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Small insertions and deletions (indels) are a common and functionally important type of sequence polymorphism. Most of
the focus of studies of sequence variation is on single nucleotide variants (SNVs) and large structural variants. In principle,
high-throughput sequencing studies should allow identification of indels just as SNVs. However, inference of indels from
next-generation sequence data is challenging, and so far methods for identifying indels lag behind methods for calling
SNVs in terms of sensitivity and specificity. We propose a Bayesian method to call indels from short-read sequence data in
individuals and populations by realigning reads to candidate haplotypes that represent alternative sequence to the ref-
erence. The candidate haplotypes are formed by combining candidate indels and SNVs identified by the read mapper,
while allowing for known sequence variants or candidates from other methods to be included. In our probabilistic re-
alignment model we account for base-calling errors, mapping errors, and also, importantly, for increased sequencing error
indel rates in long homopolymer runs. We show that our method is sensitive and achieves low false discovery rates on
simulated and real data sets, although challenges remain. The algorithm is implemented in the program Dindel, which has
been used in the 1000 Genomes Project call sets.

[Supplemental material is available for this article. The sequence data from this study have been submitted to the Eu-
ropean Nucleotide Archive (http://www.ebi.ac.uk/ena/) under accession no. ERA014258. The program Dindel can be
freely downloaded from http://www.sanger.ac.uk/resources/software/dindel/.]

Small insertions and deletions (indels) are a common and func-

tionally important type of sequence polymorphism. There have

been surveys of genome-wide indel variation (Mills et al. 2006), but

many studies focus on single nucleotide variants (SNVs) or large

structural variants. The 1000 Genomes Project (The 1000 Genomes

Project Consortium 2010; http://www.1000genomes.org) will al-

low a genome-wide and deep study of indel polymorphisms of

frequency $1% in the population. This will provide an important

resource for applications in medical resequencing, as indels have

been implicated in a number of diseases (e.g., Miki et al. 1994;

Draptchinskaia et al. 1999). Here, we present a Bayesian algorithm

for calling indels from next-generation sequencing data in in-

dividuals and populations.

Small indels result in small structural differences between ho-

mologous chromosomes. Broadly speaking, there are two paradigms

for identifying such variations. The first paradigm is to perform de

novo assembly of short reads and detect indels by comparing

contigs to a reference sequence. The second paradigm is to map

each fragment directly and independently of other fragments to

the reference sequence using a read mapper (e.g., Li et al. 2008;

Langmead et al. 2009; Li and Durbin 2009). Here, a fragment may

correspond to a single read in the case of single-end sequencing or

a mated pair of reads in the case of paired-end sequencing. Se-

quence variation is then identified as a difference between the

sequence of the reads mapped to a particular location, with the

reference sequence at that location. The second paradigm is very

powerful for detection of novel SNVs, but it is not suitable for

detection of large insertions of sequence not present in the refer-

ence sequence. However, it is possible to detect large deletions

through split-read approaches (Ye et al. 2009) or small insertions

using paired-end sequencing and mapping. The approach that we

propose starts from the second paradigm, thus requiring reads to

be first mapped to a reference genome. However, it also incor-

porates elements of the first paradigm in considering alterna-

tive haplotype sequences to explain the data with a probabilistic

model, thereby combining strengths of both.

Accurate inference of indels from short-read data is challenging

for a number of reasons. First, compared with SNPs, indels occur at

approximately eightfold lower rates (Lunter 2007; Cartwright 2009),

which makes them more difficult to detect. Second, reads arising

from indel sequence are generally more difficult to map to the cor-

rect location in the genome (Li et al. 2008). This holds true for long

deletions, but it is especially the case for larger insertions. Third,

since current read mappers align each fragment independently of

other fragments to the reference sequence, reads supporting indel

events may be aligned with multiple mismatches to the reference

rather than with a gap. Finally, a complicating issue is that often

small insertions and deletions cannot be uniquely positioned onto

the reference. For example, in a repeat, a deletion that deletes any of

the repeat units results in an equivalent alternative haplotype; for

insertions, the same problem applies. Therefore, it is essential to

consider haplotypes that include enough unique surrounding se-

quence to unambiguously evaluate evidence for the presence or

absence of a deletion or insertion event with respect to the reference.

The rate of insertions and deletions due to sequencing errors

tends to increase in those regions where the true indel poly-

morphism rate in the population is also increased, and this poses

additional analytical challenges. Homopolymer runs are a prime
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example of this: The 454 Life Sciences (Roche) technology is par-

ticularly prone to sequencing error in this context; but we show

here that Illumina GA(II) machines also show increased error rates

in homopolymers. Both technological and biological artifacts,

such as polymerase slippage during PCR amplification, contribute

to increased sequencing error indel rates in homopolymer runs. As

a result, the signal-to-noise ratio is decreased for this category of

indels. Since dbSNP indels are overrepresented within long ho-

mopolymer runs as well, these difficult regions cannot simply be

ignored, and a probabilistic approach is required to control power

and false discovery rates in surveys of indel polymorphisms on

a genome-wide scale.

Here, we propose Dindel (detection of indels), a Bayesian

approach for calling small (<50 nucleotides) insertions and de-

letions from short read data. The basic idea is to realign all reads

mapped to a genomic region to a number of candidate haplotypes.

Each candidate haplotype is a sequence of at least 120 bp that

represents an alternative to the reference sequence and corre-

sponds to the hypothesis of an indel event and potentially other

candidate sequence variants such as SNPs. By assigning prior

probabilities to the candidate haplotypes, the posterior probability

of a haplotype, and consequently an indel being present in the

sample, can be straightforwardly estimated. Our Bayesian approach

allows us to model different types and rates of error consistently in

a single framework. The advantage of modeling hypotheses as

candidate haplotypes is that all differences between the read and

the candidate haplotype must be due to sequencing errors. In the

realignment of a read to a candidate haplotype, we are able to

naturally take into account the increased sequencing error indel

rates in homopolymer runs, as well as the base-qualities, thus sep-

arating contributions of errors from statements about biological

differences. The process of realigning reads to candidate haplo-

types also cleanly resolves the issue of mismatches around indel

events and corrects alignment artifacts introduced by the read

mapper. Furthermore, we deal with mapping errors by interpreting

mapping quality as the prior probability that a read should align to

any of the candidate haplotypes (Li et al. 2008), which effectively

reduces the weight of reads that cannot be confidently mapped to

that location in the genome.

In our framework we make a crucial distinction between

generating candidate indel variants and assessing the support in

the reads for these candidate indel variants. We rely on other

methods to provide a sensitive set of candidate indels; the goal of

our method is to remove false-positives while maintaining as many

true-positives as possible. Different methods can be used to provide

candidate indels. Gaps in the alignments coming from the read

mapper will be the primary source; other possible sources of can-

didate variants will be variants detected through assembly meth-

ods (Zerbino and Birney 2008; Simpson et al. 2009; Ye et al. 2009),

or previous lists of indels such as those in dbSNP. Indeed, even if

a read spanning an indel was not mapped, if its mate was mapped

in the correct nearby location, we will also test it against candidate

haplotypes, and thus can call an indel even if it was not picked up

by the primary mapper. In this way our approach also allows ac-

curate inference of longer indels from paired-end data sets.

Previously, a number of approaches have been proposed to

infer indel events from short read data. Ye et al. (2009) proposed

a split-read method to detect insertions and long deletions, but it is

not designed for small indels (Ye et al. 2009). SAMtools (Li et al.

