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Abstract

Background: During transcription, numerous transcription factors (TFs) bind to

targets in a highly coordinated manner to control the gene expression. Alterations in

groups of TF-binding profiles (i.e. “co-binding changes”) can affect the co-regulating

associations between TFs (i.e. “rewiring the co-regulator network”). This, in turn, can

potentially drive downstream expression changes, phenotypic variation, and even

disease. However, quantification of co-regulatory network rewiring has not been

comprehensively studied.

Results: To address this, we propose DiNeR, a computational method to directly

construct a differential TF co-regulation network from paired disease-to-normal ChIP-

seq data. Specifically, DiNeR uses a graphical model to capture the gained and lost

edges in the co-regulation network. Then, it adopts a stability-based, sparsity-tuning

criterion -- by sub-sampling the complete binding profiles to remove spurious edges

-- to report only significant co-regulation alterations. Finally, DiNeR highlights hubs in

the resultant differential network as key TFs associated with disease. We assembled

genome-wide binding profiles of 104 TFs in the K562 and GM12878 cell lines, which

loosely model the transition between normal and cancerous states in chronic

myeloid leukemia (CML). In total, we identified 351 significantly altered TF co-

regulation pairs. In particular, we found that the co-binding of the tumor suppressor

BRCA1 and RNA polymerase II, a well-known transcriptional pair in healthy cells, was

disrupted in tumors. Thus, DiNeR successfully extracted hub regulators and

discovered well-known risk genes.

Conclusions: Our method DiNeR makes it possible to quantify changes in co-

regulatory networks and identify alterations to TF co-binding patterns, highlighting

key disease regulators. Our method DiNeR makes it possible to quantify changes in

co-regulatory networks and identify alterations to TF co-binding patterns,

highlighting key disease regulators.
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Background

Thousands of transcription factors (TFs), their cofactors, and chromatin remodelers are

employed in a highly coordinated manner to accurately initiate and control the transcrip-

tional process on DNA sequences [1–4]. Precise temporal and spatial coordination among

these factors is important for determining cell phenotype and maintaining biological func-

tion. Studies have reported that disruption of the co-regulation relationships of TFs can

result in gene expression alterations, which can consequently introduce phenotypical vari-

ations and even lead to disease [5–9]. However, various computational methods have been

proposed to infer dysregulations of an individual TF by exploring differential expressions

of the TF itself and its gene targets [10], or investigating the direct TF-gene gain and loss

events [11], ignoring the higher-order combinatory binding patterns among TFs. There-

fore, large-scale mining of TF co-binding changes in disease and normal states could pro-

vide new insights into gene dysregulation and opportunities for targeted therapies.

In this study, we aimed to quantify such alterations to the TF co-regulatory relation-

ships and prioritize regulators associated with pathogenesis. This is a challenging task

for many reasons. For instance, many of the ~ 1400 known human TFs have highly dy-

namic binding profiles depending on the cell state and conditions [12]. Therefore, it is

essential to carefully curate a dataset of appropriate cell types to precisely capture

disease-specific TF co-regulatory disruptions. Furthermore, joint analysis of binding

profiles of numerous factors would be beneficial by maximizing our knowledge of TF

co-binding events. Researchers have proposed various models to systematically impute

all tissue-specific TF regulomes using features such as DNase accessibility and sequence

context, but the accuracy of these methods across TFs is still unknown [13, 14].

In light of this, we propose a multi-step computational framework that we call Differential

graphical model of Network Rewiring (DiNeR) to infer TF co-binding alterations and pin-

point disease-causing TFs. First, we modeled the cooperative regulation patterns among

