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Optimization is a buzzword, whenever researchers think of engineering problems.-is paper presents a newmetaheuristic named
dingo optimizer (DOX) which is motivated by the behavior of dingo (Canis familiaris dingo).-e overall concept is to develop this
method involving the collaborative and social behavior of dingoes. -e developed algorithm is based on the hunting behavior of
dingoes that includes exploration, encircling, and exploitation. All the above prey hunting steps are modeled mathematically and
are implemented in the simulator to test the performance of the proposed algorithm. Comparative analyses are drawn among the
proposed approach and grey wolf optimizer (GWO) and particle swarm optimizer (PSO). Some of the well-known test functions
are used for the comparative study of this work. -e results reveal that the dingo optimizer performed significantly better than
other nature-inspired algorithms.

1. Introduction

-e challenges of the modern world are composed of various
goals that must be optimized at the same time. Optimization
is a process that seeks one or more solutions to the problem
that leads to the extreme values of one or more objective [1].
-e optimization can, therefore, be done based on single or
multiple objective functions [2–4].

Keeping this in the mind, there is a requirement of new
metaheuristic-based solution to reduce the burden of any of
the model designing.-e objective of this paper is to develop
a nature-based algorithm called dingo optimizer, which can
be abbreviated as DOX. It is based on dingo’s social hier-
archy and prey hunting behavior.

Metaheuristic algorithms are remarkably common due
to its nature of flexibility, simplicity, less mathematical
complexity, and avoidance of local optima. If we talk about
flexibility, then it means we can use such algorithms in a
wide variety of engineering problems. Such algorithms
provide satisfactory results for many of the complex
problems [5]. It is simple because it is inspired by nature like

animal behavior to accomplish a particular task, physical
phenomena, and other evolutionary behavior.

One of the main reasons to use the metaheuristics in
real-life problems is that almost all the optimization solu-
tions start with the random processes, and for such solu-
tions, there is no need to find out the optimum.
Metaheuristic algorithms are very powerful in terms of
finding local optima compared with the traditional opti-
mization algorithms. Finding the real search space in the real
world problem is very much complicated because of finding
with lots of local optima in the search. -at is the reason
metaheuristic algorithms are most suitable to find out such
challenging issues.

-ere are so many metaheuristic algorithms proposed
every year, and they show the promising result with respect
to the engineering problem. However, day by day the nature
and complexity of new applications are introducing with
new challenges. And, it might not be possible to solve the
particular problem with the guarantee. -is motivates us to
develop a new metaheuristics algorithm as dingo optimizer
(DOX). Also, the method which is mathematically modeled

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 2571863, 12 pages
https://doi.org/10.1155/2021/2571863

mailto:sjoshinew@yahoo.com
https://orcid.org/0000-0003-1830-0661
https://orcid.org/0000-0001-9127-5947
https://orcid.org/0000-0001-6475-4491
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2571863


and inspired by the social hierarchy of dingoes is also
motivated to solve a real-time engineering problem.

-is paper is arranged as follows. Section 2 provides a
literature survey that explains the brief principles of DOX
focused on dog pack hunting. -e proposed multiobjective
DOX is presented in Section 3. In section 4, the performance
of DOX is tested with various benchmark functions and
experimental results are compared with other state-of-the-
art algorithms. In Section 5, the conclusion and future re-
search directions discussed.

2. Literature Review

In the past few years, the problems related to real-life have
increased, and it is motivating researchers to develop a better
metaheuristic technique with the concept of randomization
and local search. Such approaches have been used to determine
the best solutions to real-life engineering problems that are
feasible. -ese methods are more widely accepted due to their
difficulty and reliability relative to other existing methods.