2009a) and VarScan (Koboldt et al. 2009) are similar in that they

both call indels from the pileup (as created by SAMtools) of reads at

every position along the reference sequence. The SAMtools indel

caller allows specification of a constant sequencing error indel rate.

Ng et al. (2010) remapped reads to a reference augmented with

candidate indels, which is feasible for single high-coverage sam-

ples, but becomes impractical for large pooled data sets with many

candidates such as the low-coverage pilot of the 1000 Genomes

Project. Krawitz et al. (2010) explicitly addressed the issue that

indels cannot always be assigned a unique position in the reference

and propose to use the indel equivalent region to identify reads

that span indel events; however, they do not provide a statisti-

cal framework to deal with context-dependent sequencing error

indels and the problem of calling indel genotypes. Smith et al.

(2008) and Qi et al. (2010) combined reference-based mapping

with assembly methods to call indels, but these methods do not

have a sequencing error indel model for Illumina reads and were

not designed for analyzing pools of samples. To the best of our

knowledge, our method is the first to address the realignment

problem and various sources of errors explicitly in a single statis-

tical framework, in particular the modeling of context-dependent

sequencing error rates for Illumina reads, for both diploid samples

and pools of samples.

We applied Dindel to simulated data sets, high-coverage data

for a single individual, a targeted resequencing study, and the low-

coverage data set from the 1000 Genomes Project. We assessed

genotyping error rates and false discovery rates of calls made from

short read data using traces from capillary sequencing.

Methods
Here, we provide an outline of the algorithm that we implemented

in the Dindel program and refer to the Supplemental Methods for

mathematical details.

Outline of Dindel

Figure 1 shows an outline of the Dindel algorithm. Dindel requires

as input a file with mapped reads, a set of candidate indels, and the

library insert size distributions. All of these can be inferred from the

alignments produced by a read mapper, and Dindel has an option

to extract candidate indels and the insert size distribution from the

read-alignment file. For this, Dindel accepts files in the SAMtools

BAM format (Li et al. 2009a). The user may choose to augment

candidate indels from the read-alignment file with candidate

indels or SNPs from alternative sources. For example, it is also

possible to provide known SNPs and their population allele fre-

quencies at this stage.

Dindel next performs two preprocessing steps on the input

data. The first is to reposition each candidate variant to a canonical

position. The purpose of repositioning is to ensure that different

candidate variants that result in the same alternative haplotype

sequence are not called twice as different indels. We choose to re-

position the candidate variant to the leftmost position, which re-

sults in the same haplotype as the originally provided position and

Figure 1. Outline of the Dindel algorithm.
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sequence. Note that this may result in a change of both the posi-

tion and the actual sequence of the candidate variant. The second

preprocessing step is to group all candidate SNPs and indels into

realignment windows of at least 120 bp. For each window Dindel

will generate candidate haplotypes, which, therefore, will also be at

least 120-bp long. All candidate variants corresponding to a par-

ticular window will be considered against the same set of reads.

This allows us to compare different hypotheses as formulated in

terms of candidate haplotypes.

The core of the Dindel program is the realignment of reads to

candidate haplotypes for each realignment window defined in the

preprocessing step. We define Ri as the nucleotide sequence for

read i, and Hj as the nucleotide sequence for candidate haplotype

j. The main operations of the realignment algorithm for a particu-

lar window then are:

1. Identify the set of reads {Ri} to be realigned.

2. Generate the set of candidate haplotypes {Hj}.

3. Compute the maximum likelihood Pmax(Ri | Hj) and maximum-

likelihood alignment of each read Ri given each candidate

haplotype Hj using the probabilistic realignment model.

4. Estimate haplotype frequencies from the read-haplotype like-

lihoods Pmax(Ri | Hj) and the prior probability of each candidate

haplotype.

5. Estimate quality scores for the candidate indels and other se-

quence variants.

The computation of the read-haplotype likelihood in step 3 is

generally the most compute-intensive step. In the fourth step,

different algorithms may be applied, depending on the setting. For

diploid samples we explicitly evaluate posterior probabilities for

every pair of haplotypes; for pooled reads or individuals we apply

a Bayesian expectation-maximization (EM) algorithm to estimate

haplotype frequencies. Below, we describe each of these steps in

more detail.

Genotype likelihoods

As part of the output, Dindel also provides genotype likelihoods for

each candidate indel. In the case of trios, the genotype likelihoods

can be easily combined with a model for Mendelian segregation or

a model that is specifically designed to detect de novo mutations.

Another situation where a more complex prior is useful is in the

analyses of a population of samples, especially when the samples

are sequenced at low depth. In this case the Dindel pooled analysis

is able to output a genotype likelihood for every sample and every

candidate indel, which can then be used in imputation software

that accepts likelihoods, e.g., Beagle (Browning and Browning

2007) or QCALL (Le and Durbin 2011), to obtain more accurate

indel genotypes. This strategy was used for the low-coverage pilot

of the 1000 Genomes Project to infer indel genotypes.

The realignment algorithm

Identification of reads for realignment

Dindel realigns mapped and unmapped reads to the candidate

haplotypes. We assume that for the mapped reads the read mapper

has found the correct region, and from the read-alignment file we

include every read that has an overlap of at least 20 bp with the

realignment window according to the read mapper. Importantly,

Dindel also attempts to realign unmapped reads for which the

mate is mapped in the region surrounding the window. We include

every unmapped read for which the mate is mapped within a dis-

tance of the mean plus/minus four standard deviations of the li-

brary insert size distribution from the realignment window. This

increases sensitivity for longer insertions and deletions, for which

the read mapper may not have mapped all of the reads to the ref-

erence sequence.

Generation of candidate haplotypes

Dindel generates candidate haplotypes from the candidate vari-

ants provided by the user, but it also infers candidate variants from

the read-alignment file itself. Candidate variants identified from

the read-alignment file are mostly potential SNPs not specified

by the user. Incorporating such a SNP may improve the alignment of

reads to candidate haplotypes, and as a result improve the inference

of the indel, since, in principle, each read should align to one of

the two haplotypes (for a diploid individual) without mismatch in

the absence of sequencing and mapping errors. The haplotypes are

generated such that for every non-reference sequence variant, the

reference variant is always present in one of the other candidate

haplotypes so that genotype likelihoods can be calculated.

The generation of candidate haplotypes itself is a two-step

process. Figure 2 illustrates the procedure with an example, and is

described in more detail in the Supplemental material. First, can-

didate variants are inferred from the read-alignment file, creating

a set of candidate haplotypes consisting of all combinations of

these variants. Second, the candidate variants provided by the user

are added to each of these candidate haplotypes, creating a set of

Figure 2. Procedure for generation of candidate haplotypes. We first consider the empirical distribution of bases determined from the initial alignments
of reads to the reference and infer a heuristic haplotype block model to preserve sequences that always occur together in one read. We then choose n
block-haplotypes with the highest empirical frequency, and generate candidate haplotypes by considering all combinations of these n block-haplotypes.
The number of candidate haplotypes obtained this way is thus 2n. It is possible that multiple subhaplotypes from the same block are chosen. In the second
step, all candidate variants (most importantly, the candidate indels) are added to these n candidate haplotypes, resulting in a set of, at most,k � 2n

candidate haplotypes, where k is the number of candidate variants tested.

Accurate indel calls from short-read data
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candidate haplotypes where each input candidate variant is rep-

resented against a variety of additional local sequence variants. If,

for a given position, a nucleotide or short sequence other than the

reference has high empirical frequency, it will be considered as

a local variant. To include a true SNP through this procedure, it is

necessary that a large enough fraction of the reads with the non-

reference allele are at least partially correctly aligned.

