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DIOPHANTINE REPRESENTATION OF THE SET OF PRIME NUMBERS 

JAMES P. JONES, DAIHACHIRO SATO, HIDEO WADA AND DOUGLAS WIENS 

1. Introduction. Martin Davis, Yuri Matijasevic, Hilary Putnam and Julia Robinson [4] [81 have 
proven that every recursively enumerable set is Diophantine, and hence that the set of prime numbers 
is Diophantine. From this, and work of Putnam [12], it follows that the set of prime numbers is 
representable by a polynomial formula. In this article such a prime representing polynomial will be 
exhibited in explicit form. We prove (in Section 2) 

THEOREM 1. The set of prime numbers is identical with the set of positive values taken on by the 
polynomial 

(1) (k+2){I- wz+h + q 2-_(gk+2g+k +) (h+j)+h-z [2n+p+q+z-e1 

-[16(k + 1)3 (k +2) - (n + 1)2+ 1 _-fj2 - [e3 (e +2)(a + 1)2+ 1 _o212 -f(a2'- )y + _ -x2J2 

(16r y4(a - I)+ i - u212- [((a + u2(U 2- a))2- 1)* (n + 4dy)2 + I - (x + cu)2]2 - [n + I + v - yj2 

-[(a2- 1)12+1 m2]2-[ai + k + 1-_-i_i]2-p + l(a -n - 1)+ b(2an + 2a - n2-2n -2)- mJ' 

-[q + y(a -p - 1)+ s(2ap +2a -p2 - 2p - 2) -_xX2 -z + pl(a - p)+ t(2ap _ p2 _ 1) - pml 

as the variables range over the nonnegative integers. 

(1) is a polynomial of degree 25 in 26 variables, a, b, c,..., z. When nonnegative integers are 
substituted for these variables, the positive values of (1) coincide exactly with the set of all prime 
numbers 2,3,5,.... The polynomial (1) also takes on negative values, e.g., - 76. 

In 1971, Yuri Matijasevic [10] outlined the construction of a prime representing polynomial in 24 
variables and degree 37, using the Fibonacci numbers. In the addendum to his paper, an improvement 
to 21 variables and degree 21 was made. (These polynomials were not written out explicitly.) Our 
construction here yields a polynomial in 19 variables and degree 29. It also yields a polynomial in 42 
variables and degree 5. Thus we might ask what is the smallest possible degree and how few variables 
are actually necessary to represent primes? 

Let us consider first the question of the degree. We know that a prime representing polynomial of 
degree 5 is possible. All that is necessary to reduce the degree to 5 is the Skolem substitution method 
(cf. [3], p. 263). However, this procedure increases the number of variables (to 42 when applied to (1)). 
We do not know whether there is a prime representing polynomial of degree < 5. 

The question of the minimum number of variables is also open. A simple argument shows that at 
least 2 variables are necessary. But we do not know the minimum number. The method of proof of 
Theorem 1 yields a polynomial in 16 variables. To reduce the number of variables below 16 requires 
an entirely different construction. The best result we were able to obtain is a polynomial in 12 
variables. We shall prove 

THEOREM 2. There exists a prime representing polynomial in 12 variables. 

This result was reportedly known to Yuri Matijasevic in 1973, although no literature is available 
concerning this. Our proof uses methods developed by Yuri Matijasevic and Julia Robinson in [11]. 
The construction is carried out in ?3. The polynomial constructed has very large degree. 

The proofs of Theorem 1 and 2 are both based on Wilson's Theorem. In each case we show that 
the set of prime numbers is Diophantine; i.e., that there exists a Diophantine equation solvable only 
for prime values of a parameter. We construct a polynomial M(k, x1, , xn) with the property that for 
each nonnegative integer k 

(3) k + 2 is prime *4 M(k, x1, , x') = 0 is solvable in nonnegative integers. 

449 
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450 JONES-SATO-WADA-WIENS [June-July 

It will turn out that M is a sum of squares and hence nonnegative. From such a nonnegative 
polynomial M, satisfying (3), a prime representing polynomial P is constructible by the method of 
Putnam [12]. We have only to set P equal to 

(4) (k + 2) 1-M(k, xi, ,)I.t 

The difficulty is of course the construction of M. We shall see that this requires nearly all the 
techniques invented to solve Hilbert's tenth problem. And there is good reason why this should be so. 
Several years before Hilbert's tenth problem was solved in the negative by Matijasevi6 [8], Julia 
Robinson [16] proved that if the set of prime numbers was Diophantine, then every recursively 
enumerable set would be Diophantine. Hence Theorem 1 and 2 actually imply the unsolvability of 
Hilbert's tenth problem. 

As was mentioned previously, our polynomials take on negative values. Hence it cannot be 
claimed that they represent primes exactly. This is not an accidental feature of the Putnam 
construction. It is a limitation inherent in algebraic functions. The reader is probably familiar with the 
theorem that no polynomial can represent only primes. This theorem is proved in Section 4 and the 
result is also extended to all algebraic functions of several variables, of which the polynomial is only a 
special case. 

To overcome the inexactness of the polynomial representation, it is necessary to use exponential 
functions or other transcendental functions. Julia Robinson noticed [4] that we may conveniently 
employ the function Ox for this purpose, provided we define 00 = 1. If we take M as in (3) then we can 
prove 

THEOREM 3. The set of prime numbers is the exact range of a function of the form 

2 + k . OM(k,xl, ,x") 

in which M(k, x1, , xn) is a polynomial and n ' 11. 

