15, Music6, and
Forest.7 Reuters and RCV1 are datasets for text classifica-
tion that are sparse and underdetermined. Music and Forest
are standard benchmark datasets that are dense and overde-
termined. For QP and LR, we consider a social-network ap-
plication, i.e., network analysis, and use two datasets from
Amazon’s customer data and Google’s Google+ social net-
works.8 Figure 10 shows the dataset statistics.

Metrics. We measure the quality and performance of
DimmWitted and other competitors. To measure the qual-
ity, we follow prior art and use the loss function for all func-
tions. For end-to-end performance, we measure the wall-
clock time it takes for each system to converge to a loss that
is within 100%, 50%, 10%, and 1% of the optimal loss.9

When measuring the wall-clock time, we do not count the
time used for data loading and result outputting for all sys-
tems. We also use other measurements to understand the
details of the tradeoff space, including (1) local LLC request,
(2) remote LLC request, and (3) local DRAM request. We
use Intel Performance Monitoring Units (PMUs) and follow
the manual10 to conduct these experiments.

Experiment Setting. We compare DimmWitted with four
competitor systems: GraphLab [21], GraphChi [17], ML-
lib [33] over Spark [37], and Hogwild! [25]. GraphLab is
a distributed graph processing system that supports a large
range of statistical models. GraphChi is similar to GraphLab
but with a focus on multi-core machines with secondary stor-
age. MLlib is a package of machine learning algorithms im-
plemented over Spark, an in-memory implementation of the
MapReduce framework. Hogwild! is an in-memory lock-
free framework for statistical analytics. We find that all four
systems pick some points in the tradeoff space that we con-
sidered in DimmWitted. In GraphLab and GraphChi, all
models are implemented using stochastic coordinate descent
(column-wise access); in MLlib and Hogwild!, SVM and LR
are implemented using stochastic gradient descent (row-wise
access). We use implementations that are provided by the
original developers whenever possible. For models with-
out code provided by the developers, we only change the
corresponding gradient function.11 For GraphChi, if the

4archive.ics.uci.edu/ml/datasets/Reuters-21578+
Text+Categorization+Collection
5about.reuters.com/researchandstandards/corpus/
6archive.ics.uci.edu/ml/datasets/YearPredictionMSD
7archive.ics.uci.edu/ml/datasets/Covertype
8snap.stanford.edu/data/
9We obtain the optimal loss by running all systems for one
hour and choosing the lowest.

10software.intel.com/en-us/articles/
performance-monitoring-unit-guidelines

11For sparse models, we change the dense vector data struc-
ture in MLlib to a sparse vector, which only improves its
performance.

1289

1290

DimmWitted outperforms Hogwild! by more than two or-
ders of magnitude. On LP and QP, DimmWitted is also up
to 3× faster than GraphLab and GraphChi, and two orders
of magnitude faster than MLlib.

Tradeoff Choices. We dive more deeply into these numbers
to substantiate our claim that there are some points in the
tradeoff space that are not used by GraphLab, GraphChi,
Hogwild!, and MLlib. Each tradeoff selected by our sys-
tem is shown in Figure 14. For example, GraphLab and
GraphChi uses column-wise access for all models, while ML-
lib and Hogwild! use row-wise access for all models and al-
low only PerMachine model replication. These special points
work well for some but not all models. For example, for LP
and QP, GraphLab and GraphChi are only 3× slower than
DimmWitted, which chooses column-wise and PerMachine.
This factor of 3 is to be expected, as GraphLab also allows
distributed access and so has additional overhead. However
there are other points: for SVM and LR, DimmWitted

outperforms GraphLab and GraphChi, because the column-
wise algorithm implemented by GraphLab and GraphChi is
not as efficient as row-wise on the same dataset. DimmWit-

ted outperforms Hogwild! because DimmWitted takes ad-
vantage of model replication, while Hogwild! incurs 11×
more cross-node DRAM requests than DimmWitted; in
contrast, DimmWitted incurs 11× more local DRAM re-
quests than Hogwild! does.