TFs using a co-regulation network, where the nodes represent TFs and the weighted edges

measure the genome-wide co-occurrence between pairwise TFs, all of which are derived

from chromatin immunoprecipitation followed by sequencing (ChIP-seq) data. This is dis-

tinct from traditional regulatory networks, where edges usually imply the relationship be-

tween a TF and the physical interaction it shares with an enhancer or promoter region in

order to initiate the transcription process of its target genes. Second, we directly measured

the gain or loss of TF co-regulatory events across the genome during the transition from

one cellular state to another using a differential graphical model. Intuitively, a higher weight

in our differential network indicates a larger alteration in the co-regulatory pattern between

two states. As a third step, we adopted the graphical LASSO model and used a stability-

based method for penalizing parameter selection to control for the sparsity of the differen-

tial network with the goal of removing spurious edges [15–18]. Lastly, we prioritized the

TFs according to their degree in the differential network based on the assumption that

disease-driving TFs can demonstrate massive binding profile changes and consequently dis-

rupt their cooperative regulation with many other regulators.

To test the effectiveness of our DiNeR framework, we applied this model to the EN-

CODE Tier 1 cell lines, K562 and GM12878, roughly representing paired disease-to-

normal cells for chronic myelogenous leukemia (CML). We used our DiNeR framework

to directly estimate the changes in the TF combinatory regulation relationships be-

tween disease and normal states. As a result, we identified several TFs that exhibit a

Zhang et al. BMC Bioinformatics          (2020) 21:281 Page 2 of 15



high level of disruption to their co-binding partners. Among this list were several well-

known risk factors for leukemia, such as BRCA1, RAD51, BMI1, and H3k27me3 [19–

22], demonstrating the effectiveness of our method.

Results

Collecting appropriate large-scale ChIP-seq data to investigate transcriptional regulation

TF binding sites are highly tissue specific and usually change dramatically across cell

types. Therefore, it is important to select appropriately matched and representative cell

types to investigate a specific disease. Here, we used K562 and GM12878 to represent a

rough disease-to-normal pair in order to investigate the transcriptional regulation dynam-

ics during oncogenesis for CML (see details in “ChIP-seq data collection and pre-

processing” section). Specifically, we extracted 94 common TFs among these two cell lines

(Fig. 1a, Table S1). In order to investigate alterations in the joint activity between TFs and

specific chromatin marks in disease, we also extracted nine histone modification marks

and chromatin accessibility data sets from these cell lines. Among these TFs, 31 showed

significant expression changes between disease and normal states (Fig. 1c).

Building a genome-wide TF co-regulatory network

Aberrant transcriptional regulation is associated with various diseases [5–9]. Network

analysis has been proven to be a powerful tool for identifying and prioritizing genes or

Fig. 1 ChIP-seq data collection and pre-processing. a TFs shared by both the K562 (red) and GM12878

(blue) cell lines from ENCODE, in addition to DNase sequencing and histone modification data, are pooled

together to form the set of regulatory elements used in the analysis. b Classification of the common TFs

between K562 and GM12878. Specific DBD family classifications are also given. c The heatmap shows the

top and bottom 20 TFs with high and low log fold change of expression between GM12878 and K562. The

bar plot shows the log10 of the FPKM expression values for each of these TFs
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regulators associated with pathogenesis. For example, scientists have constructed TF

regulatory networks in order to mimic the physical binding of TFs to either enhancer

or promoter regions during initiation of the transcriptional process of its target gene

(Fig. 2a, b) [11]. Edges in this type of regulatory network only focus on the local inter-

action between the TF and target gene pair, and do not consider the effect of the rest

of the genome. Another approach is to use gene co-expression networks, where a

shared edge in the network represents consistent expression patterns between a pair of

genes across many samples, which was usually inferred from RNA sequencing or

microarray data [23, 24]. However, this output only reflects co-expression patterns, ra-

ther than regulatory relationships.

Here, we propose a TF co-regulatory network based on large-scale ChIP-seq data to

model a related but different aspect of transcriptional regulation – the cooperative be-

havior among TFs. Specifically, in our network, nodes represent TFs and the weighted

edge between them measures the level of non-random co-binding activity across the

genome. It is important to note that this network is distinct from a traditional TF-TF

network, which focuses on the mechanism of how one TF gene is regulated by another

TF protein. In particular, this type of TF-TF regulatory network describes the binding

event of one TF at the non-coding element (e.g., enhancer or promoter) of another TF,

but does not indicate whether these two TFs work in a coordinated way to regulate

other downstream genes.