Metaheuristic algorithms can be categorized into evo-
lutionary-based [13], physical algorithms [54], bio-inspired
algorithms, swarm-based [25], and others methods. -e
evolutionary algorithm gives approximately close solutions
to all types of optimization models since these approaches
are not dependent on basic fitness and assumptions [55].
Bio-inspired algorithms are also popular to solve various
complicated problems, which are motivated by biological
evolution such as selection, replication, mutation, and re-
combination. Physical algorithms are motivated by evolu-
tionary algorithms by the principle of natural selection in
which a species attempts to live in different environments
based on the fitness test. -emost common parameters such
as inertia force, electromagnetic force, and gravitational
force help the algorithm to search the agent’s coordinate and
search around the space. Swarm-based algorithms are in-
spired by the self-organized nature of the social creatures,
which shows the collective behavior of decentralization.
Corporate wisdom is influenced by the contact of swarms
with each other and their surroundings. Some of the popular
swarm intelligence technique is quite similar to the nature-
inspired algorithm. Generally, swarm-based algorithms are
more popular as they have fewer operators (i.e., discovery,
encircling, and exploitation). Table 1 lists all these algo-
rithms which are divided into single objective and multi-
objectives depending on the number of objective functions.

3. Dingo Optimizer (DOX)

3.1. Motivation. Nature is always the most powerful teacher
from the beginning. Ever species surviving on the Earth have
its way of unique mechanism for survival. Social relation-
ships are one of them, which is dynamic. Based on the
general study of the social behavior of the animal, it can be
segmented into some of the categories. -e first category is
depending on the environmental factors, i.e., nearby re-
source availability and challenges created by other species.
Another category depends on individual behavior or quality.

Keeping this in the mind, dingo is motivation to our
work which follows strictly the social relationship. Dingo is
the dog’s sort. -e scientific name of dingo is Canis lupus
(wolf ) dingo, changed recently from Canis familiaris (dog).
Dingoes are complicated, intelligent, and highly social an-
imals. Dingoes are skillful hunters living in a pack of the
average size 12–15.

Social hierarchy is highly structured, alpha is on the top
of the hierarchy, and they might be male or female. -ey can
be identified based on the responsibility like making deci-
sions, sleeping places, and hunting. -e most dominant and
strongest member in the pack is called alpha, considered as
the leader of the pack of dingoes. It reflects that the discipline
and organization are more important than power. -e de-
cision taken by the alpha is dictated to the pack. In general,
all the members of a pack acknowledge the alpha by holding
their tails down.

Beta dingoes are at the second level in the hierarchy,
which played a role of intermediate between alpha and an-
other pack for the related tasks. It plays the important role as
an adviser of alpha and maintains the discipline for the whole
pack. -e beta confirms the orders of the alpha in the group
and communicates to the alpha. -e beta dingo is second in
the hierarchy after the alpha. If alpha does not survive due to
any of the reasons, all the commands will be handed over by
the beta to control the other lower-level dingoes.

If a dingo does not belong to an alpha or beta, they are
considered as subordinate. -ese subordinates follow alphas
and betas. Scouts shall be liable for observing the area of the
territories and shall alert the group in case of any threat
circumstance. Hunters shall support the alphas and betas to
catch the prey and provide food for the group.

Based on the studies, dingoes have an accurate sense of
communication. -ey communicate with each other
through sensing different sound intensities in the air. In
DOX, dingo creates sound feedback in such a way that
dingoes exchange their knowledge with others to create
common community details. -e amplitude of the vibration
is modified by the strength of the person as the dingo enters a
new location from the previous one.

Group hunting is an interesting social behavior of
dingoes, which makes its more extension to the social be-
havior of dingoes. Hunting strategy is categorized in their
phases as follows:

Chasing and approaching

Encircling and harassing

Attack

-e above steps are properly shown in Figure 1. Also,
hunting behavior and the social arrangements of dingo are
modeled mathematically, to develop DOX to perform na-
ture-inspired optimization.

Exploration and exploitation are the two main com-
ponents of DOX. In the exploration part, the algorithm
reaches several expected solutions in the search space but
exploitation allows searching for optimal solutions within
the given space. To find out the best solution for any real-life
problem, both the components are required with fine-
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tuning. However, it is a challenge to make a balance between
the components of the proposed algorithm due to its stochastic
nature. To solve a real-life engineering problem, this inspiring
fact motivates a hybridize metaheuristics algorithm design.

3.2. Mathematical Models. -e representation of the
searching, encircling, and attacking prey is designed math-
ematically to perform the dingo optimization in this section.