Here we used the function Ox to distinguish between zero and positive integers. We may also use 
the proper subtraction function, absolute value function, remainder function, signum function or 
integer part function (but no algebraic function). Define r(y, x) to be the remainder after division of y 
by x (take r(y,O)=y). Define y -x to be y-x for y-'x and 0 for y<x. Then y , xX= 
(y Y - x I + y - x)/2. Any one of the following six functions may be used in Theorem 3. (The domain is 
the nonnegative integers.) 

-1 = 1 -,x x I+ 1-x = [1] x =1- gnx 2l-xl+-x=1-r(1,1+x)=1-sgn(x)= Li+xi 

Indeed, using these more general functions it is easy to give a short formula for the nth prime, pn. 
The following formula is derived in [7]. 

n2( ((i) ) (5) Pn = E (1 - r(( - 1)!2,j) n)) 

The nth prime function may also be represented by a polynomial, though not of course in one 
variable. We can prove 

THEOREM 4. There exists a polynomial P(n, xi, xk) such that for any positive integers n and m, 

pn = m (3x1, * *, xk){P(n, xi, , Xk) = m}. 

Note the apparent paradox. The polynomial P factors! However, the factors are improper, P = P * 1. 
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1976] DIOPHANTINE REPRESENTATION OF THE SET OF PRIME NUMBERS 451 

Proof. The proof is a simple elaboration on Putnam's idea, (due to Yuri Matijasevic [91). The 
binary relation pn = m is recursive and hence Diophantine by [41 [8]. Therefore there exists a 
polynomial Q such that pn = m -* (3x,, * * , xl)Q(n, m i,x, * * x,) = 0. 
We have only to put P = xi,?(l - Q2(n, xi+,, xi, * , x,)). (It follows from the central result of [11] that 
we may take 1 = 13 and hence k = 14.) 

The Diophantine character of the set of prime numbers has one further consequence which 
deserves mention. This concerns the problem of proving that a number is prime. If p is a composite 
number, then there is a proof that p is composite consisting of a single multiplication. Julia Robinson 
remarks in [141 that prior to the solution of Hilbert's tenth problem in 1970, it was not known that 
there was a similar proof establishing primality in a bounded number of steps. Yet it follows from [4] 
[81 that this is so. And our construction permits us to compute a bound on this number. 

THEOREM 5. If p is a prime number, then there is a proof that p is prime consisting of only 
87 additions and multiplications. 

The number is easily calculated from the equations of Theorem 2.12. 

2. Proof of Theorem 1. Throughout this paper, all variables are nonnegative integers, 
unless the contrary is explicitly stated. We shall use the notation x = l to indicate that x is a 
perfect square. r(a, b) denotes the remainder of a upon division by b. [x] denotes the 
greatest integer x. 

We shall be concerned with the solutions of the Pell equation 

x2- (a2- 1)y2 = 1, for 1-? a. 
It is well known [3], [16] that the solutions of this equation, x = Xa(n), y = 4/a (n), can be 

generated via Lucas sequences: 

Xa (0) = 1, Xa () = a, Xa (n + 2) =2aXa (n + 1) -Xa (n), 
la (0)-0, la (1) = 1, a (n + 2) = 2a4fa (n + 1)- a (n). 

We shall need the following properties of these sequences. 

LEMMA 2.1. (2a-1) n a (n + 1)' (2a) 

LEMMA 2.2. Oa(n) n(moda-1). 

These properties are immediate consequences of the definition. Proofs may be found in [3] and 
[11]. The following lemma will be used to force one unknown to be exponentially larger than another. 

LEMMA 2.3. For 2 c e, the condition 

(2.3) e3(e +2)(n + 1)2+ 1 =E] 

implies that e - 1 + ee-2 < n. Conversely, for any positive integers e and t, it is possible to satisfy 2.3 with 
n such that t|n + 1. 

Proof. Put a = e + 1. Then (2.3) becomes a Pell equation in (a - 1)(n + 1), i.e., 

(a2- 1)(a - 1)2(n + 1)2+1 = L. 

If n is any solution of (2.3) then (a - 1) (n + 1) = 0a(J) for some j. By Lemma 2.2, a - 1 j. Since 
0 X j, this implies that a - 1 <i j. Using Lemma 2.1 we find that 

(a - 2) (a - l)?(a - 1)a2 < (2a - 1)a2)( < Oa (a - 1) f Oa(j ) = (a - 1) (n + 1). 

Hence 

(a - 2) + (a 1)a-3 < n + 1, 
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which gives the result. The converse follows easily from the following well-known fact about Pell 
equations: When A $ El, the Pell equation Ay2 + 1 = x2 always has nontrivial solutions, (cf. [11] ?2). 

LEMMA 2.4. For any numbers p, n and a ' 1 we have the congruence 

Xa(n) p" + tIa(n)(a -p)(mod2ap - p2- 1). 
Furthermore, when 0 < p" < a, the right side of the congruence is less than or equal to the left side. 

For a proof of the asserted congruence see [16] p. 108 or [3] p. 242. The asserted inequality is not 
difficult to derive using a- 1 i/(n)<X,(n). 