For SVM, LR, and LS, we find that DimmWitted out-
performs MLlib, primarily due to a different point in the
tradeoff space. In particular, MLlib uses batch-gradient-
descent with a PerCore implementation, whileDimmWitted

uses stochastic gradient and PerNode. We find that, for the
Forest dataset, DimmWitted takes 60× fewer number of
epochs to converge to 1% loss than MLlib. For each epoch,
DimmWitted is 4× faster. These two factors contribute to
the 240× speed-up of DimmWitted over MLlib on the For-
est dataset (1% loss). MLlib has overhead for scheduling, so
we break down the time that MLlibuses for scheduling and
computation. We find that, for Forest, out of the total 2.7
seconds of execution, MLlib uses 1.8 seconds for computa-
tion and 0.9 seconds for scheduling. We also implemented
a batch-gradient-descent and PerCore implementation inside
DimmWitted to remove these and C++ versus Scala dif-
ferences. The 60× difference in the number of epochs until
convergence still holds, and our implementation is only 3×
faster than MLlib. This implies that the main difference be-
tween DimmWitted and MLlib is the point in the tradeoff
space—not low-level implementation differences.
For LP and QP, DimmWitted outperforms MLlib and

Hogwild! because the row-wise access method implemented
by these systems is not as efficient as column-wise access on
the same data set. GraphLab does have column-wise access,
so DimmWitted outperforms GraphLab and GraphChi be-
cause DimmWitted finishes each epoch up to 3× faster,
primarily due to low-level issues. This supports our claims
that the tradeoff space is interesting for analytic engines and
that no one system has implemented all of them.

Throughput. We compare the throughput of different sys-
tems for an extremely simple task: parallel sums. Our im-
plementation of parallel sum follows our implementation of
other statistical models (with a trivial update function),
and uses all cores on a single machine. Figure 13 shows

SVM !
(RCV1)!

LR!
(RCV1)!

LS!
(RCV1)!

LP!
(Google)!

QP!
(Google)!

Parallel!
Sum!

GraphLab! 0.2! 0.2! 0.2! 0.2! 0.1! 0.9!

GraphChi! 0.3! 0.3! 0.2! 0.2! 0.2! 1.0!

MLlib! 0.2! 0.2! 0.2! 0.1! 0.02! 0.3!

Hogwild!! 1.3! 1.4! 1.3! 0.3! 0.2! 13!

DIMMWITTED! 5.1! 5.2! 5.2! 0.7! 1.3! 21!

Figure 13: Comparison of Throughput
(GB/seconds) of Different Systems on local2.

Access Methods! Model Replication! Data Replication!

SVM!
LR!
LS!

Reuters!

Row-wise! PerNode! FullReplication!RCV1!

Music!

LP!
QP!

Amazon!
Column-wise! PerMachine! FullReplication!

Google!

Figure 14: Plans that DimmWitted Chooses in the
Tradeoff Space for Each Dataset on Machine local2.

the throughput on all systems on different models on one
dataset. We see from Figure 13 that DimmWitted achieves
the highest throughput of all the systems. For parallel sum,
DimmWitted is 1.6× faster than Hogwild!, and we find that
DimmWitted incurs 8× fewer LLC cache misses than Hog-
wild!. Compared with Hogwild!, in which all threads write
to a single copy of the sum result, DimmWitted maintains
one single copy of the sum result per NUMA node, so the
workers on one NUMA node do not invalidate the cache
on another NUMA node. When running on only a single
thread, DimmWitted has the same implementation as Hog-
wild!. Compared with GraphLab and GraphChi, DimmWit-

ted is 20× faster, likely due to the overhead of GraphLab
and GraphChi dynamically scheduling tasks and/or main-
taining the graph structure. To compareDimmWitted with
MLlib, which is written in Scala, we implemented a Scala
version, which is 3× slower than C++; this suggests that
the overhead is not just due to the language. If we do not
count the time that MLlibuses for scheduling and only count
the time of computation, we find that DimmWitted is 15×
faster than MLlib.

4.3 Tradeoffs of DimmWitted

We validate that all the tradeoffs described in this paper
have an impact on the efficiency of DimmWitted. We re-
port on a more modern architecture, local4 with four NUMA
sockets, in this section. We describe how the results change
with different architectures.

4.3.1 Access Method Selection

We validate that different access methods have different
performance, and that no single access method dominates
the others. We run DimmWitted on all statistical models
and compare two strategies, row-wise and column-wise. In
each experiment, we force DimmWitted to use the corre-
sponding access method, but report the best point for the
other tradeoffs. Figure 12(a) shows the results as we mea-
sure the time it takes to achieve each loss. The more strin-
gent loss requirements (1%) are on the left-hand side. The
horizontal line segments in the graph indicate that a model
may reach, say, 50% as quickly (in epochs) as it reaches
100%.

1291

1292

(b)!

!"

!#"

!##"

Gibbs! NN!#
 V

a
ri

a
b

le
s/

se
co

n
d

 !

(M
il

li
o

n
)!

Classic Choice!

DimmWitted!