3.2.1. Encircling. Dingoes are enough capable to find the
location of the prey. After tracing the location, the pack
followed by alpha encircles the prey. To model dingo’s social
hierarchy, it is assumed that the existing best agent approach
is the goal or aim prey, which is similar to the optimal since
the quest area is not known a priori. In the meantime, other
quest agencies are still seeking to refresh their strategies on
the next possible approach. -is behavior of the dingoes is

modeled by the following mathematical equations (1)–(5).
Also, a detailed description of the nomenclatures used in the
equation is provided in Table 2

D
→
d � A

→
· P
→
p(x) − P

→
(i)

∣∣∣∣∣ ∣∣∣∣∣, (1)

P
→
(i + 1) � P

→
p(i) − B

→
· D
→
(d), (2)

A
→
� 2 · a

→
1, (3)

B
→
� 2 b

→
· a
→
2 − b

→
, (4)

b
→
� 3 − I∗ 3

Imax
( )( ). (5)

Positions of the neighborhood dingoes can be illustrated
using Figure 2, which is represented using a two-dimensional

Table 1: Classification of different metaheuristic approaches.

Types of algorithms Single objective Multiobjective

Evolutionary algorithms (EA) [6]

Genetic algorithm (GA) [7] NSGA II [2, 8]
Genetic programming (GP) [9] Multiobjective GP [10]
Differential evolution (DE) [11] Multiobjective DE [12]
Evolutionary strategy (ES) [13] Multiobjective ES [14]

Bio-inspired algorithms (BIA)

Artificial immune system (AIS) algorithm [15] Multiobjective AIS [16]
Bacterial foraging algorithm (BFA) [17] Multiobjective BFA [18]
Dendritic cell algorithm (DCA) [19]
Krill herd algorithm (KHA) [20]

Physical algorithms
Simulated annealing (SA) [21] Multiobjective SA
Memetic algorithm (MA) [22] Multiobjective MA

Shuffled frog-leaping algorithm [23] Multiobjective SFA

Swarm intelligence (SI)

Ant colony optimization (ACO) [24] Multiobjective ACO
Particle swarm optimization (PSO) [25] Multiobjective PSO [1]

Artificial bee colony (ABC) [26] Multiobjective ABC
Fish swarm algorithm (FSA) [27] Multiobjective FSA
Grey wolf optimizer (GWO) [28]
Dragonfly algorithm (DA) [29]

Other nature-inspired algorithms

Firefly algorithm [30] Multiobjective firefly [31]
Whale optimization algorithm (WOA) [32]

Gravitational search algorithm [33] Multiobjective GSA
Bat algorithm (BA) [34] Multiobjective Bat

Cuckoo search algorithm (CSA) [35] Multiobjective cuckoo
Cat swarm algorithm (CSA) [36] Multiobjective CSO

Human behavior-inspired algorithms

Harmony search (HS) [37] Multiobjective HS [38]
Tabu search (TS) [39] Multiobjective TS [40]

Parameter adaptive harmony search (PAHS) [41] Multiobjective PAHS [41]
Group search optimizer (GSO) [42] Multiobjective GSO

Exchange market algorithm (EMA) [43] Multiobjective EMA
Imperialist competitive algorithm (ICA) [44] Multiobjective ICA

Soccer league competition algorithm (SLCA) [45] Multiobjective SLCA
League championship algorithm (LCA) [46] Multiobjective LCA

Social-based algorithm (SBA) [47] Multiobjective SBA
Firework algorithm (FA) [48] Multiobjective FA

Colliding bodies optimization (CBO) [49] Multiobjective CBO
Soccer league competition algorithm (SLCA) [45] Multiobjective SLCA

Interior search algorithm (ISA) [50] Multiobjective ISA
Artificial ecosystem-based optimization (AEO) [51]

Spiral optimization algorithm (SOA) [52]
Adolescent identity search algorithm (AISA) [53]
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position vector. According to the position of the prey (P∗, Q∗),
a dingo can update its position at the position of (P, Q). All the
possible locations are marked in the diagram around the best
agent, concerning the current location by changing the value of
A
→
and B

→
vectors. For example, by setting A

→
� (1, 0) and

B
→
� (1, 1), dingo can be reached at (P∗ − P,Q∗). It can also be

represented using 3-dimensional space as in Figure 3. It is clearly
illustrated how randomvectors a1 and a2 enable dingoes to enter
any place between the points. Equations (1) and (2) help dingoes
to change their locations inside the quest area around the prey in
any random location. To reach a search space with N dimen-
sions, the same equations can be used and the dingowillmove in
hypercubes around the best result got so far.