Next we state a Diophantine definition of the sequence y = Oa(n). The set of equations is quite 
economical. It is difficult to assign credit accurately for these equations because they are a synthesis of 
collective efforts. The equations most resemble those of Julia Robinson (which appear in Theorem 3.1 
of Davis [3]). However, they are not identical with these and equation V is due to Yuri Matijasevic. 

LEMMA 2.5. For any numbers a, n and y, (1 ' n) and (2 a), in order that y = Oa (n) it is necessary 
and sufficient that there exist numbers b, c, d, r, s, t, u, v and x such that 

(I) X2=(a2_1)y2+1, (V) b=a+u2(u2-a), 

(II) u2=(a2-1)v2+1, (VI) s=x+cu, 

(III) s2 =(b2- 1)t2+ 1, (VII) t= n + 4dy, 

(IV) v = 4ry2, (VIII) n ' y. 

The proof is virtually identical to that given by Davis in [31 so we shall mention only the 
differences. Davis used positive integer unknowns in [3], however this is not essential. We need not 
replace r by r + 1 in equation IV, (to ensure that 0 < v), since if v = 0 then u = 1 by II, b = 1 by V, 
s = 1 by III, x = 1 by I and VI, and y = 0 by I, contradicting VIII. Also, the condition V of [3] was 
used only to show that b 1 mod 4y and b a mod u. However, these conditions are guaranteed by 
II, IV and V above. In this connection the proof of sufficiency is slightly different from that given in 
[3]. We need not use the Chinese Remainder Theorem. If we eliminate the unknowns v, b, s and t 
from I-VIII, by substitution, then we obtain 

COROLLARY 2.6. For any numbers a, n and y, (1 ' n) and (2 '- a), in order that y = ia (n) it is 
necessary and sufficient that there exist numbers c, d, r, u and x such that 

(I) x2 = (a2 - l)y2 + 1, (III) (x + CU)2 = ((a + U2(U2 - a))2 - 1) (n + 4dy)2 + 1, 

(II) u2 = 16(a2 - 1)r2y4 + 1, (IV) n y. 
We shall also require two basic inequalities: 

LEMMA 2.7. If 0 'a a < lIq, then 1-qa? ' (1-a)y. 
LEMMA 2.8 If O ? a c-' 2, then (1-a)-'=) 1 + 2a. 

The fundamental tool in both constructions is Wilson's theorem which characterizes the primes in 
terms of the factorial function. 

LEMMA 2.9. (Wilson's theorem.) For any number k -1, k + 1 is prime if and only if 

k + 1 k! + 1. 

For a proof see [61, p. 68. The next lemma leads to a Diophantine definition of the factorial 
function. It is stated in [10], in slightly different form, without proof. 

LEMMA 2.10. For any positive integer k, if (2k)" c n and n' < p then 
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k!< (+1)n pkl) < k! + 1. 

Proof. Using the Binomial Theorem we have. 

(p + 1)n - (= i) P + Pk+ (ik)P 
1 

Now (np)k+1 nkpknp_l<-1c(p_l)pknpl=ppkp k 
npp -1 < ppkp ppk =(np 1)ppk. 

Therefore 

E (i )P -E np P np - 1 i< 
so that 

(i) ~~~~~~~~r((p + 1) I pp k)=E ( i:) i 0. 

First we prove that 

(ii) k!< k n . 

(ii) follows from the inequalities 

k! ( (in); k!(k- 1) +(kP - k ! (k( _ )1. k !P 

=k! (k ! P ?! pk =k2nk Ipk +nkpk <knkpk- + nkpk < kppk- +nkpk 

=(k + k)pk C(1 + n)kpk. 

It remains only to establish 

(iii) (n 1)kp k<k!+1. 

In consequence of 

(+ 1)kp (? + l)k (n+1)k 
(n)k (n) (n ) 

we see that (iii) will follow from 

(iv) (n 
+ k?+k,. 

(k) 

To derive (iv) we have only to use Lemmas 2.7 and 2.8, viz. 

(n+ 1)< k_ ! 
=k 

k_! 
k < k 

k= 
k! 1k kk (1 

n (n ) 1- k k k ! n(k\+ \\I 

k! (n 1K ) k! (1 n~~ + k! (i +n2;)~k ~ -) 
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Using Lemma 2.10 we may characterize the factorial function in terms of three exponential 
functions. 

LEMMA 2.1 1. For any positive integers k and f, in order that f = k ! it is necessary and sufficient that 
there exist nonnegative integers j, h, n, p, q, w and z such that 

(I) q=wz?h?j, (IV) p =(n?+1)k, 

(III) (2k )3 (2k +2) (n +1)2+ 1=LI1, (VI) Z= pk+1. 

Proof. Sufficiency. Suppose k, f,j,h, n, p,q,w and z satisfy conditions I-VI. By II and VI, 
0 <h +j?-<z. If h +j =z then I implies z(Iq contrary to Lemma 2. 10. Hence h?+j <z and so I 
implies r (q, z) = h +1j. From II and Lemma 2. 10 we find 

f?zI1(h?+j)?-<f +1 and k !< zI(h +j) <k !?+1. 