By default, Dindel generates eight candidate haplotypes. Each

candidate indel is applied to each of these eight candidate haplo-

types, so that the number of candidate haplotypes is eight times

the number of candidate indels considered in a given realignment

window. In theory, one would like to use an unlimited number of

candidate haplotypes; however, to maintain computational effi-

ciency we restrict the number to eight, which yielded good results

in practice.

Probabilistic realignment model

The goal of the probabilistic realignment model is to estimate the

read-haplotype maximum likelihood Pmax(Ri | Hj), the probability

of observing the read Ri given that the true underlying haplotype

sequence from which it was sequenced is given by Hj. This model

includes the reliability of each base-call in the read (through base-

qualities) and the probability that the read was not correctly

mapped to the window by the read mapper (through mapping

qualities). Furthermore, it includes a model of how likely it is to

observe a sequencing error indel given a specific sequence context.

The probabilistic realignment model we use is similar to a

profile hidden Markov model (HMM) (Durbin et al. 1998) and is

described in detail in the Supplemental Methods. The model uses

the mapping quality to specify the a priori probability that the read

was generated by the candidate haplotype, and, therefore, should

align to it. This prior probability also includes the insert size dis-

tribution and the mapping quality of the mate in case the read was

mapped in pairs to the same chromosome by the read mapper.

Thus, the mapping quality of a read effectively bounds the likeli-

hood of observing a read given a candidate haplotype; conse-

quently, a read that has low-sequence similarity, but also low-

mapping quality, is not allowed to significantly influence the

haplotype inference. We perform inference in this probabilistic

model using the Viterbi algorithm, yielding a maximum-likeli-

hood alignment of the read to the haplotype. This allows us to

determine which parts of the candidate haplotype are covered by

the read. The advantage of using the Viterbi algorithm is that it can

be implemented more efficiently than full inference (i.e., summing

over all configurations instead of maximization); the disadvan-

tage is that it may underestimate the likelihood in case of un-

certainty in the alignment of read to haplotype. In the Supple-

mental Methods we describe how we compensate for this for

homopolymers.

Illumina sequencing error indel rates

The probabilistic realignment model we use allows specification of

position-dependent rates of indel errors. We parameterize these

rates by the length of the homopolymer run at each position. Error

rates as a function of homopolymer run length were estimated

using data from the low-coverage pilot of the 1000 Genomes

Project (see below).

Haplotype inference in diploid samples

In diploid samples we call indels by comparing posterior proba-

bilities of pairs of haplotypes with and without indels. We assume

that each read is an independent observation of either the paternal

haplotype or the maternal haplotype. Given the read-haplotype

likelihoods Pmax(Ri | Hj), the likelihood of a pair of candidate hap-

lotypes (Hj, Hj9) given all reads is given by

lðHj;Hj 0 Þ[
Y

i

½PmaxðRi jHjÞ
2

+
PmaxðRi jHj 0 Þ

2
�; ð1Þ

where Pmax(Ri | Hj) and Pmax(Ri | Hj9) are the result of the realign-

ment and are given by Equation 3 in the Supplemental material.

The product runs over all reads i realigned in a given realignment

window. The posterior probability Ppost(Hj,, Hj9) for a pair of hap-

lotypes (Hj, Hj9) is given by:

PpostðHj;Hj 0 Þ} lðHj;Hj 0 ÞPðHj;Hj 0 Þ; ð2Þ

where P(Hj, Hj9) is the prior probability of a pair of candidate hap-

lotypes and is determined by the candidate sequence variants

present in the candidate haplotypes. Unless the user specifies

otherwise, a 1/1000 prior probability for having a SNP site and a

1/10,000 prior probability for having an indel site is assumed.

Dindel assigns quality scores to the candidate indels as fol-

lows. First, the haplotype pair with the highest posterior proba-

bility containing at least one indel is identified:

ðHMAP
pat ;H

MAP
mat Þ = arg max

ðHj ;Hj0 Þ:#indelsðHj ;Hj 0 Þ> 0

PpostðHj;Hj 0 Þ. ð3Þ

Dindel assigns a single quality score to all candidate indels in this

pair of haplotypes by comparing the posterior probability of this

haplotype pair to the highest posterior probability of the haplo-

type pairs containing no indels. A phred-like quality score is ob-

tained by normalization and converting to a logarithmic scale:

Q indels 2 ðHMAP
pat ;H

MAP
mat Þ

� �
=

� 10 log10

max
ðHj ;Hj 0 Þ:#indelsðHj ;Hj 0 Þ= 0

PpostðHj;Hj 0 Þ

PpostðHMAP
pat ;H

MAP
mat Þ+ max

ðHj ;Hj 0 Þ:#indelsðHj ;Hj 0 Þ= 0
PpostðHj;Hj 0 Þ

:
ð4Þ

A quality score of 10 (‘‘q10’’) corresponds to a confidence of

90%, and a quality score of 20 (‘‘q20’’) corresponds to a confidence

of 99%. Quality scores for genotypes are computed separately for

each candidate indel. The quality score Q(gi) for genotype gi cor-

responding to candidate indel i in the haplotype pair ðHMAP
pat ;H

MAP
mat Þ

is computed, comparing to the haplotype pair that has the highest

posterior probability but a different genotype for indel i.

Our approach for assigning quality scores to candidate indels

is an overestimate of the confidence in any one particular indel

variant in situations where there is strong evidence for an indel,

but where there is uncertainty in the precise sequence or location

of the indel. The uncertainty will be reflected in the genotype

quality scores. We have made this choice because it would be un-

desirable to not call an indel only because its exact sequence could

not be inferred.

Since we consider combinations of sequence variants, it is, in

principle, possible to infer phase between them from the posterior

probabilities of the candidate haplotypes, although we have not

evaluated the accuracy of the phasing.

Haplotype inference in pools of reads

We use a Bayesian EM algorithm to call sequence variants in pooled

reads. The idea is to consider various subsets of candidate haplo-

types, such that each subset of candidate haplotypes corresponds

Albers et al .
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to a subset of candidate variants segregating in the population. We

illustrate this with a simple example.

Suppose we have candidate haplotypes based on two candi-

date variants, a SNP and an indel, and we would like to infer

whether (1) just the SNP is segregating, (2) just the indel is segre-

gating, (3) both the SNP and indel are segregating, or (4) neither

is segregating. In scenario 1, only the reference haplotype and

the haplotype with the non-reference SNP allele segregate in the

population. In scenario 2, only the reference haplotype and

the haplotype with the non-reference indel allele segregate in the

population. In scenario 3, four haplotypes may segregate: the ref-

erence haplotype, the SNP haplotype, the indel haplotype, and the

haplotype with both the non-reference SNP allele and the non-

reference indel allele. Finally, in scenario 4, only the reference

haplotype segregates in the population. If a haplotype does not

segregate, its population frequency must be zero. We then estimate

for every subset of candidate haplotypes (in the example each of

the four scenarios corresponds to a subset of haplotypes, therefore,

k = 1,..., 4) the haplotype frequencies using a Bayesian EM algo-

rithm. Given the estimated probability of the data Zk = PðfRigj~HkÞ
for each subset of haplotypes ~Hk, and the prior probability

Zk = PðfRigj~HkÞ for each scenario, we can calculate the posterior

probability for each of the four sets of haplotypes. By summation

over posterior probabilities of the subsets, we then calculate for

each variant the posterior probability that it segregates in the

population. We use a Bayesian EM algorithm that enforces sparsity

of the haplotype frequencies within a subset of candidate haplo-

types (Bishop 2007), because in a window of 120-bp sequence

variants are generally assumed to be closely linked. It also has the

effect of not letting one sequencing error drive a haplotype to high

frequency. Similarly to the diploid case, the estimated haplotype

frequencies could, in principle, be used to infer the degree of

linkage between variants.