(a) (b)

(c)

(d)

(e)

Figure 1: Hunting behavior of dingoes: (a) dingo; (b) prey; (c) chasing and approaching; (b–d) harassing and encircling; (e) attack.

Table 2: Nomenclature of equations (1)–(5).

Elements Description

D
→
d Distance between the dingo and prey

P
→
p Position vector (prey)

P
→

Position vector (dingo)
A
→

Coefficient vector
B
→

Coefficient vector
a
→
1 Random vector in [0,1]

a
→
2 Random vector in [0,1]

b
→

Linearly decrement from 3 to 0 at every iteration
‖ Absolute value and multiplication with vectors
I 1, 2, 3 . . . , Imax
Imax Maximum no. of iteration
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3.2.2. Hunting. However, in the search space according to
the concept, agents do not normally have a calculation of the
position of the prey (optimum). Designing the dingoes
hunting plan mathematically, we assume that all the pack
members including alpha, beta, and others have good
knowledge about the potential location of prey. -e alpha
dingo always commands the hunting. However, sometimes

beta and other dingoes might also participate in hunting.
Hence, we consider the first two best values achieved so far.
As per the location of the best search agent, other dingoes
also need to update their position. According to the dis-
cussion, equations (6)–(14) are modeled in this concern.
Also, a detailed description of the nomenclatures used in the
equation is provided in Table 3.

(P∗–P, Q)

(P∗–P)

(P∗,Q) (P, Q)

(P∗–P, Q∗)

(P∗–P, Q∗–Q) (P∗, Q∗–Q)

(P∗, Q∗)

(P, Q∗–Q)

(P, Q∗)

(Q
∗
–

Q
)

Figure 2: 2D position vectors of dingoes.

(P∗–P, Q, R)

(P∗–P, Q, R∗)

(P∗, Q, R∗–R)

(P∗, Q, R∗)

(P, Q, R∗–R)

(P, Q, R∗)

(P∗–P, Q, R∗–R)

(P∗–P, Q∗, R∗–R)

(P∗–P, Q∗–Q, R∗–R) (P, Q∗–Q, R∗–R)

(P, Q∗–Q, R)(P, Q∗, R∗–R)
(P∗, Q∗, R∗–R)

(P, Q∗, R∗)
(P∗, Q∗, R∗)

(P, Q∗, R)

(P∗, Q∗–Q, R∗–R)

(P, Q, R∗)

(P∗, Q, R) (P, Q, R)

Figure 3: 3D position vectors of dingoes.
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D
→
α � A

→
1 · P
→
α − P

→∣∣∣∣∣ ∣∣∣∣∣, (6)

D
→
β � A

→
2 · P
→
β − P

→∣∣∣∣∣ ∣∣∣∣∣, (7)

D
→
o � A

→
3 · P
→
o − P

→∣∣∣∣∣ ∣∣∣∣∣, (8)

P
→
1 � P

→
α − B

→
· D
→
α

∣∣∣∣∣ ∣∣∣∣∣, (9)

P
→
2 � P

→
β − B

→
· D
→
β

∣∣∣∣∣ ∣∣∣∣∣, (10)

P
→
3 � P

→
o − B

→
· D
→
o

∣∣∣∣∣ ∣∣∣∣∣. (11)

To calculate the intensity of each dingo, following
equations are being used:

I
→
α � log

1

Fα − (1E − 100)
+ 1( ), (12)

I
→
β � log

1

Fβ − (1E − 100)
+ 1( ), (13)

I
→
o � log

1

Fo − (1E − 100)
+ 1( ). (14)

-e position update in the 2D search space is described
in Figure 4. In this, we can easily visualize the position
updated of alpha, beta, and other dingoes. It can also be
understood that dingoes (alpha, beta, and others) update
their positions randomly and calculate the position of the
prey in the search space.