Hence f = k! since f and k! are integers. 
Necessity. Suppose 1 -- k and f = k! By Lemma 2.3 we may choose n so that (2k )k -= n and III 

holds. Set p = (n + 1)k , q = (p ? 1)n and Z = Pk +l Then IV, V and VI hold. Finally, put w = 
(q - r(q, z))Iz, h = z - fr(q, z) and j = r(q, z) - h. Then I and II hold. By Lemma 2.10, h and j are 
nonnegative. 

Finally, we are able to give a Diophantine definition of the set of prime numbers. 

THEOREm 2.12. For any number k ?i 1, in order that k ? 1 be prime it is necessary and sufficient that 
there exist numbers a, b, c, d, e, f, g, h, i, j, 1, m, n, o, p, q, r, s, t, u, v, w, x, y and z such that 

(1) q=wz?h+j, (8) (x?cu)2=((a+u2(u'-a)-)2-1)(n+4dy)2+l, 

(2) z=(gk?g+k).(h+j)+h, (9) m = (a' -1)1P+ 1, 

(3) (2k )3 (2k+2)(n+1)2?l=f2, (10) l= k?+i(a -1), 

(4) e =p +q +z +2n, (1 1) n +I+ v =y, 

(5) e3(e?+2) (a +1) + 1=o02 (12) m =p?+1 (a -n -1) +b (2 a(n +1) -(n+ 1)-) 

(6) x = (a2_-1)y2+ 1, (13) x =q?+y(a -p -1)+ s(2a(p +1)- (p +1)2- 1), 

(7) u2 = 16(a' - 1)r y4 ? 1, (14) pm = z ? pl(a - p) + t(2ap _-p2-_ 1). 

Proof. Sufficiency. Suppose that numbers a, b, - , z satisfy equations (1)-(14) and that 1 ?- k. 
Equation (3), together with Lemma 2.3, implies that 

(1') 2?-- n, and also (2') k < n. 

Equations (4) and (5), together with Lemma 2.3, imply that 

(3') p +q + z+2n - +(p +q +z +2n )p+q+z+2n-2 ?<a, and also (4') n <a. 

According to Corollary 2.6, equations (6), (7), (8) and (1 1) imply that y = q,. (n), and hence also 
that x = Xa,,(n). Equation (9) implies that m X=, X(k') and I = i(k'), for some number k'. Equation 
(11) asserts that I < y and hence that k' < n. Therefore, by (2') and (4') we have k' < a - 1 and also 
k < a - 1. By Lemma 2.2, and equation (10), we have k k' (mod a - 1). Therefore k' = k so 
M= Xa (k) and l~Ia=0,(k). 

From (1'), (2'), and (3') it follows that 

p<a,(n+l)k<a and a<2a(n+l)-(n+l)2-l. 
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Using Lemma 2.4 and equation (12) we find that p (n + 1)k (mod 2a (n + 1) - (n + 1)2 - 1). This 
together with the above inequalities implies that 

(5') p=(nl?1)k. 

From (1') and (3') it follows that 

q<a, (p+1)n<a and a<2a(p+1)-(p+1)2-1. 

Using Lemma 2.4 and equation (13) we find that q = (p + 1)n (mod 2a (p + 1) - (p + 1)2 - 1). This, 
together with the above inequalities, implies that 

(6') q = (p + 1) . 

From (1'), (2'), (3') and the fact that p#X 0 (which follows from (5')), it follows that 

z<a, pk+l <a and a<2ap -p2-1. 

Using Lemma 2.4 and equation (14) we find that Z pk+l(mod 2ap _ p2 - 1). This, together with 
the above inequalities, implies that 

Z = pk+l 

According to Lemma 2.11, conditions (1), (2), (3), (5'), (6') and (7') imply that gk + g + k = k! and 
hence that k! + 1 = (g + 1) (k + 1). Thus k + 1 is prime by Lemma 2.9. 

Necessity. Suppose that 1 ' k and that k + 1 is prime. By Lemma 2.9 we may find a number g so 
that k! = gk + g + k. According to Lemma 2.11 numbers f, h, j, n, p, q and w may be chosen to satisfy 
equations (1), (2), (3) and also the conditions 

(8') p=(n +1)k, q=(p+ 1) and z=pk+l. 

Choose e so as to satisfy equation (4). By Lemma 2.3 it is possible to choose numbers a and o, 
(a ?- 2), satisfying (5). Put y = a (n). According to Corollary 2.6 we may find numbers c, d, r, u and x 
satisfying equations (6), (7) and (8). Put m = Xa (k) and put I = q, (k). Then (9) holds. By Lemma 2.2 
and the fact that k ' 0i, (k) for 2?c a, we may choose i satisfying equation (10). It is trivial to show (by 
induction) that for 2' a, n + 0ia (n - 1) -' 1ba(n). Using this, and the fact that k < n (which follows 
from (3)), we find that n + l -' y. Hence it is possible to choose a number v satisfying (11). Finally, as in 
the proof of sufficiency, equations (4) and (5) imply that 

(n+1)k<a, (p+1) <a and pk<a. 

Consequently, by Lemma 2.4 and the equations (8'), numbers b, s and t may be found so that 
equations (12), (13) and (14) are satisfied. This completes the proof of Theorem 2.12. 

Theorem 1 now follows immediately from Theorem 2.12. We have only to replace k by k + 1 
throughout the equations of Theorem 2.12, sum the squares of the equations and employ the device of 
Putnam [121. This produces the polynomial (1). 

Perhaps some industrious reader will construct a shorter prime representing polynomial. 