We used the Gaussian graphical model (GGM) to construct this TF co-regulatory

network [25]. The schematic in Fig. 2c illustrates one example. Two pairs TF1 and TF3,

TF2 and TF3 co-bind over many places in the genome, possibly resulting from

Fig. 2 A schematic of two types of networks are given, in both genomic and graphical form. a A regulatory

network is given in genomic form where TF1 and TF2 both regulate the downstream gene, binding to an

interacting enhancer and promoter, respectively. b A directed graph is shown where TF1 and TF2 both

regulate the gene. c A genomic representation of a co-regulatory network is shown, based on the signal

tracks of three TFs. d A graphical form of the co-regulatory network is shown, where TF3 co-binds with TF1

and TF2 separately
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interacting domains that are necessary to initiate transcription in many genes. Then we

draw two edges in our co-regulation network between TF1 and TF3, TF2 and TF3 (Fig. 2d).

Using differential networks to measure TF co-regulation alterations between states

After building the co-regulatory networks under one condition, we aimed to provide a

quantitative measure of co-regulation alterations between two conditions (e.g., disease

and normal states). Intuitively, our goal is to try and infer a differential co-regulatory net-

work. In this differential network, while nodes still represent TFs, each edge now describes

the level of change that each TF pair experiences during disease progression (Fig. 3).

Therefore, we extended the GGM for one condition to a differential graphical model for

two conditions by estimating the differences between two precision matrices (details in

“Differential graphical model for co-regulation alteration in two states” section).

During the estimation process of these two precision matrices, small non-zero values

are introduced and may lead to many spurious edges, resulting in a dense differential

network with many false positives. Therefore, we introduced a regulation parameter, λ,

to penalize the retained edge count in order to remove potential spurious edges. As

shown in Fig. 4, higher λ values indicate a larger penalty in the network edge, resulting

in a sparser estimation of the differential network.

Selecting an appropriate λ parameter is key to reliably inferring the TF co-regulation

gain and loss events while simultaneously removing false positives. We further used a

stability-based model selection method to choose the optimal λ based on sub-sampling

of the genome [15]. The intuition of our model is that we encourage the network to be

more inclusive of edges for the benefit of allowing us to scrutinize many possible

Fig. 3 Workflow of DiNeR method to create sparse differential regulatory network. a Bins used for the

analysis are created by taking 100 bp bins on the genome and removing any blacklist regions to form the

used bins; b For each TF and factor, the ChIP-Seq signal fold change is averaged over the used bins; c For

disease and control cell types K562 and GM12878, respectively, a fold change signal matrix is created with

rows or bins and columns of TFs and factors; 4) By using difference of the precision matrix, a differential

network is created, which is then made sparse through sampling-based penalization
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changes associated with disease, while simultaneously ensuring that the results are highly re-

peatable across many regions in the genome (Fig. 5, details in “Model selection” section).

Applying DiNeR to prioritize key TFs associated with CML

We applied our DiNeR framework to 104 paired factors in K562 and GM12878 cell

lines. After model selection, we set λopt = 0.2 (details in “Model selection” section). In

total, we included 6.49% of all possible edges in the final network (351 out of 5408).

We identified eight out of the 104 factors as consistent network hubs (Table 1), and re-

liably captured all of them by sub-sampling half of the genome (see Supplement S4).

These eight factors include many well-known genes that have been previously associ-

ated with leukemia (Table 1), indicating that our method can reliably detect key regula-

tors of disease.