3.2.3. Attacking Prey. If there is no position update, it means
dingo finished the hunt by attacking the prey. To mathe-
matically formulate the strategy, the value of b

→
is decreased

linearly. Point to be noted is that the alteration range of D
→
α is

also decreased by b
→
. -is may also be known as D

→
αwhich is

a random value in the [-3b, 3b] interval where b is reduced
from 3 to 0 during iterations. When random values of D

→
α

are in [1, 1], a search agent’s next position may be in any
position between its current and the prey’s position.

-e proposed encircling method does indeed reveal
exploration to some extent; however, to accentuate explo-
ration, DOX requires more operators. Figure 4 is the il-
lustration that shows that <1 drives the dingo to strike the
prey. -e DOX assists its quest agents in changing their
location based on the positioning of α, β, others, and the
targeted prey. Even, with these operators, the DOX can
inactivate local solutions.

3.2.4. Searching. Dingoes hunt for the prey mostly
according to the pack’s location. -ey always travel forward
to hunt for and strike predators. Accordingly, B

→
is used for

random values where, if the value is less than –1, it means
prey is moving away from the search agent, but if the value is
greater than 1, it means pack approaches the prey. -is

intervention helps the DOX to scan the targets globally. To
find out which prey is better suited, Figure 4 reflects that 1
lets dingoes avoid the predators. Another component of
DOX that makes exploration likely is A

→
. In equation (3), the

vector A
→
can produce any random number between [0, 3]

for arbitrary prey weights. DOX represents a stochastic
function, regarded as vector ≤1 precedes than ≥1 to explain
the impact of the gap formulated in equation (1).

-is would be good for searching and avoidance of
nearby optima. Depending on a dingo’s location, it will
arbitrarily agree on the prey’s value and make it necessary to
meet dingo rigidly or beyond. Intentionally, we used A

→
to

provide stochastic exploration values from the initial to the
final iterations. -is method is effective in protecting the
solution from local optima. Eventually, the DOX terminates
itself whenever it meets the termination criteria.

3.3. Optimization Algorithm. -e DOX pseudo code dem-
onstrates how it can solve optimization problems, and
several points can be mentioned in Algorithm 1. Here,
stopping criteria belong to the maximum number of iter-
ations. -e dingo optimization algorithm process is dis-
cussed in the following steps.

Table 3: Description of equations (1)–(4).

Elements and
description

D
→
d Distance between the dingo and prey

P
→
p Positioning of a prey vector

P
→

Positioning of a dingo vector
A
→

Coefficient vector
B
→

Coefficient vector
a
→
1 Random vector in [0, 1]

a
→
2 Random vector in [0, 1]

b
→ Linear decrease over the course of

iterations
‖ Absolute value
I 1, 2, 3, . . . , Imax
Imax Maximum no. of iteration
Fα Fitness value of alpha (α) dingo
Fβ Fitness value of alpha (β) dingo
Fo Fitness value of other dingoes

if |B| < 1

(a)

if |B| > 1

(b)

Figure 4: 2D position vectors of dingoes.
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4. Results and Discussion

4.1. Experimental Setup. -e overall simulation is done in
MATLAB, taking into account the various parameters which
will be explained in the setup of the simulation. -e proposed
DOX is implemented inWindows 10 withmemory 8GB RAM
and processor Intel CPU 2.50GHz. To generate the solutions
for each predefined benchmark function, the DOX uses 25
individual runs and each run applies 500 times of iterations.

4.2. Results. -e DOX is the algorithm that has been tested
on 23 well-known test functions [56]. -ese test functions
are the classical functions used by various research groups.
-e results of the model being suggested using the dingo
algorithm are shown as follows. Such testing functions were
chosen to align our experiments with the current meta-
heuristics despite the convenience. -ese benchmark
functions are defined in appendix Tables 4–6 where Dim
indicates the function size, Range is the search space
boundary, and the maximum is fmax. Figure 5 represents
comparison of convergence curves of DOX obtained in some
of the benchmark problems. -e benchmark functions are
typical functions of minimization and can be segmented into
four different categories.