3. Proof of Theorem 2. Here we show that primes are Diophantine definable in 11 unknowns. In 
Section 2 we used what might be called the congruence method. In this section we shall use what might 
be called the ratio method. This latter technique, developed by Yuri Matijasevic and Julia Robinson in 
[11], is generally more economical with respect to the number of variables. 

LEMMA 3.1. For 0<2q < P, ( ) ' 

Proof. By Lemmas 2.7 and 2.8. 
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LEMMA 3.2. For 0 < n < M and O < x, (1M)<(1 2M(X+l)k 

Proof. By Lemma 2.7. 

LEMMA 3.3. If x > 8 2nand n > k, then 

(i) Xk [( Xk ] < , (ii) [ =kl (n) mod x, (iii) (n) <(x +v)n 

Proof. 

(x + =O ()i E ( )i- + n ie k 

where 

E (.)x k C i < - < 8. Thus [(k ]E (i)X -( )mod x. 

(iii) follows from the assumption k < n. 

LEMMA 3.4. nk/() ! (+ 2(k 1)) for n > 2(k - 1). 

Proof. As in the proof of Lemma 2.10, condition (iv). 

LEMMA 3.5. a 1- < a + 1, (for a 1). 

LEMMA 3.6. a 1- _) > a-2, (for a 1). 

DEFINITION 3.7. U(x, y) = (x + 2)3(x + 4) (y + 1) + 1. 

By Lemma 2.3, if U(x, y) = O then xx < y. Also, for each x, arbitrarily large numbers y may be 
found satisfying U(x, y) = O. (This is the same function U(x, y) defined in [11].) 

LEMMA 3.8. (Matijasevic-Robinson [11]) Suppose A > 1, B > 1 and C > 0. Then OA (B) = C if and 
only if the following system of conditions can be-satisfied. 

(Al) DFI=LO, FJH-C,B _ C, 

(A2) D=(A2-1)C2+1, 

(A3) E = 2(i + l)D(k + 1)C2, 

(A4) F=(A2-1)E2?+1 

(A5) G = A + F(F - A), 

(A6) H=B+2(+?1)C, 

(A7) I=(G2 _ 1)H2 + 1. 

THEOREM 3.9. For any positive integer k, in order that k + 1 be prime, it is necessary and sufficient 
that the following system of equations has a solution in nonnegative integers: 

(I) U(2k,n)= OI, 

(II) U(2n,x)=L0, 

(III) M = 16nx (w + 2) + 1, 

(IV) A = M(x + 1), 

(V) B=n+l, 

(VI) C=m+B, 

(VII) DFI=Ol,FIH-C, 

(VIII) D =(A2- 1)C2+ 1, 

(IX) E = 2(i + 1)DC2, 

(X) F=(A2_1)E2+1, 

(XI) G = A + F(F - A), 
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(XII) H=B+2?+1)C, 

(XIII) I = (G2- 1)H2 + 1, 

(XIV) R L 

(XV) (M2 - 1)K2 + 1 = C, 

(XVI) (M2X2- 1)L2 + 1 = El, 

(XVII) (M2n2x2 - 1)R2 + 1 = El, 

(XVIII) K = n - k + 1 + p(M- 1), 

(XIX) L = k + 1 + I(Mx -1), 

(XX) R = k + 1 + r(Mnx - 1), 

(XXI) S=(z+1)(k+l)-2. 

Proof of Sufficiency. Let there be given a solution to the system (I)-(XXI). We must show that 
k + 1 is prime. By Wilson's Theorem (Lemma 2.9) it is sufficient to show that k + 1 1 k! + 1. According 
to the equation (XXI), k + 1 I S + 2, Hence it is sufficient to show that S + 1 = kM. Define real numbers 
o and , by 

R KL' ( - ~~(W + l)x) (1- C) L 

According to (XIV), I(-(S + 1)1 <. Hence we need only prove that 

(1) f3-k!j< 2 

From (I) we have, by Lemmas 2.3 and 3.7, 

(2) n > (2k)2k > k, and n ' 5 

(II) implies that 

(3) x > (2n )2 > 8n k. 

(III) implies that 

(4) M'32nx, and (5) M>2n,M> 160- 1010. 

From (IV), (V) and (VI), A > 1, B > 1 and C ? B > 1. So by Lemma 3.8, (VII)-(XIII) imply that 

(6) C= qM(X+l)(f + 1). 
(XV), (XVIII) and Lemma 2.2 imply 

(7) K =qM(nf-k+1+p'(M-1)), 

where p' 0 O, since M - 1 > n - k + 1 by (5). (XVI), (XIX) and Lemma 2.2 imply that 

(8) L = qMX(k + 1 + 1'(Mx -1)), 

where 1' 0 O since Mx - 1 > k + 1 by (4) and (2). (XVII), (XX) and Lemma 2.2 imply that 

(9) R = M"x(k + 1 + r'(Mnx - 1)), 

where r' '0 since Mnx - 1 _ k + 1. 
We now show by contradiction that p' = I' = 0. If p' > 0 or 1' > 0 then 

(2M(x + 1))- r c (2M(x + 1))" 
(2M - 1)+M kl(2Mx - 1)k - (2M - 1) (2Mx - 1) 

In either case, 

< (2M(x + 1))_ (2M) (x + 1) < 1 

(2M- 1)M4 (4M(M- 1) + 1)n (2M- 1)M2< 2- 
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Hence ,3 < 0 contradicting (XIV) (which implies that 2 < /). 