The subsets of haplotypes are defined by the candidate hap-

lotypes. Each candidate haplotype contains a number of candidate

sequence variants, and can be thought of as representing the hy-

pothesis that all of those variants segre-

gate in the population; one can then

identify the subset of candidate haplo-

types that are consistent with that hy-

pothesis. Thus, the number of subsets for

which the EM algorithm is run is equal to

the number of candidate haplotypes. By

default, we construct the subsets of can-

didate haplotypes such that only one

non-reference variant per position is al-

lowed to segregate. It is easy to use a dif-

ferent definition of the subsets ~Hk to al-

low multiple different alleles to segregate

at the same location. This option is im-

plemented in Dindel; however, we have

not used it to analyze the low-coverage

data set of the 1000 Genomes Project

because it appeared to be more difficult to

control the false discovery rate.

Indel errors in Illumina reads

Illumina’s GAII short-read sequencing

technology offers a generally low indel

error rate, promising high specificities for

indel calls. To assess the overall rate, we

used sequence data generated in the low-coverage pilot of the 1000

Genomes Project, in which 179 individuals were sequenced to

2–43 coverage.

We use three methods to bound indel error rates from above

and from below. These bounds, stratified by homopolymer con-

text, were used to derive an approximate homopolymer indel error

model for Illumina data. In this section, we used indels called using

a parsimony approach, rather than the probabilistic model used

elsewhere in this study (see Supplemental material).

First, taking singleton indels as a proxy for indel sequencing

errors, we estimate the background indel error rate per (nucleotide)

site at 0.017 across all of the reads mapped with mapping qual-

ity >10 (or, after dividing by the modal coverage, 3.2 3 10�5 per

site per read). True singleton indel mutations will contribute a

negligible fraction to this rate; in fact, we only expect about uindel =

1.25 3 10�4 << 0.017 singleton indels per site across the pop-

ulation (see Supplemental material). Wrongly mapped reads will

also contribute to indel errors to a degree that is probably low, but

difficult to ascertain. The error rates we estimate here, therefore,

relate to the pipeline of sequencing and mapping rather than to

the sequencing platform alone.

Analyzing the error rate in homopolymer runs is challenging,

because although the error rate is expected to increase in this

context, so is the true rate. However, it is likely that the allele fre-

quency spectrum is quite distinct for errors and true variants. For

true indels, population genetics predicts the allele count to follow

a 1/f distribution. In contrast, in a given homopolymer context we

may expect indel errors to occur with approximately equal prob-

ability in any read, resulting in an approximately binomially dis-

tributed frequency spectrum.

Plotting the allele frequency spectrum separately for the var-

ious homopolymer contexts, we find for homopolymer runs up to

7 bp a spectrum that looks qualitatively as predicted by population

genetics, while for longer homopolymers a characteristic bino-

mial shape appears (Fig. 3). A simulation confirms that a standard

population genetics model cannot explain this spectrum even at

Figure 3. Indel allele frequency spectra by homopolymer context, with indel called directly from
mapped reads using a parsimony approach. For short homopolymers the expected 1/f distribution
appears. The distribution for long homopolymers is not predicted by population genetics, even for high
mutation rates, but is consistent with a high error rate in this sequence context.

Accurate indel calls from short-read data
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high mutation rates (see Supplemental material). This implies that

indel errors dominate in these sequence contexts. For instance, in

10-bp homopolymer runs, the shape of the spectrum is consistent

with a binomial of mean 5, corresponding to a rate of 0.5 indels per

nucleotide across the data set, about 30-fold the background error

rate. This is likely an underestimate, since not all errors will pro-

duce indels of the same length. It also shows that the singleton-

based estimates significantly underestimate the indel rate in ho-

mopolymer contexts, because ambiguous placement and high

rates cause errors to cluster.

Finally, we obtained strict upper bounds, again stratified by

homopolymer context, by assuming that all indels represent er-

rors. Using the singleton-based estimates for complex sequence,

and extrapolating from the allele-frequency-based lower bounds

and the strict upper bound based on all indels, we arrive at an es-

timate of the overall indel error rate in homopolymer contexts,

given in Supplemental Table S1. Full details are provided in the

Supplemental material.

Data sets

Simulated data

To evaluate the performance of our method, we created two diploid

single individual simulated data sets. The first data set was gener-

ated to evaluate performance of Dindel for constant sequencing

error indel rates, i.e., without the context-dependent sequencing

error indel model described above, and to estimate the power to

detect indels of various sizes. In the second data set we simulated

reads from indels called in the Yoruban individual NA19240 that

was sequenced to ;363 coverage as part of the high-coverage pilot

project of the 1000 Genomes Project. Here, we used sequencing

error indel rates estimated from the low-coverage pilot project of

the 1000 Genomes Project, and evaluated the effect of this on the

performance of Dindel.

For the first data set we simulated indels and SNPs at a 1:9 ratio

in the 5-Mb region chr17:11,200,001–16,200,000. In total, there

were 6237 indel sites and 55,897 SNP sites across the 10 indi-

viduals, and each site was assumed to be bi-allelic. These sites

were then projected on the reference sequence for the region. The

indel sequence of insertions was generated at random. The length

of the indels varied from 1 to 10 bp, and the length distribution

was such that the number of indels with length l was proportional

to exp(�l ), similar to what is observed in real data sets. Next, we

generated 51-bp paired-end reads without sequencing error indels

but with base-calling errors using MAQ (Li et al. 2008), with base-

call error profiles estimated from real data. Sequencing indel errors

were added using a 0.005% per-base error rate, where the maxi-

mum length of a sequencing error indel was 5, and the length

distribution of sequencing error indels was the same as that of the

simulated indel polymorphisms.

For the second data set we used 1419 indels called in NA19240

using Dindel for the region chr20:40,000,001–50,000,000. We

simulated these indels and 12,479 randomly placed SNPs in 10

diploid individuals. As before, reads were again generated with the

MAQ simulate tool using the same base-call error profiles. In con-

trast, with the first simulated data set we now added sequencing

error indels to the reads according to the context-dependent error

model as described above, such that sequencing error indel rates

were increased in long homopolymer runs.

We also performed a simulation to evaluate the Bayesian EM

algorithm of Dindel, which is designed for analyzing pools of

samples. Here, we simulated data using the same approach as for

the second data set, and simulated the indels called in NA19240 in

60 individuals using simulated 51-bp paired-end reads with in-

creased sequencing error indel rates in homopolymers. For each

individual we targeted an average coverage of 43 to emulate the

settings of the low-coverage pilot 1 data of the 1000 Genomes

Project. The aim of this simulation was to estimate sensitivity as

a function of allele frequency; we choose the population allele

count of each indel at random from 1, 3, 6, 12, and 24, corre-

sponding to allele frequencies of, respectively, 0.8%, 2.5%, 5%,

10%, and 20%. All simulated data were mapped using BWA 0.5.7

(Li and Durbin 2009).

Real data sets

We used the whole-genome short-read data for NA18507 gener-

ated by Bentley et al. (2008) to call indels in regions that were also

capillary sequenced by the ENCODE project (The ENCODE Project

Consortium 2004, 2007). The short read data consists of 35- bp

paired-end data sequenced with the Illumina GA platform, with an

average depth of coverage of ;303.