5. DOX for Engineering Problems

Here, DOX was tested on a small engineering design problem
called a pressure vessel. Such kind of problem is having
different design constraints to handle the optimization.

5.1. PressureVesselDesign. -is is the problem which is used
by many researchers to validate the solution that was pro-
posed by Kannan and Kramer [57] to minimize the total

cost, including cost of material, forming, and welding of
cylindrical vessel which are capped at both ends by hemi-
spherical heads.

(1) p1: thickness of the shell

(2) p2: thickness of the head

(3) p3: inner radius

(4) p4: length of the cylindrical section without con-
sidering the head

-e mathematical formulation of this problem is for-
mulated as follows.

Consider p � [p1p2p3p4].
Minimize the following function:

f(p) � 0.6224p1p3p4 + 1.7781p2p
2
3 + 3.1661p

2
1p4 + 19.84p

2
1p3,

(15)
Subject to

f1(z) � − f1 + 0.0193p3 ≤ 0,

f2(z) � − f3 + 0.00954f3 ≤ 0,

f3(z) � − Πf23f4 −
4

3
Πf33 + 1296000≤ 0,

f4(z) � f4 − 240≤ 0.

(16)

Variable range is as follows:

0≤f1≤ 99,
0≤f2≤ 99,
0≤f3≤ 200,
0≤f4≤ 200.

(17)

Input: -e population of dingoes Dn (n � 1, 2, . . ., n)
Output: -e best dingo. (Here, the best values is minimum)
(1) Generate initial search agents Din
(2) Initialize the value of b

→
, A
→
and B

→
.

(3) While Termination condition not reached do
(4) Evaluate each dingo’s fitness and intensity cost.
(5) Dα � Dingo with the best search
(6) Dβ � Dingo with the second best search
(7) Do � Dingoes search results afterwords
(8) Iteration1
(9) repeat
(10) for i� 1: Din do
(11) Renew the latest search agent status.
(12) endfor
(13) Estimate the fitness and intensity cost of dingoes.
(14) Record the value of Sα, Sβ, Sδ
(15) Record the value of b

→
, A
→
, and B

→
.

(16) Iteration � Iteration +1
(17) check if, Iteration ⩾ Stopping criteria
(18) output
(19) endwhile

ALGORITHM 1: Dingo optimizer (DOX).
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Figure 5: Comparison of convergence curves of DOX obtained in some of the benchmark problems.
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-is problem has been popular among researchers in
various studies.

Table 4 is a comparison of the best optimal solution for
DOX and other documented approaches, such as GWO and
PSO. According to this table, DOX will find an optimum
design at a minimal rate. Table 4 shows DOX comparison of
the historical effects of the issue of construction of pressure
vessels. -e DOX results work better than any other algo-
rithm in terms of the best optimal solution.

-e DOX algorithm obtained the near optimal solution
in the initial steps of iterations and achieved better results
than other optimization methods for pressure vessel
problem.

-e comparison of best optimal solution among several
algorithms is given in Table 4. -is problem has been tested

with different optimizationmethods such as GWO and PSO.
-e comparison for the best solution obtained by such al-
gorithms is presented.

6. Statistical Testing

-e ANOVA test was performed to test whether the
outcomes obtained from the proposed algorithms vary
statistically substantially from the findings of other al-
gorithms. We took 30 as the sample size for the ANOVA
test. We used 95% confidence for the ANOVA test. -e
results of the ANOVA test for the benchmark functions
are shown in Table 8. -e findings demonstrate that the
DOX is statistically important relative to other rival
algorithms.

Table 4: Unimodal functions.