(10) Thus p '=l'=O,K=q=M(n-k+1) and L=qMX(k+1). 

We then have 

c (2M(x + 1)) 
n 

x+l" 2M An (X+ " n - 
(2M - l)n-k(2Mx - l)k xk 2M-11 xk k MJ' 

by Lemmas 2.7 and 3.1. Also, 

>(2M(x + 1)-1)" (x 1 + () 2( + 1) n> (X +n1) (1- = (2M)-k (2Mx )k Xk 2M(x + 1) x k 
M 

by Lemma 3.2. Thus, 

(11) | < n an + > 1 (x + 

xk M x k n 2~ Xk 

We next derive bounds for cr - (w + 1)x. 

Case 1: Suppose x > or - (w + 1)x. Then (w + 2)x > o. Put El = |- . k Then 

(12) = k + ?1 k +1 + 82, where O < 82 < 8' by Lemma 3.3. And 

(13) f (= ) ? e1 + 82(mod x), by Lemma 3.3. 

From (11) and (III), 

_ < x1) n n <1 C I < k 'M < 2o -M <8 

Since k + 1 n, we have 

n) n(n - 1) (n - k + 1) n k(k - 1) n 2k5 < k ( k(k -1) ...2 =k(k - 1) ... 2 an 3k! 

Then 

r- (w + 1)x 3 (nk) 
? e1 + e2(mod x), 

where O<(n)?ei+82<3x+4<2x<x. By (XIV), O<o-(w+l)x. Hence both sides of the 

congruence are less than the modulus, so we have 

(14) 1(w+2 )x =2x 

and o - (w + 1)x = (k )?e1+e2 (> )- 8 >4, i.e., 

(15) 4 < - -(w + l)x <x. 

From (9), we have R = Mnx (k + 1 + r'(Mnx - 1)), where r' 2 0. Suppose r' > 0. Then 

R _ OIMnx (k + Mnx) > (2Mnx - 1)k+Mnu-l _ (2Mnx - 1)Mnx 
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By (6), C = M(X+l)(n + 1) c (2M(x + 1))n < (2Mnx - 1)n, so C3 < R. Also, C _ (2M(x + 1)- )n > 9, 
so that C <3R 2. Thus, 

R/(c-~ 1) c (3R'- 1)< R /(2R 42)- 

Since 24< o - (w + 1)x by (15), 

R < 1 <1 

(a - (W + l)x) (1 - R) L 4(o - (w + 1)x) 2' 

contradicting (XIV). Thus 

(16) r' = 0 and R =Mnx(k + 1). 

It follows from this, (3) and (4) that 

R - (k + 1) < (2MnXk (2Mx)k nk (2Mx)k+l_ 1 
(17) < < _ g 

, C 4fM(x+l)( + 1)= (2M(x + 1)-l)n (2Mx)- (2Mx)n (2Mx )24 

Also, 

(18) (1 - )> 1- so 1)< 11< 2 by (17). 

(1- 

Case 2: Suppose o - (w + 1)x ' x. Then o - (w + 1)x >-, so r' = 0, as in Case 1. Also, 

o (w +1x)( R 2 <L x(2Mx - )k' using (18), (16) and (10), 
(0f-(w + )X)( - 

R L x2x_1k 

x(2Mx 1)- x1+ M by Lemma 3.1, using (3), 

4nk 1 

x 2 

Thus 3 < 2, contradicting (XIV). Hence, Case 2 does not hold and Case 1 obtains. 
Now it is possible to show that J (3 - k! I < 2. We have, from Case 1, that 

(19) (o-(w+1)x =(=)?+, where 0?e =| +e1+e21<4. 

Using (10), (16), (17) and (19) we have 

R <. (2MnX)k 

(k )4 + )(1 - c) L (k ) 1- (/k )) i(1- (2Mx)) (2Mx 
1 
)k 

k n 2Mx \k( 1 1 2 

( /(k))( 2Mx -,IX ( n /(9))(1- 1 
k (2Mx) 