We performed a segregation analysis using the data generated

for the CEU trio as part of the 1000 Genomes Project for the

chr20:40,000,001–50,000,000 region. The Illumina data is a mix of

35-bp, 50-bp, and 76-bp single-ended paired-end data. The average

depth of coverage for the daughter and the two parents was, re-

spectively, 333, 323, and 273. In addition, 13.7 3 454 data was

available for the daughter, which we used to validate the indel calls

made from the Illumina data.

We also considered data from a high-depth-targeted rese-

quencing study of a region on chromosome 11. On this data set we

evaluated both the performance in terms of ability to detect poly-

morphic indel sites as well as genotyping performance. A 24-kb

region was targeted using PCR in 96 individuals and then se-

quenced with 50-bp paired-end reads on the Illumina GAII plat-

form. A 3.8-kb subregion of this gene had previously been com-

prehensively screened in all individuals for SNPs and indels using

capillary sequencing, with all variants identified by visual inspec-

tion of trace files (MacArthur et al. 2007). The subregion contained

two variable indel sites in this 3.8-kb region, of which one was a

singleton.

We evaluated the false discovery rate of the Dindel pooling

algorithm on a subset of the 1000 Genomes Project low-coverage

pilot 1 data. For pilot 1, 179 individuals across three populations

(CEU, YRI, JPT/CHB) were sequenced to 3.53 depth on average.

We considered only the Illumina data from pilot 1, because the

454 Life Sciences (Roche) data has a different error profile, and

Dindel currently cannot handle SOLiD color space data. The

mean Illumina depth of coverage was 2.993. In total, 45 in-

dividuals, 15 individuals of CEU, YRI, and JPT/CHB each, were

also capillary sequenced in the ENCODE project. We pooled the

short reads data for these 45 individuals and analyzed it using

the Dindel Bayesian EM algorithm designed for analyzing pools

of samples.

Results
We implemented Dindel as described above: a version specifically

designed to analyze diploid samples, and a version to analyze pools

of reads by estimating haplotype frequencies with a Bayesian EM

algorithm. We compared Dindel with the consensus indel caller

implemented in SAMtools (Li et al. 2009a) with the ‘‘varFilter’’

post-filter and VarScan (Koboldt et al. 2009).
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Application to simulated data

Dindel achieved high sensitivity and low false discovery rates for

the various read-depths (Fig. 4A) on the simulated data with con-

stant sequencing error indel rates. The false discovery rate was lower

than 0.5% when only indels with quality scores of at least 20 (99%

confidence) were called. SAMtools had a substantially higher false

discovery rate at every read coverage. VarScan generally had lower

sensitivity and higher false discovery rates than Dindel, except at

403. The higher maximum sensitivity of VarScan in this case was

primarily the result of VarScan also calling indels from reads with

low mapping quality, whereas Dindel does not. At 43 coverage, the

sensitivity to detect indel sites was still reasonable, and here Dindel

was significantly more sensitive than SAMtools and VarScan. Din-

del performed better with multiple candidate haplotypes: The

analysis with eight candidate haplotypes had higher sensitivity

and lower false discovery rates than the analysis with one candi-

date haplotype. We address this point further below. As previously

demonstrated by Krawitz et al. (2010), sensitivity to detect longer

indels was lower. At a read-depth of 43, the power to detect indels

decreased from 65% to 40% for, respectively, indels of 1 nt and

10 nt; at a read-depth of 403 the power decreased from 99% to

94%, although it should be noted that this depends on the length

of the indel relative to the length of the reads (Krawitz et al. 2010).

Dindel also performed well on sim-

ulated data with increased sequencing

error indel rates in homopolymers (Fig.

4B), a phenomenon we observed in the

low-coverage pilot data of the 1000 Ge-

nomes Project. This simulated data set

contained 1419 polymorphic indel sites

across the 10 individuals. Of those, 21%

were homopolymers longer than 6 nt.

Thus, despite the increased error rates

and resulting lower signal-to-noise ratio,

Dindel was still able to call insertions and

deletions in the homopolymers. How-

ever, when Dindel analyzed the data with

only one candidate haplotype, the false

discovery rate was increased more than

in the simulated data, with constant se-

quencing error indel rate (data shown in

Fig. 4A). These false indel calls mostly

occurred in homopolymers, where a SNP

was simulated, and where, additionally,

the reads mapped to that location con-

tained sequencing error indels. In these

situations, with only one candidate hap-

lotype, Dindel could not accommodate

the SNP in addition to the indel that was

tested (in this case a sequencing error)

and explained the mismatches due to the

SNP away by calling an indel. This illus-

trates that it is important for Dindel to

analyze the data with more than one

candidate haplotype. Figure 4 demon-

strates that the quality score reported

by Dindel is well calibrated, as the 99%

threshold (indicated by the crosses) strikes

a good balance between true-positives

and false-positives. SAMtools assumes an

overall constant sequencing error indel

rate that can be specified by the user. We

found that SAMtools had lower sensitiv-

ity and higher false discovery rates than

Dindel, both for error rate of 0.01% and

1% (Fig. 4B), illustrating that the false

discovery rate of SAMtools could be re-

duced at the cost of lower sensitivity. The

performance of VarScan was similar to

that of SAMtools, although the calibra-

tion of the reported P-value varied with

read-depth. Comparing the performance

at 203 and 403 read-depth, Dindel’s

Figure 4. Accuracy of detection of indel sites of Dindel, SAMtools, and VarScan on simulated data. (A)
Sensitivity and false discovery rates for reads simulated with a constant sequencing error indel rate of
0.005% per-base at coverages of 43, 203, and 403. Dindel was run with one candidate haplotype
(‘‘h = 1’’) and eight candidate haplotypes (‘‘h = 8’’). The crosses indicate performance at the 99%
confidence level (quality score of 20) of a non-reference indel variant being present. True-positives here
are defined as indel calls that result in the same alternative haplotype sequence as that of the simulated
indel. (B) Performance on data simulated with indels that were called from high-coverage real data of
HapMap individual NA19240 and a realistic sequencing error indel model. Under this model, reads were
simulated with increased sequencing error indel rates in long homopolymers, with rates estimated from
the low-coverage data set of the 1000 Genomes pilot project. SAMtools was run with a constant se-
quencing error indel rate of 0.01% and of 1% (‘‘e = 1%’’).
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performance was less affected by the decrease in coverage than

SAMtools and VarScan. We investigated the false indel calls that

Dindel made for the read-depth of 203. There were 89 false-posi-

tives at 24 unique sites across the 10 replicates. Of these 24, 16 were

within 10 bp of a true simulated indel, four were in a dinucleotide

repeat close to a simulated indel, and three were in a homopolymer

run longer than 10 nt. This demonstrates that mapping errors re-

main a problem for precise detection of the indel event.

We also evaluated the performance of Dindel on pooled data

with the Bayesian EM algorithm. The Bayesian EM algorithm was

well powered to detect alleles present at more than six copies in

120 haplotypes, corresponding to, on average, 12 reads in a pool

of, on average, 480 reads (Fig. 5). At three allele copies the sensi-

tivity was ;50%. Sensitivity was therefore lower than in the dip-

loid single-individual setting. Here we used a posterior probability

threshold of 99%, which yielded a false discovery rate of 1.4% (11/

821). This is higher than the ;0.4% in the diploid simulations at

the same threshold (Fig. 4B). Of the 11 false-positives called, eight

occurred in homopolymers longer than 10 bp. Excluding calls

in homopolymers longer than 10 bp, the false discovery rate was

3/812 = 0.4%.