One of the identified factors was the proto-oncogene BMI1, which is a major compo-

nent of polycomb group complex 1 and plays a central role in DNA damage repair. Al-

though BMI1 showed only moderate expression changes in tumor as compared to

normal cells (approximately 20% higher; from 42.90 to 51.19), its co-binding

Fig. 4 Circos plots are used to show the sparsity of the network created using various lambda values. λ

values of 0.2, 0.3, 0.4, and 0.5 are used and their networks are shown
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Fig. 5 A flowchart of the model selection process to create a sparse differential network is shown. a Raw

data is sampled and graphical representations of the network are given for disease and control. The

samples are different and therefore have varied network representations. b Differential networks are

generated using GGM using various λ parameters, λ : {1,…, λM }, and a model selection is done through

stability analysis to see which λ gives the most stable network variance. A threshold for stability, β, allows us

to choose the optimal λ, shown in green. c The optimal λ, in this case λm is used on the original raw data,

to generate the final sparse differential network

Table 1 A list of DiNeR prioritized TFs using the network hubs of the K562 vs. GM12878 differential

co-regulation networks upon different subsampling of the entire genome. Perc. Incl.: how many

rounds of simulations out of 100 this TF has been claimed as a network hub. Lit. Supp: whether

there is literature support to link this TF with cancer.

Gene Perc. Incl. Lit. Supp.

BRCA1 100 Y

FOXK2 100 Y

RAD51 100 Y

ZZZ3 100 N

RBBP5 100 Y

BMI1 100 Y

H3K27me3 100 Y

BACH1 98 Y
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relationship with other factors changed dramatically. BMI1 was a significantly rewired

TF and maintained edges with 14 other factors, including a well-known cancer-related

histone modification mark H3K27me3. Interestingly, BMI1 is a known biomarker of

hematologic malignancies and has been shown to be essential for faithful reprogram-

ming of myeloid progenitors [26, 27]. Studies have reported that levels of BMI1 correl-

ate with prognosis of patients with myelodysplastic syndrome and chronic and acute

myelogenous leukemia [21]. Our analysis provides another possible explanation to this

phenomenon, suggesting that in addition to aberrant expression patterns, the disrup-

tion of the coordination between key regulators during transcription can also contrib-

ute to disease progression.

Another interesting factor identified by our method was the tumor suppressor gene

BRCA1 (Fig. 6a). BRCA1 has been shown to play a central role in maintaining genomic

stability. Moreover, germline defects in this gene have been associated with multiple

cancer types, including breast and ovarian cancers [28]. In normal cells, BRCA1 is typ-

ically associated with RNA polymerase II across multiple species to faithfully activate

transcription of key genes [29]. However, we found that in K562 cells, the key inter-

action between BRCA1 and RNA polymerase II was significantly disrupted. Specifically,

the Jaccard distance between the BRCA1 and POLR2A ChIP-seq peaks decreased by

98% in K562 as compared to GM12878 cells, indicating severe co-localization disrup-

tion. Consistent with this finding, we observed a remarkable proximal-to-distal shift in

the BRCA1 binding locations in K562 cells (Fig. 6a and b). In particular, approximately

93.6% of the BRCA1 ChIP-seq peaks in GM12878 were located within a 5 kb region of

annotated transcription start sites (proximal), and this number was drastically reduced

to 16.4% for K562 peaks. Such a remarkable shift indicates that in cancer cells, BRCA1

fails to cooperate with other conserved collaborators to control the transcriptional

process. BRCA1 has also been widely reported to affect chromatin structure and intro-

duce chromatin remodeling. Interestingly, we also found that H3K4me1 and open

chromatin regions were among the rewired partners of BRCA1. The overlapping peaks

between BRCA1 and these factors were significantly reduced during the normal-to-

tumor transition (p value < 2 × 10−16 for binomial tests in both cases). Hence, we

hypothesize that BRCA1 severely alters not only its transcriptional regulation through

promoter region interactions, but also its chromatin remodeling activity.