#"

!"

$"

%"

&"

'"

#(!)" !(#)" !#(#)" !##(#)"

(a)!
R

a
ti

o
 o

f
E

x
ec

.
T

im
e!

(F
u

ll
R

ep
l.

/S
h

a
rd

in
g
)!

FullRepl. Better!

Sharding Better!

Figure 17: (a) Tradeoffs of Data Replication. A ra-
tio smaller than 1 means that FullReplication is faster.
(b) Performance of Gibbs Sampling and Neural Net-
works Implemented in DimmWitted.

each strategy to converge to a given loss for SVM on the
same dataset, RCV1. We report the ratio of these two
strategies as FullReplication/Sharding in Figure 17(a). We
see that, for the low-error region (e.g., 0.1%), FullReplication
is 1.8-2.5× faster than Sharding. This is because FullReplica-
tion decreases the skew of data assignment to each worker,
so hence each individual model replica can form a more ac-
curate estimate. For the high-error region (e.g., 100%), we
observe that FullReplication appears to be 2-5× slower than
Sharding. We find that, for 100% loss, both FullReplication

and Sharding converge in a single epoch, and Sharding may
therefore be preferred, as it examines less data to complete
that single epoch. In all of our experiments, FullReplication
is never substantially worse and can be dramatically better.
Thus, if there is available memory, the FullReplication data
replication seems to be preferable.

5. EXTENSIONS
We briefly describe how to run Gibbs sampling (which

uses a column-to-row access method) and deep neural net-
works (which uses a row access method). Using the same
tradeoffs, we achieve a significant increase in speed over the
classical implementation choices of these algorithms. A more
detailed description is in the full version of this paper.

5.1 Gibbs Sampling
Gibbs sampling is one of the most popular algorithms

to solve statistical inference and learning over probabilis-
tic graphical models [30]. We briefly describe Gibbs sam-
pling over factor graphs and observe that its main step is a
column-to-row access. A factor graph can be thought of as
a bipartite graph of a set of variables and a set of factors.
To run Gibbs sampling, the main operation is to select a
single variable, and calculate the conditional probability of
this variable, which requires the fetching of all factors that
contain this variable and all assignments of variables con-
nected to these factors. This operation corresponds to the
column-to-row access method. Similar to first-order meth-
ods, recently, a Hogwild! algorithm for Gibbs was estab-
lished [15]. As shown in Figure 17(b), applying the tech-
nique in DimmWitted to Gibbs sampling achieves 4× the
throughput of samples as the PerMachine strategy.

5.2 Deep Neural Networks
Neural networks are one of the most classic machine learn-

ing models [22]; recently, these models have been intensively
revisited by adding more layers [10, 18]. A deep neural net-
work contains multiple layers, and each layer contains a set
of neurons (variables). Different neurons connect with each

other only by links across consecutive layers. The value of
one neuron is a function of all the other neurons in the pre-
vious layer and a set of weights. Variables in the last layer
have human labels as training data; the goal of deep neural
network learning is to find the set of weights that maximizes
the likelihood of the human labels. Back-propagation with
stochastic gradient descent is the de facto method of opti-
mizing a deep neural network.
Following LeCun et al. [19], we implement SGD over a

seven-layer neural network with 0.12 billion neurons and 0.8
million parameters using a standard handwriting-recognition
benchmark dataset called MNIST13. Figure 17(b) shows the
number of variables that are processed by DimmWitted

per second. For this application, DimmWitted uses PerN-

ode and FullReplication, and the classical choice made by Le-
Cun is PerMachine and Sharding. As shown in Figure 17(b),
DimmWitted achieves more than an order of magnitude
higher throughput than this classical baseline (to achieve
the same quality as reported in this classical paper).

6. RELATED WORK
We review work in four main areas: statistical analytics,

data mining algorithms, shared-memory multiprocessors op-
timization, and main-memory databases. We include more
extensive related work in the full version of this paper.