Table 1 shows the compute times and memory usage for the

simulated data sets. On the 403 data, Dindel was two orders of

magnitude slower than SAMtools and VarScan. This is because

Dindel was used to test every indel identified by the read mapper,

most of which will be sequencing errors. As the number of se-

quencing errors scales linearly with the number of reads, and the

realignment procedure itself scales linearly with the number of

reads, compute time increases quadratically with read-depth.

The memory requirements of Dindel were lower than those of

SAMtools and VarScan.

Application to real data

NA18507

We applied Dindel, SAMtools, and VarScan to the short-read data

for NA18507 of Bentley et al. (2008) to estimate false discovery

rates in a high-depth diploid sample. We called indels in the

ENCODE ENm010 and ENm013 regions and then visually inspec-

ted ;100 capillary traces for each method for evidence of a subset of

the indels called on the short-read data using Sequencher (Gene

Codes Corporation) and Mutation Surveyor (Soft Genetics) soft-

ware. We did not validate indels in homopolymer tracts longer

than 10, as the capillary traces were often ambiguous and because

VarScan and SAMtools do not have a homopolymer-dependent

sequencing indel error model. We defined five categories of indels:

(1) indels that were confirmed by a trace; (2) indels that were not

confirmed by a trace; (3) indels that were not confirmed but had

a SNP in the primer binding site (as determined from the short read

data), potentially resulting in allele-specific PCR amplification; (4)

indels for which the traces were of low quality; (5) indels for which

the traces were ambiguous, in that there was some, but inconclusive

evidence of an indel. We estimated the false discovery rate as the

number of indels in the first category divided by the number of

indels in the first and second categories.

Table 2 shows the results of the analysis as well as the total

number of calls made in the two ENCODE regions, noting that

only a subset was validated. Dindel achieved a low false discovery

rate of 1.56%. SAMtools had a higher false discovery rate of 4.75%

due to two additional false-positives. The default settings of

VarScan yielded a very high false discovery rate of 16.7%. Chang-

ing the default settings and converting the P-value reported by

VarScan to phred-like quality scores, we found that the false dis-

covery rate of VarScan could be reduced to a value similar to that

of Dindel using a threshold of q10 (confidence of 90%) at the

cost of reducing the number of indel calls by 19% (second

column in table). This suggests a significant loss of sensitivity for

VarScan, which we confirmed in the segregation analysis below.

Taking into account the higher estimated false discovery rate of

SAMtools, the expected number of true calls made by Dindel and

SAMtools was similar. The remaining false-positive called by

VarScan was the same as the false-positive called by Dindel and

occurred in a dinucleotide repeat close to an indel that was

confirmed by a capillary trace. As the indel was also called by

SAMtools, it is possible that this false-positive was due to map-

ping errors.

Figure 5. Power as a function of non-reference allele frequency in
a simulated pooled analysis. The Dindel Bayesian EM algorithm was used
to detect indels in a pool of 60 individuals with simulated read-depth of
43. Due to increased sequencing error indel rate in long homopolymers,
power decreases as a function of homopolymer length. Calls were made
using a 99% confidence threshold on the posterior probability of a non-
reference indel variant being present.

Table 1. Compute time and memory usage for the simulated
data sets

Diploid 1 Diploid 2
Pooled low
coverage

43 203 403 43 203 403 43

Compute time (sec)a

Dindel 1579 30,174 114,301 3554 76,886 293,403 718,241
SAMtools 707 717 891 892 1003 1385 NA
VarScan 1230 1539 1866 1723 2337 2995 NA

Memory usage (MB)

Dindel 5 9 16 5 10 16 98
SAMtools 103 110 101 103 93 96 NA
VarScan 533 587 620 545 645 683 NA

aThe compute time reported for the Diploid 1 and Diploid 2 data sets is the
total CPU time for analyzing all 10 diploid samples for a 5-Mb and a 10-Mb
region, respectively. The compute time reported for the pooled low-
coverage data set is for one replicate of 60 individuals, each sampled at 43

coverage for a 10-Mb region.
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In addition to the ENCODE regions we compared the indel

calls of Dindel, SAMtools, and VarScan (using a minimum quality

score of 10) in autosomal protein-coding regions. Figure 6 shows

a histogram of the indel length for the three methods. The distri-

bution of Dindel shows the strongest purification of frameshift

(non-3n) indels: The fraction of indel calls resulting in a frameshift

was 57% for Dindel, whereas it was 68% and 65%, respectively, for

SAMtools and VarScan. SAMtools has a very high number of 1-bp

indels, almost double the number of in-frame 3-bp indels, whereas

for Dindel these numbers are almost the same. VarScan appears to

lose sensitivity for longer indels, as evidenced by the lower number

of 6-, 9-, 12-, and 15-bp indels.

Segregation analysis

We performed a segregation analysis in the CEU trio sequenced to

high depth as part of the 1000 Genomes Project. First, we called

indels independently in the child and in the two parents, using

only the Illumina data. Ignoring de novo mutations, which we

expect to be extremely rare, each indel called in the child should be

present in at least one of the parents. If a method calls an indel in

the child, but not in the parents, this is either the result of a false-

positive in the child or a false-negative in the parents. In order to

distinguish false-positives in the child from false-negatives in the

parents in the case of a nonsegregating indel, we visually verified

whether there was at least one read in the 13.73 454 data that

contained the alternative haplotype sequence, as predicted from

the indel called from the Illumina data. If there was evidence

for the nonsegregating (i.e., called in the child but not in the

parent) Illumina indel in the 454 data, the nonsegregating indel

was called a false-negative in the parent, otherwise it was called

a false-positive. We further assumed that segregating indels repre-

sent truly polymorphic sites. We excluded indels in homopolymer

runs longer than 5 bp, since validation of these using the 454 data

would be problematic due to increased sequencing error rates. We

estimated the false discovery rate as the fraction of indels called in

the child that were not called in the parent and also not confirmed

by the 454 data. Combining the calls of all three methods, there

were 729 indels that were found to be segregating (by any method)

or confirmed by the 454 data. For each method we then estimated

the false-negative rate in the daughter as the fraction of the indels

in this union that were not called in the daughter. We removed 13

indel calls from the analysis where there was no 454 data cover-

ing the indel site. We considered different calling thresholds for

VarScan, as the analysis for NA18507 indicated that this had a

strong effect on the false discovery rate.

Table 3 shows that Dindel achieved a lower false-negative rate

than SAMtools and VarScan. The false discovery rate of Dindel was

lower than that of SAMtools and that of VarScan at its most

sensitive settings. Using a more stringent quality threshold, it was

possible to lower the false discovery rate of VarScan below that of

Dindel; however, only at the expense of a significant increase of

the false-negative rate.