It is easily seen that 

1 < +-28 11 2 
'<i+-1 and 2MX- \k<+ k 

k k ____/x2MMx 11mMx 
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using Lemmas 2.7, 2.8 and 3.1. By Lemma 3.4, 
~~~~~~~~~~ 

nk (n c !( 2(k 
- l 

Thus 

P <k! (1+ () (1+Ax) (i+Mx) (1+(n 1) 

k 

We claim 

(20) <k!+ 2. 

For this, the following inequalities are sufficient, by Lemma 3.5: 

(i) k! (28 (n))< 1< (since lOk!k!2E <5(k!)2< k2k ? n<nn(n-1) .(n- k+1)), 

(ii) k! (Mx) < (since lOk' k ? 10k" < lOn < Mx), 

(iii) k! _ )< 1 (by (ii)), 

(iv) k 2(k 1 )< 1 (since 20k!(k -1)2l 40kk <(2k)2 k<n, if k 2). 

(These inequalities are derived using only (2) and (3).) Thus (20) holds 
Also, 

--/X _ 1 A{ A>nk 1A{ 
n n by2M - by (16) and (10), 

-k! (1-2Mx)(1-(n)) by Lemmas 2.7 and 2.8. 

We claim that 

(21) f3 > k! -4. 

By Lemma 3.6, the following inequalities are sufficient to establish this. 

(i) 1 - k 
12Mnx- -4 (since 4kk! ? 4k2=C 4n <2Mnx) 

(ii) 1- -{- 1 --k! (since 4ek!k!(n - k)! < k!k!(n - k)! = k2"(n - k)! = n(n - k)! n!). n 4k! 
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Thus (21) holds. Hence (1) holds. 

Proof of Necessity. Suppose k + 1 is a prime number. We must find nonnegative integers satisfying 
(I)-(XXI). Choose n and x satisfying (I), (II). Let S = k! - 1. Then z exists satisfying (XXI), by 

Wilson's Theorem. Define w by [(x + 1)n/xk] = (n) + (w + 1)x. Let M be given by (III), A by (IV), B 

by (V). Put C = O'A(B), and m = C - B. Then (VI)-(XIII) may be satisfied by Lemma 3.8. Put 
K = OM(n - k + 1), L = OI,MX(k + 1), R = qMnx(k + 1). Then (XV)-(XX) can be satisfied, by Lemma 
2.2. It remains only to show that (XIV) holds. Define ar and ,3 as before. Recall that in the proof of 
sufficiency it was shown that 

(22) I -k! 1<2. 
The only assumptions used in the argument establishing (22) were Lemmas 2.7, 2.8, 3.1-3.7, equations 
(I)-(XIII), the conditions 

(i) K=qM(n-k+1), L=qmx(k+l), R=qmnx(k+i), 

(ii) a-(w+1)x (k)e, where oce <4 

and the inequalities 

(iii) 0< o-(w+1)x and (iv) a-(w+1)x<x. 

The condition (XIV) was used only to show (i). Now since S + 1 = k!, (22) is actually equivalent to 
(XIV). Hence this same argument may be used to establish (XIV). The conditions (i) have already 
been satisfied by our choice of K, L and R. In Case 1 it was shown how to derive condition (ii) using 
only conditions (iii) and (iv). Therefore we need only derive (iii) and (iv). (iii) is derived as follows 
using Lemma 3.3 (i) and (3). First 

(23) M = 16nx(w + 2) = 16n k] - (k) +x > 6n k- 8- k) +x >16n xk 

Hence, using (11) and (23), we see that 

[~ ~ ~nn(X + 07 
]+ nn) - X +(k> 16 (kn 1 

Thus (iii) holds. Next we derive (iv). Using Lemma 3.3 (i), (11), (23) and finally (3) we have 

o - (w +1)x = -[(x1)]+ (n) < o (X+) +8+ ( ) < n(X +) I+ n(In) 

< 1 + 1 + (n) < X 

Thus (iv) holds. This completes the proof of Theorem 3.9. 
The unknowns M, A, B, C, D, E, F, G, H, I, K, L, R, S eliminate from (I)-(XXI) by substitution. 

This leaves 10 unknowns, n, x, w, m, z, i, j, p, 1, r, the parameter k, six square conditions, one divisibility 
condition and one inequality. These remaining conditions are definable with one unknown, y, by the 
relation combining theorem of [111. Thus we obtain a definition M, in 11 unknowns. Replacing k by 
k + 1 in M we obtain a prime representing polynomial P = (k + 2) (1 - M2) in 12 variables. 

A direct calculation, based on [11], shows that M = M6 will have degree 148864. However, Yuri 
Matijasevic has recently worked out a more efficient version of the relation combining theorem. If we 
suppose that 1 + IA/7i 'J V,, then in Mq we may replace Wi by Wi = V1I V2 ... Vi, (i = 1, 2, * * , q). 
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Thus when a square condition arises from a Pell equation, (a2 - 1)32+ 1 = E, we may choose any 
V _ I af3 + I / 1 + 2. Also, if the quantities B and C of [11] are non-negative, as they are here, they 
need not be squared in Mq. These refinements yield a polynomial M6 of degree 13376. 

Matijasevic also noticed that our first two square conditions, (I) and (II), may be combined into 
one square condition 

(24) U(2k, n) [((2 U(2k, n) -1)2 - 1)(n + 1)2(X + 1)24+ 1] = O. 

Observe that the first factor of (24) is prime to the second. This gives a polynomial Ms of degree 6848. 
Hence the degree of the 12 variable polynomial P is 13697. (Recently Yuri Matijasevic has announced 
that he has been able to reduce the number of variables still further, from 12 to 10.) 

4. Functions not formulas for primes. Many classical theorems are known concerning the 
impossibility of representing primes with certain sorts of functions. Since these results are negative, 
they, together with the previous, shed considerable light on the question of the logical complexity of 
prime representing forms. The oldest result of this type is of course. 

THEOREM 4.1. A polynomial P(z1, * *,Zk), with complex coefficients, which takes only prime 
values at nonnegative integers, must be constant. 

Proof. It is not difficult to show that the coefficients of an integer valued polynomial must be 
rational numbers. Let 1 be any multiple of the denominators of these coefficients of P. We are 
assuming that P(1,1, ,1) = p is a prime. Then, if n1, n2,' , nk are integers, P(1 + n,lp, 1 + 
n21pr , 1 + nklp)=P(1, 1,* , 1) modp. Hence, for all n1, n2, *, nk, P(1 + n1lp, 1 + n2lp,* 1 + 
nklp) = p. This implies that P is a polynomial of degree 0. The theorem is proved. (Cf. also [6], p. 18.) 

This result was extended to rational functions by R. C. Buck [2]. A rational function is a special 
case of an algebraic function, (cf. [1] for the definition of algebraic function). We now proceed to 
extend the result to all algebraic functions. We shall need 

THEOREM 4.2. An integer valued algebraic function W(z1, Z2, * , Zk) is a polynomial. 

Proof. We consider first the case of an algebraic function W = W(z) of a single complex variable. 
Suppose that whenever z is a nonnegative integer, W(z) is also an integer. Let us temporarily restrict 
z to real values. The point at infinity, z = Xc, may or may not be one of the branch points of the 
function W. However, in any case the function has a Puiseux series expansion around the point at 
infinity [19]. This is the Laurent series expansion of W = W(t-"/), where h is the order of the branch 
point at infinity and t = llz is the local parameter. In this Puiseux series 

(1) W(z)= E alza18 
1=0 

a is a fixed rational number and 6 is a fixed positive rational number. 
Now, if W = W(z) is integer valued, its first, second, * *, rth differences, defined by / W(z) = 

W(z + 1) - W(z) and A r+1 W(z) =A&(A&rW(Z)), are also integer valued algebraic functions of z. 
It is easy to prove by induction on r that 

(2) /rW(n) = f . .f W(r)(n + xx2? + * + xr)dx,dx2 . . . dxr 

where W(r)(z) denotes the rth derivative of the function W= W(z). Since 8 is positive, W(r)(z) -+0 
as z -- oo, for all sufficiently large r. Therefore (2) implies that /rW(n) -+ 0 as n -- c, for all sufficiently 
large r. Since ArW(n) is integer valued, this implies that /rW(n) = 0 for all sufficiently large n and r. 
Since a nonzero algebraic function cannot have infinitely many zeroes [17], it follows that for all z and 
all sufficiently large r, Ar W(z) = 0. This implies that W(z) is a polynomial in z, for all real z. 
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The case of a complex variable z is an immediate consequence of the analytic continuation of the 
case of the real variable, since an algebraic function is uniquely determined by its values at an infinite 
number of arguments [17]. 

The general case, that of an algebraic function of several complex variables, W(z,, Z2, *, ), now 
follows from the result for one variable. For if we replace all arguments but one with nonnegative 
integers, we obtain an algebraic function of a single variable 

(3) W(ni,, * , ni-,, zi, ni+,,, * , nk). 

By the preceding proof, (3) is a polynomial in zi. Since W is algebraic, one can find a polynomial 
P(zi) (whose degree is independent of the ni's) such that I W(n 1, , ni- , zi, ni+1,* , nk) < P(Zi) 
for all sufficiently large zi. This implies that for some fixed di 

(4) ddV W(nl, * *. n,-1, Zi, ni+1, , nk ) - o 

Derivatives of algebraic functions are again algebraic. Hence (4) implies that for all z1, k, Z 

(5) a 
~~~~~di W (zl, , Zi-l, Zi, Zi+l,' , k) 

