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DIOPHANTINE SETS OF POLYNOMIALS

OVER NUMBER FIELDS

JEROEN DEMEYER

(Communicated by Julia Knight)

Abstract. Let R be a number field or a recursive subring of a number field
and consider the polynomial ring R[T ]. We show that the set of polynomials
with integer coefficients is diophantine over R[T ]. Applying a result by Denef,
this implies that every recursively enumerable subset of R[T ]k is diophantine

over R[T ].

1. Introduction

The main result of this paper is

Theorem. Let R be a recursive ring contained in a number field and let S be a
recursively enumerable subset of R[T ]k (for some k ≥ 1). Then S is diophantine
over R[T ].

For any recursively stable integral domain, one can easily see that every dio-
phantine set is recursively enumerable (see the end of section 1.1). However, the
converse problem — are recursively enumerable sets diophantine? — is much more
difficult.

In 1970, Matiyasevich ([10]) showed, building on earlier work by Davis, Putnam
and Robinson, that recursively enumerable (r.e.) sets are diophantine for the in-
tegers Z. This had as an immediate consequence the negative answer to Hilbert’s
Tenth Problem: there exists no algorithm which can decide whether a diophantine
equation (a polynomial equation in any number of variables) over Z has a zero over
Z. See [1] for a good write-up of the various steps in the proof that r.e. sets are
diophantine for Z and hence the negative answer to Hilbert’s Tenth Problem.

The undecidability of diophantine equations has been shown for many other rings
and fields; [14] and [15] give an overview of what is known. On the other hand, the
equivalence of r.e. and diophantine sets is much stronger and much less is known.
Apart from the original result for Z, this equivalence has been shown for Z[T ] by
Denef (see [4]), for OK [T1, . . . , Tn] where K is a totally real number field by Zahidi
(see [18] for n = 1 and [17] for n ≥ 1). In characteristic p, it is known for Fq[T ]
and for K[T ] where K is a recursive algebraic extension of a finite field (see [3]).
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2716 JEROEN DEMEYER

The latter ring is not recursively stable, so the equivalence is between diophantine
sets and sets which are r.e. for every recursive presentation. All these results use
the fact that r.e. sets are diophantine for Z. In this paper, we base our work on
Denef’s result for Z[T ].

1.1. Definitions. We quickly recall the definitions of recursively enumerable sets,
recursive rings and diophantine sets. For more background, we refer to the intro-
ductory texts [15] and [14].

Definition. Let S be a subset of Nk. Then S is called recursively enumerable
(r.e.) if there exists an algorithm which prints out elements of S as it runs such
that all elements of S are eventually printed at least once. Since S can be infinite,
this algorithm is allowed to run infinitely long and use an unbounded amount of
memory.

Since there are only countably many algorithms but uncountably many subsets of
Nk, there certainly exist sets which are not recursively enumerable. There also exist
sets which are recursively enumerable but whose complement is not. Finite unions,
finite intersections, cartesian products and projections Nk+r → Nk of recursively
enumerable sets are still recursively enumerable.

Definition. Let R be a countable ring. Then R is called a recursive ring if there
exists a bijection θ : R → N such that the sets

{(θ(X), θ(Y ), θ(X + Y )) ∈ N3 | X,Y ∈ R} and

{(θ(X), θ(Y ), θ(XY )) ∈ N3 | X,Y ∈ R}
are recursively enumerable. In this case, θ is called a recursive presentation of R.
A recursive ring R is called recursively stable if for any two recursive presentations
θ1 and θ2, the set {(θ1(X), θ2(X)) ∈ N2 | X ∈ R} is recursively enumerable.

The intuition of a recursive ring is a ring in which we can effectively compute; it is
a ring whose elements can be represented by a computer. The recursive presentation
θ gives every element of R a “code” such that, given the codes of X and Y , we
can compute the code of X + Y and of XY . If we have two different recursive
presentations θ1 and θ2, then an element X of R has two “codes” θ1(X) and θ2(X).
A ring is recursively stable if and only if θ2(X) can be effectively computed from
θ1(X).

To construct an example of a ring which is not recursive, consider any non-r.e.
subset S of N. Now take the localization of Z where the n-th prime number is
inverted if and only if n ∈ S. This is a non-recursive subring of Q.

Definition. Let R be a recursively stable ring with a recursive presentation θ :
R → N. Then a subset S ⊆ Rk is called recursively enumerable if and only if
θ⊗k(S) is an r.e. subset of Nk.