Function Dim Range fmin

F1(k) �∑mj�1 k2j 30 [− 100, 100] 0

F2(k) �∑mj�1 |k| +∏m
j�1 |k| 30 [− 10, 10] 0

F3(k) �∑mj�1 (∑mj�1 k2j)2 30 [− 100, 100] 0

F4(k) �maxj|kj|, 1≤ j≤m 30 [− 100, 100] 0

F5(k) �∑m− 1j�1 [100(kj+1 − k
2
j)
2 + (kj − 1)

2] 30 [− 30, 30] 0

F6(k) �∑mj�1 (|ki + 0.5|)2 30 [− 100, 100] 0

F7(k) �∑mj�1 ik4i + random[0, 1] 30 [− 1.28, 1.28] 0

Table 5: Multimodal benchmark functions.

Function Dim Range fmin

F8(k) �∑mj�1 − kj sin( ���
|kj|

√
) 30 [− 500, 500] − 418.982 × 5

F9(k) �∑mj�1[k2j − 10 cos(2πkj) + 10] 30 [− 32, 32] 0

F10(k) � − 20 exp(− 0.2
������������
(1/m)∑mj�1 k2j√

) − exp((1/m)∑m
j�1 cos(2πkj)) + 20 + e 30 [− 100, 100] 0

F11(k) � (1/4000)∑m
j�1 k

2
j − ∏m

j�1 cos(kj/
�
j

√
) + 1 30 [− 600, 600] 0

F12(k) � (π/m) 10 sin(πy1)∑m
j�1

(y1 − 1)
2
[1 + 10 sin2(πyj+1)] + (ym − 1)

2



+∑m
j�1

u(kj, 10, 100, 4)yj � 1 + (kj + 1/4)

u(kj, a, l, n) �

l(kj − a)
n, kj > a.

0, − a< kj < a.
l(− kj − a)

n, kj < a



30 [− 50, 50] 0

F13(k) � 0.1
sin2(3πkj) +∑m

j�1

(kj − 1)
2
[1 + sin2(3πkj + 1)]

+(kj − 1)
2
[1 + sin2(2πkj)]


 + ∑mj�1 u(kj, 5, l00, 4) 30 [− 50, 50] 0

F14(k) � − ∑m
j�1 (sin(kj) · sin(j · k

2
j/π))

2n, n � 10 30 [− 0, π] − 4.687

F15(k) � [e
− ∑m

j�1
(kj/β)

2n

− 2e
− ∑m

j�1
k2j ] ·∏m

j�1 cos
2 kj, n � 5 30 [− 20, 20] 0

F16(k) � [∑mj�1 sin2(kj)] − exp(− ∑m
j�1 k

2
j){ } · exp[− ∑mj�1 sin2 ���

|kj|
√

] 30 [− 10, 10] − 1

Mathematical Problems in Engineering 9



Table 7: Results comparison for pressure vessel design problem.

Algo. p1 p2 p3 p4 Optimum

DOX 0.7782 0.3848 40.3150 200.0000 5885.5773
GWO 0.7790 0.3846 40.3277 199.6502 5889.3689
PSO 0.7789 0.3847 40.3209 200.0000 5891.3879

Table 6: Fixed-dimension multimodal benchmark functions.

Function Dim Range fmin

F14(k) � ((1/500) +∑251 (1/j +∑2l�1 (xi − aij)6))− 1 2 [− 65, 65] 1

F15(k) �∑11j�1[aj − (x1(b2j + bjx2)/b2j + bjx2 + x4)]2 4 [− 5, 5] 0.00030

F16(k) � 4x
2
i − 2.1x

4
1 + (1/3)z

6
1 + x1x2 − 4x

2
2 + 4x

4
2 2 [− 5, 5] − 1.0316

F17(k) � (x2 − (5.1/4π
2)x21 + (5/π)x1 − 6)

2 + 10(1 − (1/8π))cos x1 + 10 2 [− 5, 5] 0.398

F18(k) �
[1 + (x1 + x2 + 1)

2
(19 − 14x1 + 3x

2
1 − 14x2 + 6x1x2) + 3x

2
2]×

[30 + (2x1 − 3x2)
2
× (18 − 32x1 + 12x

2
1 + 48x2 − 36x1x2 + 27x

2
2)]

2 [− 2, 2] 3

F19(k) � − ∑4j�1 cj exp(∑3l�1 ajl(xl − pjl)2) 3 [1, 3] − 3.86

F20(k) � − ∑4j�1 cj exp(∑6l�1 ajl(xl − pjl)2) 6 [0, 1] − 3.32

F21(k) � − ∑5j�1 [(X − aj)(X − aj)T + cl]− 1 4 [0, 10] − 10.1532

F22(k) � − ∑7j�1 [(X − aj)(X − aj)T + cl]− 1 4 [0, 10] − 10.1532

F23(k) � − ∑10j�1[(X − aj)(X − aj)T + cl]− 1 4 [0, 10] − 10.1532

Table 8: Unimodal functions.