Further investigating TFs prioritized by DiNeR

To further explore the prognostic value of BRCA1 in leukemia and validate our model,

we downloaded 151 patient expression and clinical profiles from The Cancer Genome

Atlas (TCGA) for acute myeloid leukemia [30]. If we only consider the expression levels

of BRCA1 in K562 and GM12878, we are unable to fully detect the difference in behav-

ior of this gene between the two cell types. However, when considering the regulatory

activity, we found that BRCA1 regulatory activity was increased by 50% in K562 as

compared to GM12878 cells, suggesting that the regulatory role of BRCA1 could be of

interest as compared to just the expression of this gene. In line with large-scale network

rewiring events, we combined the BRCA1 regulatory network with patient tumor-to-

normal differential expression profiles to measure the regulatory potential of BRCA1 in

each patient. In contrast to the survival analysis using expression profiles alone, we
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found that a severe disruption of BRCA1 regulatory activities usually indicated worse

patient survival rates as compared to those patients with strong regulatory (p-value =

0.0035) (Fig. 6c). This analysis demonstrates that the differential graphical model can

effectively identify key factors affecting patient survival beyond gene expression.

Discussion

Simultaneous binding of many TFs to proximal and distal regulatory regions of the

genome is imperative for precise control of spatiotemporal gene expression patterns.

Therefore, it is essential to investigate transcriptional regulation alterations in order to

prioritize risk factors associated with disease. Many methods have been developed to

address this goal. For instance, researchers investigated TF target gene gain and loss

events and found distinct patterns between oncogenes and tumor suppressors [11].

Others combined expression changes with TF regulatory networks and identified TFs

responsible for aberrant gene expression patterns, and then validated their discoveries

Fig. 6 a Summary of the proximal to distal change of binding peaks from GM12878 to K562. b Cumulative

density of distance of BRCA1 peaks to the nearest TSS in both GM12878 and K562 showcases a dramatic

shift in binding profiles between disease and control. c Survival analysis in AML using BRCA1 regulatory

activity as a prognosis marker, showcasing disrupted BRCA1 regulatory activity results in a worse prognosis.

Group 1 includes patients with above average regulatory activity of BRCA1 while group 2 contains those

with below average regulatory activity
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through patient survival analysis [10]. Here, we focused on a unique aspect of transcrip-

tional regulation – coordination among TFs, which goes beyond the binding or expres-

sion changes of TFs. For instance, genome-wide chromatin remodeling and histone

modifications changes may introduce dramatic binding profile alterations for different

TF, resulting in alterations of the combinatory coordination among TFs. For instance,

some TFs, such as BRCA1 in our analysis, demonstrate massive binding profile

changes. As a result, these TFs disrupt the co-binding relationship with many other

TFs and chromatin features and are prioritized with the highest importance by our

DiNeR framework. We also found that the target genes of TFs showed distinct expres-

sion patterns in tumors compared to normal cell lines, most likely due to extensive

binding profiles changes. As a result, our analyses offer related but complementary

views of transcriptional dynamics compared to previous methods and provide new in-

sights into disease-related transcriptional regulation.

We also emphasize that model selection is a key step of our DiNeR framework. A lar-

ger penalty to the edge numbers captures the more confident co-regulatory network al-

terations at the cost of excluding weaker, but not necessarily insignificant, changes.

Researchers have proposed various model selection methods, such as Akaike and

Bayesian information criteria, to solve this problem [25]. In our framework, we used

the stability-based model selection method, which provides a more interpretable ex-

planation [15]. Specifically, we include an edge in the network as long as we can reliably

discover it from numerous random subsamples of different genomic regions.

In addition, we ranked TFs according to the number of gained and lost partner TFs

in the differential network. The intuition behind this scheme is that TFs that show a

larger degree of genome-wide binding profile changes represent network hubs and are

more likely to have disrupted coordination with many other partner TFs, resulting in a

higher impact on transcriptional regulation. This is a reasonable assumption without

any prior information. However, it is possible that even the disruption of one canonical

TF pair may change the expression of key genes, such as in cases of oncogenes and

tumor suppressor genes. Hence, it is also valuable to scrutinize the non-hubs of the

network provided by DiNeR.