Statistical Analytics. There is a trend to integrate sta-
tistical analytics into data processing systems. Database
vendors have recently put out new products in this space, in-
cluding Oracle, Pivotal’s MADlib [13], IBM’s SystemML [12],
and SAP’s HANA. These systems support statistical analyt-
ics in existing data management systems. A key challenge
for statistical analytics is performance.
A handful of data processing frameworks have been de-

veloped in the last few years to support statistical ana-
lytics, including Mahout for Hadoop, MLI for Spark [33],
GraphLab [21], and MADLib for PostgreSQL or Green-
plum [13]. Although these systems increase the perfor-
mance of corresponding statistical analytics tasks signifi-
cantly, we observe that each of them implements one point
in DimmWitted’s tradeoff space. DimmWitted is not a
system; our goal is to study this tradeoff space.
Data Mining Algorithms. There is a large body of

data mining literature regarding how to optimize various al-
gorithms to be more architecturally aware [26, 38, 39]. Zaki
et al. [26,39] study the performance of a range of different al-
gorithms, including associated rule mining and decision tree
on shared-memory machines, by improving memory locality
and data placement in the granularity of cachelines, and de-
creasing the cost of coherent maintenance between multiple
CPU caches. Ghoting et al. [11] optimize the cache behavior
of frequent pattern mining using novel cache-conscious tech-
niques, including spatial and temporal locality, prefetching,
and tiling. Jin et al. [14] discuss tradeoffs in replication and
locking schemes for K-means, association rule mining, and
neural nets. This work considers the hardware efficiency of
the algorithm, but not statistical efficiency, which is the fo-
cus of DimmWitted. In addition, Jin et al. do not consider
lock-free execution, a key aspect of this paper.

Shared-memory Multiprocessor Optimization. Per-
formance optimization on shared-memory multiprocessors
machines is a classical topic. Anderson and Lam [3] and

13yann.lecun.com/exdb/mnist/

1293

Carr et al.’s [7] seminal work used complier techniques to im-
prove locality on shared-memory multiprocessor machines.
DimmWitted’s locality group is inspired by Anderson and
Lam’s discussion of computation decomposition and data de-

composition. These locality groups are the centerpiece of the
Legion project [5]. In recent years, there have been a va-
riety of domain specific languages (DSLs) to help the user
extract parallelism; two examples of these DSLs include Ga-
lois [23, 24] and OptiML [35] for Delite [8]. Our goals are
orthogonal: these DSLs require knowledge about the trade-
offs of the hardware, such as those provided by our study.

Main-memory Databases. The database community
has recognized that multi-socket, large-memory machines
have changed the data processing landscape, and there has
been a flurry of recent work about how to build in-memory
analytics systems [2,4,9,16,20,27,28,36]. Classical tradeoffs
have been revisited on modern architectures to gain signif-
icant improvement: Balkesen et al. [4], Albutiu et al. [2],
Kim et al. [16], and Li [20] study the tradeoff for joins and
shuffling, respectively. This work takes advantage of modern
architectures, e.g., NUMA and SIMD, to increase memory
bandwidth. We study a new tradeoff space for statistical
analytics in which the performance of the system is affected
by both hardware efficiency and statistical efficiency.

7. CONCLUSION
For statistical analytics on main-memory, NUMA-aware

machines, we studied tradeoffs in access methods, model
replication, and data replication. We found that using novel
points in this tradeoff space can have a substantial bene-
fit: our DimmWitted prototype engine can run at least
one popular task at least 100× faster than other competitor
systems. This comparison demonstrates that this tradeoff
space may be interesting for current and next-generation
statistical analytics systems.

Acknowledgments We would like to thank Arun Kumar, Victor

Bittorf, the Delite team, the Advanced Analytics at Oracle, Green-

plum/Pivotal, and Impala’s Cloudera team for sharing their experi-

ences in building analytics systems. We gratefully acknowledge the

support of the Defense Advanced Research Projects Agency (DARPA)

XDATA Program under No. FA8750-12-2-0335 and the DEFT Pro-

gram under No. FA8750-13-2-0039, the National Science Founda-

tion (NSF) CAREER Award under No. IIS-1353606, the Office of

Naval Research (ONR) under awards No. N000141210041 and No.

N000141310129, the Sloan Research Fellowship, American Family In-

surance, Google, and Toshiba. Any opinions, findings, and conclusion

or recommendations expressed in this material are those of the au-

thors and do not necessarily reflect the view of DARPA, NSF, ONR,

or the US government.

8. REFERENCES
[1] A. Agarwal, O. Chapelle, M. Dud́ık, and J. Langford. A reliable

effective terascale linear learning system. ArXiv e-prints, 2011.

[2] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively
parallel sort-merge joins in main memory multi-core database
systems. PVLDB, pages 1064–1075, 2012.

[3] J. M. Anderson and M. S. Lam. Global optimizations for
parallelism and locality on scalable parallel machines. In PLDI,
pages 112–125, 1993.

[4] C. Balkesen and et al. Multi-core, main-memory joins: Sort vs.
hash revisited. PVLDB, pages 85–96, 2013.

[5] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion:
expressing locality and independence with logical regions. In
SC, page 66, 2012.