F P value DOX GWO PSO

F1 1.91E–64 GWO,PSO DOX,PSO DOX,GWO
F2 3.62E–65 GWO,PSO DOX,PSO DOX,GWO
F3 3.57E–36 GWO,PSO DOX,PSO DOX,GWO
F4 2.87E–22 GWO,PSO DOX,PSO DOX,GWO
F5 2.15E–24 GWO,PSO DOX,PSO DOX,GWO
F6 1.94E–54 GWO,PSO DOX,PSO DOX,GWO
F7 1.56E–13 GWO,PSO DOX,PSO DOX,GWO
F8 1.59E–43 GWO,PSO DOX,PSO DOX,GWO
F9 1.88E–87 GWO,PSO DOX,PSO DOX,GWO
F10 1.29E–34 GWO,PSO DOX,PSO DOX,GWO
F11 1.87E–35 GWO,PSO DOX,PSO DOX,GWO
F12 2.36E–23 GWO,PSO DOX,PSO DOX,GWO
F13 1.91E–98 GWO,PSO DOX,PSO DOX,GWO
F14 6.35E–36 GWO,PSO DOX,PSO DOX,GWO
F15 1.14E–07 GWO,PSO DOX,PSO DOX,GWO
F16 2.63E–35 GWO,PSO DOX,PSO DOX,GWO
F17 1.83E–58 GWO,PSO DOX,PSO DOX,GWO
F18 4.61E–36 GWO,PSO DOX,PSO DOX,GWO
F19 9.54E–15 GWO,PSO DOX,PSO DOX,GWO
F20 1.99E–73 GWO,PSO DOX,PSO DOX,GWO
F21 2.54E–62 GWO,PSO DOX,PSO DOX,GWO
F22 8.11E–06 GWO,PSO DOX,PSO DOX,GWO
F23 2.70E–18 GWO,PSO DOX,PSO DOX,GWO
F24 5.55E–36 GWO,PSO DOX,PSO DOX,GWO
F25 1.22E–87 GWO,PSO DOX,PSO DOX,GWO
F26 7.66E–45 GWO,PSO DOX,PSO DOX,GWO
F27 2.48E–69 GWO,PSO DOX,PSO DOX,GWO
F28 2.31E–43 GWO,PSO DOX,PSO DOX,GWO
F29 1.14E–47 GWO,PSO DOX,PSO DOX,GWO
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7. Conclusion and Future Scope

As per the comparison of DOX with other popular meta-
heuristic algorithms such as PSO and DSO, DOX provides
well competitive outcomes as presented in the results. -e
DOX is analyzed for the exploration and exploitation activity
of agents using twenty-three test functions. -e concise
results, which are based on comparative analysis between the
proposed DOX and other optimization algorithms, dem-
onstrate that the approach suggested will cope with different
kinds of constraints and provide stronger alternatives than
any other optimizer. -e suggested methodology is inspired
by the real-life problems, which required less computational
or mathematical efforts to find the best available optima.

Some other major findings may be preferred for future
studies. DOX may be used to address various technological
problems. Multiobjective problems can be solved as another
future contribution as MODOX. Binary DOX might also be
other benchmarks to expand this algorithm.

Appendix

A. Benchmark Functions

A.1. Unimodel Functions. -e list of the unimodal test
functions (F1–F7) is given in Table 4.

A.2. Multimodal Functions. -e list of the multimodal test
functions (F8–F16) is given in Table 5.

A.3. Fixed-Dimension Multimodal Functions. -e list of the
fixed-dimension multimodal test functions (F14–F23) is
given in Table 6.
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