Finally, we showed that using matched ChIP-seq data from disease and normal cells

is beneficial to directly capturing the co-localization events of TFs, as compared to

other profiles such as expression. However, this approach requires the availability of

hundreds of functional characterization datasets. We believe that as high-throughput

sequencing technologies continue to develop, especially single-cell sequencing methods,

our proposed differential graphical models could be applied to new opportunities to

highlight regulators in disease.

Conclusion

We developed a TF-TF network rewiring and regulator prioritization method by apply-

ing non-parametric graphical models on large-scale functional genomics data. This ap-

proach allows us to identify DNA binding factors demonstrating large co-localization

disruptions. Given the number of genome-wide binding profiles from ChIP-seq data in

matched disease and control cells, our DiNeR method can reliably and efficiently high-

light the significant changes of pairwise coordinated regulations between different fac-

tors. We applied our model to 104 common TF, histone modification, and chromatin
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accessibly data from a loosely paired tumor and normal cell line in CML. We discov-

ered disruptions between well-known partners of transcriptional regulation, such as

BRCA1 and RNA polymerase II, signifying the effectiveness of our method.

Methods

Here, we adopted a differential graphical model to investigate the differences in co-

binding patterns of TFs between normal and disease conditions. We hypothesized that

factors that dramatically change their partners during the transcription process would

be altered to a larger degree in disease samples, and hence would have larger effects

than TFs showing little difference in co-binding patterns in driving disease progression.

ChIP-seq data collection and pre-processing

We aim to infer the differential TF co-regulation alterations among normal and disease

conditions. In order to assess these alterations, we selected disease-to-normal cell types

that shared at least 50 common TFs (ChIP-Seq) as well as had a strong expression cor-

relation between the two cell types (Figure S1). Therefore, we decided to use the 369

and 143 ChIP-seq experiments from K562 and GM12878 cell lines, respectively. After

de-duplicating and extracting common ChIP-Seq targets, we identified 94 common TFs

among these two cell lines (Table S1). In order to investigate alterations in the joint ac-

tivity between TFs and specific chromatin marks in disease, we also extracted nine his-

tone modifications and chromatin accessibility datasets from these cell lines (Fig. 1a, b).

The majority of the 94 common TFs were sequence-specific binding factors (TFSS in

Fig. 1c), 31 of which showed significant expression changes between disease and

control.

To uniformly process the data, we first divided the autosomal chromosome (hg38

version) into 100 base pair (bp) bins and removed bins that overlapped with genomic

regions that have gaps or low mappability using BEDTools (version 2.27.1-foss-2018b)

[31]. To remove any artifacts from non-peak regions, we further removed all 100 bp

bins that did not overlap with any peaks from these 104 factors (Fig. 3a). In total, we

kept 1,351,140 bins in our analysis.

For each factor, we calculated the fold change of read count between the TF ChIP-

seq experiment and its matched ChIP-seq control experiment from ENCODE for all

bins in order to normalize for read depth (Fig. 3b). We then calculated the average sig-

nal from each of the replicates or experiments from different labs when multiple data-

sets were present for a single factor. Details of the ChIP-seq signal files used has been

listed in the supplementary data. We organized the resultant signal data into a matrix

for K562 and GM12878 separately, with columns indicating factors and rows indicating

bins in the genome (Fig. 3c). We used these two matrices as the inputs for the follow-

ing differential graphical model (Fig. 3d).

Infer differential graphical model to TF-TF network rewiring

Gaussian graphical model for co-regulation network in one state

In this section, we describe the details of the differential graphical model. Let G(D) = (

V(D), E(D)) represent the network with nodes V(D) and edges E(D) for disease status D.

Let X
ðDÞ
j denote the vector of the average normalized ChIP-seq signal of factor j in sta-
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tus D, where j = 1⋯J . D = 1 indicates disease and 0 indicates normal. Next, for each D,

we calculated X
ðDÞ
1 ;X

ðDÞ
2 ;⋯;X

ðDÞ
J over 100 bp bins for all the 104 factors. In our ana-

lysis, we included 94 TFs, nine histone modification marks, and one chromatin accessi-

bility (J = 104).