[6] L. Bergstrom. Measuring NUMA effects with the STREAM
benchmark. ArXiv e-prints, 2011.

[7] S. Carr, K. S. McKinley, and C.-W. Tseng. Compiler
optimizations for improving data locality. In ASPLOS, 1994.

[8] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya,
and K. Olukotun. A domain-specific approach to heterogeneous
parallelism. In PPOPP, pages 35–46, 2011.

[9] C. Chasseur and J. M. Patel. Design and evaluation of storage
organizations for read-optimized main memory databases.
PVLDB, pages 1474–1485, 2013.

[10] J. Dean and et al. Large scale distributed deep networks. In
NIPS, pages 1232–1240, 2012.

[11] A. Ghoting and et al. Cache-conscious frequent pattern mining
on modern and emerging processors. VLDBJ, 2007.

[12] A. Ghoting and et al. SystemML: Declarative machine learning
on MapReduce. In ICDE, pages 231–242, 2011.

[13] J. M. Hellerstein and et al. The MADlib analytics library: Or
MAD skills, the SQL. PVLDB, pages 1700–1711, 2012.

[14] R. Jin, G. Yang, and G. Agrawal. Shared memory
parallelization of data mining algorithms: Techniques,
programming interface, and performance. TKDE, 2005.

[15] M. J. Johnson, J. Saunderson, and A. S. Willsky. Analyzing
Hogwild parallel Gaussian Gibbs sampling. In NIPS, 2013.

[16] C. Kim and et al. Sort vs. hash revisited: Fast join
implementation on modern multi-core CPUs. PVLDB, 2009.

[17] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale
graph computation on just a pc. In OSDI, pages 31–46, 2012.

[18] Q. V. Le and et al. Building high-level features using large
scale unsupervised learning. In ICML, pages 8595–8598, 2012.

[19] Y. LeCun and et al. Gradient-based learning applied to
document recognition. IEEE, pages 2278–2324, 1998.

[20] Y. Li and et al. NUMA-aware algorithms: the case of data
shuffling. In CIDR, 2013.

[21] Y. Low and et al. Distributed GraphLab: A framework for
machine learning in the cloud. PVLDB, pages 716–727, 2012.

[22] T. M. Mitchell. Machine Learning. McGraw-Hill, USA, 1997.

[23] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight
infrastructure for graph analytics. In SOSP, 2013.

[24] D. Nguyen, A. Lenharth, and K. Pingali. Deterministic Galois:
On-demand, portable and parameterless. In ASPLOS, 2014.

[25] F. Niu and et al. Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In NIPS, pages 693–701, 2011.

[26] S. Parthasarathy, M. J. Zaki, M. Ogihara, and W. Li. Parallel
data mining for association rules on shared memory systems.
Knowl. Inf. Syst., pages 1–29, 2001.

[27] L. Qiao and et al. Main-memory scan sharing for multi-core
CPUs. PVLDB, pages 610–621, 2008.

[28] V. Raman and et al. DB2 with BLU acceleration: So much
more than just a column store. PVLDB, pages 1080–1091, 2013.

[29] P. Richtárik and M. Takáč. Parallel coordinate descent
methods for big data optimization. ArXiv e-prints, 2012.

[30] C. P. Robert and G. Casella. Monte Carlo Statistical Methods
(Springer Texts in Statistics). Springer, USA, 2005.

[31] A. Smola and S. Narayanamurthy. An architecture for parallel
topic models. PVLDB, pages 703–710, 2010.

[32] S. Sonnenburg and et al. The SHOGUN machine learning
toolbox. J. Mach. Learn. Res., pages 1799–1802, 2010.

[33] E. Sparks and et al. MLI: An API for distributed machine
learning. In ICDM, pages 1187–1192, 2013.

[34] S. Sridhar and et al. An approximate, efficient LP solver for LP
rounding. In NIPS, pages 2895–2903, 2013.

[35] A. K. Sujeeth and et al. OptiML: An Implicitly Parallel
Domain-Specific Language for Machine Learning. In ICML,
pages 609–616, 2011.

[36] S. Tu and et al. Speedy transactions in multicore in-memory
databases. In SOSP, pages 18–32, 2013.

[37] M. Zaharia and et al. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In
NSDI, 2012.

[38] M. Zaki and et al. Parallel classification for data mining on
shared-memory multiprocessors. In ICDE, pages 198–205, 1999.

[39] M. J. Zaki and et al. New algorithms for fast discovery of
association rules. In KDD, pages 283–286, 1997.

1294