Genotyping

Next, we investigated the performance of Dindel on a targeted rese-

quencing study of a 3.8-kb region on chromosome 11 (MacArthur

et al. 2007). For 107 samples corresponding to 96 individuals, both

capillary sequence and short read data was available. The capillary

data revealed two variable indel sites in this region; among the

107 3 2 = 214 corresponding sites in the 107 samples, 89 contained

at least one copy of the non-reference variant. We investigated the

ability of Dindel to detect these (i.e., without giving the locations

and indel sequence) at read-depths increasing from 103 to 1003

obtained by down-sampling the mapped reads. At all coverages,

Dindel detected 88 of 89 known variable sites (98.9%). The esti-

mated false discovery rate was 2.2% at 103 and 203 coverage. At

higher read-depths no indel sites other than the two sites with

evidence from capillary data were detected, indicating a low false

Table 2. Validation using capillary traces of a subset of indel calls on NA18507 made from ;30X 35 bp paired-end Illumina GA data in
ENCODE regions ENm010 and ENm013

Indels
calleda Confirmed

Not
confirmed

Not confirmed,
primer binding
site mutation

Low-quality
data

Ambiguous
traces

Estimated false
discovery rateb

Dindel 588 60 1 3 17 7 1.56%
SAMtools 619 56 3 4 18 7 4.76%
VarScan (default) 823 61 13 4 19 7 16.67%
VarScan (q10) 534 56 1 3 14 7 1.67%

aOnly a subset of the indel calls was validated.
bThe false discovery rate was calculated as the number of confirmed calls (third column) divided by the number of confirmed and not confirmed calls (sum
of third and fourth columns).

Figure 6. Distribution of indel lengths in autosomal protein-coding
regions called from 30 3 35 bp paired-end Illumina GA reads for
NA18507. The fraction of indel calls resulting in a frameshift was, re-
spectively, 57%, 65%, and 68% for Dindel, VarScan, and SAMtools.
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discovery rate. Genotyping was performed by explicitly testing the

indel as a candidate in each sample and making calls as follows: If

the quality score for the indel was higher than 20 (99% confidence

level), the indel genotype with the highest posterior probability

was chosen, and if the quality score for the indel was below 1.0, the

genotype was set to homozygous for the reference allele. Geno-

types for indels with intermediate quality scores were not called.

The genotype concordance was also high (Table 4, five rightmost

columns), with a small number of discrepancies between the ge-

notype called from the short read data and the genotype called

from the capillary data.

Low-coverage data

We evaluated the false discovery rate of the Dindel Bayesian EM

pooling algorithm on 45 individuals from the pilot 1 of the 1000

Genomes Project in the ENCODE ENm010 region. We visually

inspected the capillary traces of all individuals for 90 indels called

by Dindel in this region. In 18 cases the capillary data was of a too

low quality, did not map to the reference sequence, or was not

available for the individuals with support for the indel event, and

in four cases the traces were ambiguous. We found confirmation of

64 indels and no support for three, yielding an estimated false

discovery rate of 3/67 = 4.5%.

SeattleSNP indels

Lastly, we considered the sensitivity of the Dindel pooling algo-

rithm on real data (Fig. 7). To assess this, we exploited the overlap

of 32 individuals between the SeattleSNP project and the in-

dividuals sequenced in the 1000 Genomes pilot 1 project for which

Illumina data was available (32 in total). For those, capillary se-

quencing data has been generated in the SeattleSNP project for

321 genes and their introns, covering 10.67 Mb in total. We

compared the indel calls made from this data (890 in total) with

those made by Dindel on all of the 1000 Genomes pilot 1 samples

with Illumina data (170 individual sequenced at 2.993 on aver-

age). Dindel recovered 593 of the 890 indels, equivalent to a sen-

sitivity of 67%. Many of the SeattleSNP indels existed at frequency

1 in the intersection (406/890 called once by SeattleSNP), although

possibly some may have been undercalled. For indels at SeattleSNP

frequency, at least three among the shared individuals, sensitivity

was 78% (320/411). This relatively low sensitivity is possibly due

to a fraction of missed candidates, caused by difficulties in map-

ping the relatively short and in some cases single-end reads in

the presence of indels and the low-coverage design of the pilot 1

project.

Discussion
We have described a Bayesian approach for accurate calling of indel

sites and indel genotypes by realigning reads to candidate haplo-

types. This approach allowed us to explicitly account for increased

sequencing errors in long homopolymer runs, which is important

for accurate inference in genome-wide surveys of indel poly-

morphism. By formulating the problem in terms of haplotypes, we

also provide a solution to the problem of ambiguous indel defini-

tion and deal with complexities introduced by tightly linked SNPs.

Table 3. Segregation analysis for 10-Mb region on chromosome 20 in the CEU trio of the 1000 Genomes Project

Indels called
in daughter

Nonsegregating
indels

Nonsegregating
indels confirmed

by 454 data

Nonsegregating
indels not confirmed

by 454 data

Estimated false
discovery rate

daughter

Estimated
false-negative
rate daughter

Dindel 697 83 54 18 2.62% 8.37%
SAMtools 676 104 68 30 4.48% 12.2%
VarScan (q1) 642 131 85 36 5.70% 18.2%
VarScan (q10) 453 91 34 6 1.49% 45.7%
VarScan (q20) 279 97 14 1 0.51% 73.1%

Indels were called in daughter and parents independently from Illumina data only. The indels that were called in the daughter but not in the parents
(defined as the nonsegregating indels in the third and fourth columns) were validated using the 13.7X 454 data available for the daughter. We considered
three different calling thresholds for VarScan, with q10 and q20 corresponding to 90% and 99% confidence thresholds, respectively.

Table 4. Evaluation of Dindel on paired-end 50-bp Illumina GAII data for a targeted resequencing study of a 3.8-kb region on chromosome 11

Read-depth

Indel site detection

Genotypingc

Accuracy Miscall typed

Detected
capillary sitesa

False
discoveriesb Concordant Discordant Ref as het

Het as
hom-nonref

Hom-nonref
as het

103 88 (98.9%) 2 (2.2%) 209 (97.6%) 5 (1.9%) 2 1 2
253 88 (98.9%) 2 (2.2%) 211 (98.6%) 3 (1.4%) 1 0 2
503 88 (98.9%) 0 (0%) 211 (98.6%) 3 (1.4%) 2 0 1
1003 88 (98.9%) 0 (0%) 210 (98.6%) 3 (1.4%) 1 0 2

Capillary data and PCR short-read data were available for 107 samples corresponding to 96 individuals. The capillary data revealed two variable indel sites
in this region. Among the 107 3 2 = 214 sites in the 107 samples, N = 89 contained at least one copy of the non-reference variant.
aThe second column shows how many of the 89 were detected from the short-read data.
bShows how many indels at sites other than the two variable sites were called from the short-read data, representing likely false calls.
cGenotype concordance and the type of genotype miscall made by Dindel.
d‘‘Ref as het,’’ the capillary data indicated no non-reference variant, while the Dindel call was a heterozygote; ‘‘Het as hom-non-ref,’’ a capillary het-
erozygote was called as a non-reference homozygote by Dindel. ‘‘Hom-nonref as het,’’ a capillary homozygote for the non-refererence allele was called as
a heterozygote by Dindel.
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The Dindel software is general in that it can test support in reads for

candidate insertions and deletions identified by other programs or

techniques.

Our method depends on other methods to provide a sensitive

list of candidate indels. In our analyses we have considered indels

detected by the BWA and MAQ read mappers. Sensitivity can be

significantly increased by using read mappers that are optimized

for indels. We provide an example of this in Supplemental Figure

S1, where we used the Stampy read mapper (Lunter and Goodson

2011; http://www.well.ox.ac.uk/project-stampy) to map reads to

the reference. Another promising approach to detect long candi-

date deletions is to use the assembly methods, such as Pindel (Ye

et al. 2009) or whole-genome de novo assembly methods (Zerbino

and Birney 2008; Simpson et al. 2009; Li et al. 2010). The program

inGAP (Qi et al. 2010), which calls indels using local assembly with

the multiple-sequence alignment program MUSCLE (Edgar 2004),

takes such an approach, but had a false discovery rate of 4% and

a sensitivity of 35% at read-depth of 203. This illustrates that

assembly methods by themselves are not necessarily accurate.