. 

Now an algebraic function has at most a finite number of branch points. Hence infinitely many 
k -tuples are not branch points of W. Consider the k variable Taylor series expansion of W about such 
a point. Plainly, (5) implies that this series terminates. W is a polynomial of degree ' 
di + d2 + * * * + dk. The theorem is proved. 

COROLLARY 4.3. An algebraic function W(zI, Z2,. ., Zk ), which takes only prime values at non- 
negative integers, is constant. 

This corollary follows from Theorems 4.1 and 4.2. It was proved for k = 1 by a different, p-adic, 
method in [181. Negative results about prime representing exponential functions have also been 
obtained [13] [18] [20]. We shall prove a multivariable result of this type. 

THEOREM 4.4. Suppose Pi(x1, *., x, ) and Qi (xl, * , x, ) -> 0 are polynomials with integer coeffi- 
cients and that a,, a2, * am are positive integers. Then, if the function 

m 

F(X1 **, x.) =E Pi(xi*, x.)a 

takes only prime values at nonnegative integers, it is constant. 

Proof. It suffices to prove the theorem for the case of a function of a single variable. (For if 
F(x1, , x,) is constant in each variable separately, then F(xl, , x4) is constant.) Hence we may 
suppose n = 1. Now if F(x) takes on infinitely many prime values p, then we may choose xi such that 
F(x1) = p is relatively prime to each ai (since the ai's are nonzero). By Fermat's theorem we then find 
that F(x1 + kp(p - 1)) p mod p, and hence that for every k 

(8) F(x1 + kp(p -1))= p. 

(Cf. Reiner [131 or Hardy and Wright [61, p. 66.) On the other hand, if F(x) takes on only a finite 
number of prime values, then one of these values is taken on infinitely many times. In either case, for 
some prime p, the equation 

(9) F(x) = p 

holds for infinitely many nonnegative integers x. It is not difficult to show that equation (9) must then 
hold identically. This completes the proof of the Theorem. 
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It is interesting to compare Theorem 4.4 with Theorem 3 stated in the introduction. 

Acknowledgement. The authors wish to thank Martin Davis, Yuri Matijasevic and Julia Robinson for several 
helpful suggestions made during the course of this work. 
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