Under one condition D, we assume that X
ðDÞ
1 ;X

ðDÞ
2 ;⋯;X

ðDÞ
J follows a multivariate

Gaussian distribution such that XðDÞ ¼ ðX
ðDÞ
1 ;⋯;X

ðDÞ
J Þ

T
� N J ðμ

ðDÞ;Σ
ðDÞÞ. We can con-

struct the TF co-regulatory network using a traditional GGM. Here, we are aiming to

identify TF true physical interactions by highlighting conditional dependent binding

profiles among TFs. Therefore, we used the precision matrix represented as Θ
(D)

≔ (Σ(D))−1 to infer whether any TF pair has a non-random co-binding interaction. In

other words, If Θ
ðDÞ
ij ¼ 0; then X

ðDÞ
i and X

ðDÞ
j are independent of each other, condi-

tioned on all the other TFs. As a result, ði; jÞ∉EðDÞ if Θ
ðDÞ
ij ¼ 0.

Differential graphical model for co-regulation alteration in two states

Next, we used the difference between two networks G(1) and G(0), called the differential

network, to represent the degree of TF co-regulation alteration under two conditions

(D = 1 and D = 0). Given the observed data X
ð1Þ
1 ;X

ð1Þ
2 ;⋯;X

ð1Þ
J in the disease cell and

X
ð0Þ
1 ;X

ð0Þ
2 ;⋯;X

ð0Þ
J for the normal cell, edges in the differential co-regulatory network

can be inferred from the difference between the two precision matrices Δ =Θ
(1)

−Θ
(0) = (Σ(1))−1 − (Σ(0))−1, where the co-regulation relationship between TFi and TFj

changes if |Δi, j| ≠ 0. Note that Σ(1)
ΔΣ

(0)
− (Σ(1)

− Σ
(0)) = 0. Hence, we can solve the fol-

lowing equation to estimate a reasonable Δ.

Σ̂
1ð Þ
ΔΣ̂

0ð Þ
− Σ̂

1ð Þ
−Σ̂

0ð Þ
� �

¼ 0

Here Σ̂
ðDÞ

is the sample covariance matrix. Specifically, we used the penalized D-

Trace loss model estimate Δ [16–18].

l Δð Þ ¼
1

2
tr ΔΣ̂

1ð Þ
ΔΣ̂

0ð Þ
� �

−tr Δ Σ̂
1ð Þ
−Σ̂

0ð Þ
� �� �

tr represents the trace of a matrix. To remove spurious differential edges, we intro-

duced a non-negative regularization parameter λ to penalize the number of edges in

the network.

l Δð Þ ¼
1

2
tr ΔΣ̂

1ð Þ
ΔΣ̂

0ð Þ
� �

−tr Δ Σ̂
1ð Þ
−Σ̂

0ð Þ
� �� �

þ λ
X

i; j
∆i; j

�

�

�

�

1

Here, λ controls the sparsity of the rewired network. For example, λ = 0 indicates no

penalty and usually will result in a very dense network. In contrast, a large λ value will

result in a sparse network.

Co-variance matrix inference

Under the Gaussian assumption, Σ̂
ðDÞ

can be directly obtained from the sample covari-

ance matrix. However, One statistical concern of using a differential graphical model is

the distribution of X(D). Here, we found that even after log transformation, almost all
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TFs severely contradicted the Gaussian assumption (for details see suppl. sect. S2).

Therefore, going forward we used a non-parametric model instead of a GGM. Our as-

sumption is that a set of monotonically increasing functions f f
ðDÞ
j g

J

j¼1
exists such that,

after transformation, f
ðDÞ
1 ðX

ðDÞ
1 Þ; f

ðDÞ
2 ðX

ðDÞ
2 Þ;⋯; f

ðDÞ
J ðX

ðDÞ
J Þ follow a multivariate normal

distribution NJ(0, Σ
(D)). Similar to the GGM, we can use the precision matrix Θ

(D)

≔ (Σ(D))−1 to infer the conditional dependence between any pair of factors in the net-

work. As described in [17], we adopted the rank-based scheme to estimate the sample

covariance matrix without directly estimating f f
ðDÞ
j g

J

j¼1
. Specifically, let r

ðDÞ
li represent

the rank of bin l for TF i in status D among all the bins, and n is the total number of

bins in the genome. The Spearman correlation of TFs i and j are represented as below.