However, we believe that a powerful strategy will be to combine

the ability of assembly methods to detect (large) sequence variants

with the ability of our Bayesian approach to take into account

various types of error in order to reduce false discovery rates.

The accuracy of Dindel depends heavily on the accuracy of

the alignments of the read mapper. Dindel explicitly uses mapping

qualities estimated by the read mapper in the probabilistic model.

In our experience the calibration of mapping quality can have a big

effect on the false discovery rate. It is not sufficient for a read

mapper to simply map as many reads as possible to the correct

region, it is also of great importance that the read mapper correctly

estimates the probability that the reported location is correct. In

our experience, MAQ, BWA, and Stampy provide reasonably well-

calibrated mapping qualities, but we have not explicitly evaluated

other read mappers.

The method we have proposed is computationally intensive

since it realigns every read to at least two candidate haplotypes.

The complexity is dominated by the product of the total number of

candidate variants, the number of candidate haplotypes per win-

dow, the number of reads to be realigned, the length of the reads,

and the length of the candidate haplotypes. The total compute

time for analyzing all 225,648 candidate indels identified by the

BWA read mapper for 10 individuals at 403 read-depth in a 10-Mb

region was 293,403 CPU sec, or equivalently ;1 sec per candidate

variant (at this read-depth). Although we cannot change the in-

herent complexity of our proposed approach, we believe that by

improving and optimizing the implementation, the compute

times of Dindel can be significantly reduced. Another promising

direction will be to prefilter the set of candidate indels using a faster

method that is sensitive but not highly specific.

On simulated data we have shown that Dindel achieved false

discovery rates lower than 0.5%. However, on the real data sets our

estimates of the false discovery rates through comparisons with

capillary sequence data were consistently higher, of the order of

2% � 5%. Our genotype concordance was lower than results that

have been reported for SNPs (e.g., Li et al. 2009b; Ng et al. 2010).

Both in the whole-genome resequencing study and the targeted

resequencing study, the main source of false-positives were cases

where the short-read data did have a number of reads with high

mapping quality supporting the indel event, but where the capil-

lary data clearly showed no evidence. It is likely that at least some

of these cases are errors in the capillary data, in particular for PCR-

product resequencing, where allelic drop-out can result in an

undercall. Errors in the short read data could be due to mapping

errors: a pair of reads that has been mapped to wrong genomic

region, or a pair of reads from novel sequence not present in the

reference but similar to the region where the indel is called. These

errors are very difficult to correct by realignment, as the assump-

tion is that the reads have been mapped to at least approximately

the correct region. Another possible explanation for increased

false-positive rates is underestimation of sequencing error indel

rates outside of homopolymer runs. This is a problem we aim to

address in future research. Finally, for the targeted resequencing

study we considered another source of potential errors is con-

tamination in the multiplexed samples being sequenced, or in the

multiplex tag decoding.

The segregation analysis of the 1000 Genomes trio data we

performed has a number of caveats. First, the false-negative rate

estimate is expected to be an underestimate as even the union of

the indels confirmed by segregation or 454 data will not be com-

plete. Second, mapping errors in the child and parents are not

independent, as the reads are mapped to the same reference se-

quence. This means that indels that appear to be segregating could

be false-positives in both the parents and the child. Sequencing

errors also depend on sequence context, both for Illumina and 454,

but to an extent we controlled for this by excluding indels in ho-

mopolymers longer than 5 nt. Third, while the depth of the 454

data is considerable, it is still possible that heterozygous indels in

the child were missed due to lack of coverage. Finally, we did not

take into account the effect of having a false-positive both in the

child and the parent, or a true-positive in the child and a false-

positive in one of the parents, as no 454 data for the parents was

available. The consequences of mapping to a reference sequence

can be seen from Table 3. Interestingly, increasing the quality

threshold for VarScan from q10 to q20 did not strongly affect the

fraction of indels found to be segregating (third column divided by

the second column), while it did strongly affect the false-negative

rate (respectively, ;1% vs. ;25%). We believe that this can be ex-

plained as follows. Since the quality scores of VarScan correspond

strongly to the number of times the indel was identified by the read

mapper, higher quality scores correspond to relatively more com-

plex sequence contexts, where the read mapper already consis-

tently identifies the correct indel event, despite the fact that

the starting position of reads supporting the indel event will be

different. These are precisely situations where our realignment

Figure 7. Discovery rate of SeattleSNP indels from the 1000 Genomes
pilot 1 samples with Illumina data (170 individual sequenced at 2.993 on
average). The horizontal axis represents the indel allele count in the
SeattleSNP data set, the vertical axis the corresponding discovery rate in
1000 Genomes pilot 1 data.
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approach does not add much. In more repetitive sequence con-

texts the read mapper may identify the indel event only in one

read, and full support for the indel event is only uncovered upon

realignment as Dindel does.

For analysis of samples from a population sequenced at low

depth, we believe the best approach is to generate genotype likeli-

hoods using the Bayesian EM algorithm of Dindel, and then impute

genotypes using software such as Beagle (Browning and Browning

2007) and QCALL (Le and Durbin 2011), which support genotype

likelihoods as input, IMPUTE (Howie et al. 2009), or MACH (Li and

Abecasis 2006). We applied this strategy to the low-coverage data of

the 1000 Genomes Project using QCALL, which uses local LD

structure estimated from HapMap3 haplotypes to infer genotypes

from the sequence data. We found that only a small number of sites

(<0.2%) called by Dindel were not called by QCALL, consistent with

the false discovery rate of <5% of Dindel. The Bayesian EM pooling

algorithm in Dindel currently outputs genotype likelihoods per

individual when the label for each read is known.

Filters can improve specificity on practical data sets of next-

generation sequencing methods. A useful filter can be the require-

ment that the indel should be supported by reads on the forward

and reverse strand to eliminate possible PCR artifacts. One filter we

have also implemented in Dindel is the requirement that every

indel candidate variant in a haplotype should be supported by at

least one read, where the read should cover the range of positions

so that the indel can be positioned without changing the resulting

haplotype. This approach has been proposed by Krawitz et al.

(2010). This filter will result in a loss of sensitivity in regions with

low coverage, and it depends on the application whether sensi-

tivity or specificity is prioritized, but it will provide a degree of

protection against artifacts. One potential issue in this light is

sensitivity to misspecification of the parameters of the probabi-

listic model. These filters were not applied to the simulated and real

data presented here.

Misalignment of reads around indel events by the read map-

per leads to false SNP calls. To avoid false SNP calls, an attractive

solution is to call SNPs after realignment of reads by the Dindel

indel calling. Dindel provides support for outputting realigned

BAM files for each window in which reads have been realigned,

from which SNPs can be called using dedicated software.

Many of the problems with detecting and correctly calling

indels, including mapping errors, will be substantially reduced by

increasing read lengths. However, as longer reads allow access to

more repetitive regions, e.g., di- and trinucleotide repeats, the is-

sues that are currently complicating indel calling will still apply,

and a statistical approach such as Dindel will be beneficial.

Single-molecule ‘‘third-generation’’ sequencing platforms

such as the newly launched Pacific Biosciences technology will

offer longer read-lengths, but are likely to suffer from increased

indel error rates compared with second-generation technologies

such as Illumina. For these platforms, a careful probabilistic frame-

work for alignment and indel calling as we described here will be

even more important.
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