ρ
Dð Þ
ij ¼

Pn
l¼0 r

Dð Þ
li −

nþ 1

2

� �

r
Dð Þ
lj −

nþ 1

2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
l¼1 r

Dð Þ
li −

nþ1
2

� �2
Pn

l¼1 r
Dð Þ
li −

nþ1
2

� �2
r

Then we replace the sample covariance matrix Σ̂
ðDÞ

by, Ŝ
ðDÞ

with elements

Ŝ
Dð Þ

¼
2 sin

π

6
ρ̂

Dð Þ
ij

� �

i≠ j

1 i ¼ j

(

In cases where Ŝ
ðDÞ

was not positively semi-definite, we used a projection method as

described in [17, 32].

Model selection

It is critical to select an appropriate λ to reliably infer network changes in disease sam-

ples because different λ values can lead to different conclusions in downstream ana-

lyses. Researchers have proposed many methods, cross validation, Akaike information

criterion (AIC), and Bayesian information criterion (BIC), to automatically select λ [33–

35]. We chose a more interpretable approach in our ChIP-seq-based co-regulation net-

work analysis than AIC and BIC, by using the Stability Approach to Regularization Se-

lection (StARS) approach (Fig. 5) [15]. The key characteristic of this method is that it

encourages the differential network to be inclusive to account for the true dynamics be-

tween disease and control networks, while guaranteeing an acceptable stability in the

resultant differential network.

Specifically, we defined Λ ¼ 1
.

λ
as an alternative parameter to control network

density so that a larger Λ indicates a denser network. During the model section process,

we start from subsampling part of the genome for S times. Specifically, during the sth

sampling, X(1), s and X
(0), s represent the binding profile matrices. ψs

i; jðΛÞ ¼ 1 if there is

an edge between TF i and TF j in the rewired network under Λ, otherwise ψs
i; jðΛÞ ¼ 0.

In the s = 1, 2, ⋯, S randomly sampled datasets, we defined θi; jðΛÞ ¼
1
S

PS
s¼1ψ

s
i; jðΛÞ ,

and ξi, j(Λ) = 2θi, j(Λ){1 − θi, j(Λ)} to be the fraction of times the networks disagree with

the existence of the edge (i, j). Then, the overall instability of the networks over the

sampling sets is
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D̂ Λð Þ ¼

P

i< jξ i; j Λð Þ

J

2

� �

It is clear that D̂ð0Þ ¼ 0 in an empty network because there is no instability when

there are no edges. In general, the network becomes denser and more instable as Λ

goes larger. However, when the network becomes very dense and even fully connected,

D̂ðΛÞ goes smaller again and eventually reduces to zero. As suggested in [15], we used

the monotone function DðΛÞ ¼ sup0≪t≪λD̂ðΛÞ to remove such artifact effect in an ex-

tremely dense network. As a result, the optimal Λ should be Λ̂opt ¼ supfΛ : DðΛÞ≤βg

for a predefine network instability measure β.

In our analysis, we started from a broad spectrum of parameter values from λ1 = 0.01,

λ2 = 0.05, ⋯λm, ⋯, λM = 10, representing a wide range of sparse networks, from almost

fully connected to empty (Fig. 4). For each λm, we randomly selected half of the bins

we used in “Infer differential graphical model to TF-TF network rewiring” section to

run the LASSO penalized D-Trace loss model. We repeated this process S = 100 times

for each λm and calculated the average network variance. We used β = 0.5% as our sta-

bility threshold and selected the optional λ is 0.2.
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