Intuitively, we can still think of r.e. subsets of Rk as sets which can be printed
by a computer program (possibly running infinitely long). The requirement that
R is recursively stable implies that the definition of r.e. subsets of Rk does not
depend on the choice of θ. One can prove (see [7]) that every field which is finitely
generated over its prime field is recursively stable. Furthermore, a recursive integral
domain with a recursively stable fraction field is automatically recursively stable.
It follows that the polynomial ring R[T ] is recursively stable if R is a recursive ring
contained in a number field.
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Definition. Let R be an integral domain and S be a subset of Rk. Then S is
called diophantine over R if there exists a polynomial p(a1, . . . , ak, x1, . . . , xn) with
coefficients in R such that

(1.1) S = {(a1, . . . , ak) ∈ Rk |
p(a1, . . . , ak, x1, . . . , xn) = 0 for some x1, . . . , xn ∈ R}.

The polynomial p is called a diophantine definition of S. A function f : Rm → Rn

is called diophantine if the set {( �X, f( �X)) ∈ Rm+n | �X ∈ Rm} is diophantine.

When dealing with decidability questions (analogues of Hilbert’s Tenth Problem)
it often makes sense to restrict the coefficients of the polynomial p to a subring of
R. This is certainly necessary if R is uncountable. However, if we want to prove
that r.e. sets are diophantine, then every singleton in R needs to be diophantine.
Therefore, we might as well assume that we take all of R as a ring of coefficients.

If R is a recursively stable ring, then every diophantine set is recursively enu-
merable. To see this, consider a diophantine set S defined as in (1.1). Construct
an algorithm which tries all possible values (a1, . . . , ak, x1, . . . , xn) ∈ Rk+n and
evaluates p(a1, . . . , ak, x1, . . . , xn). Whenever a zero is found, it prints (a1, . . . , ak).
This algorithm will print exactly the set S.

1.2. Overview. We introduce the following definition:

Definition 1.1. Let R be an integral domain. A degree bounding predicate on
R[T ] is a binary relation δ on R[T ] satisfying:

• For any F in R[T ], there exists a d ≥ 0 such that δ(F, T d) is true.
• Whenever δ(F, T d) is true, it follows that F = 0 or deg(F ) ≤ d.

The main result from section 3 is the following:

Theorem. Let R be an integral domain of characteristic zero such that R[T ] admits
a diophantine degree bounding predicate. Then Z[T ] is diophantine over R[T ].

To prove this theorem, we first show that the set of polynomials in R[T ] that
divide some Tu − 1 is diophantine. This is done using a Pell equation, as was
done similarly in the definition of powers of T in [2], Section 4. A polynomial F
dividing Tu − 1, normalised such that F (0) = −1, is equal to T d − 1 if and only
if F (2d + 1) = (2d + 1)d − 1. This gives a diophantine definition of the powers of
T over R[T ]. Moreover, any polynomial dividing T d − 1 such that F (2d + 1) is an
integer has integer coefficients. In this way, we can give a diophantine definition
(over R[T ]) of the polynomials in Z[T ] dividing some Tu − 1. We call these the
root-of-unity polynomials. For this, we do not need the assumption about the degree
bounding predicate, so it works for all rings R[T ], where R is an integral domain
of characteristic zero.

The set of root-of-unity polynomials is T -adically dense in Z[[T ]]∗, which allows
us to show that all of Z[T ] is diophantine over R[T ]. In this step, we need a
diophantine formula for Euclidean division. Here we use the diophantine degree
bounding predicate.

In section 4, we show that such a diophantine degree bounding predicate exists
for the rings R[T ], where R is contained in a number field. We apply a result
by Kim and Roush, who showed in [9] that diophantine equations over L(T ) are
undecidable if L is contained in a finite extension of Qp for some p ≥ 3. They
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showed undecidability by giving a diophantine definition of some subset of the
discrete valuation ring L[T ](T ). This subset contains all the rational functions in
L[T ](T ) whose coefficients are algebraic over Q. Since “negative degree” is a discrete
valuation, the same method gives a diophantine definition of “degree” in R[T ].

Once we know that Z[T ] is diophantine over R[T ], Denef’s result that r.e. subsets
of Z[T ]k are diophantine over Z[T ] (see [4]) implies:

Corollary. Let R be an integral domain of characteristic zero such that R[T ] ad-
mits a diophantine degree bounding predicate. Let S be an r.e. subset of Z[T ]k.
Then S is diophantine over R[T ].

In section 5 we show how to conclude from this that all r.e. subsets of R[T ]k are
diophantine.

2. Special polynomials

In this section, we state some properties of the Chebyshev polynomials Xn and
Yn and cyclotomic polynomials Φn. We also define root-of-unity polynomials. Ev-
erything in this section concerns only the ring Z[T ].

2.1. Chebyshev polynomials.

Definition 2.1. Let n ∈ Z and define polynomials Xn,Yn ∈ Z[T ] using the follow-
ing equation:

(2.1) (T +
√
T 2 − 1)n = Xn(T ) +

√
T 2 − 1 Yn(T ).

Since (T +
√
T 2 − 1)−1 = (T −

√
T 2 − 1), this definition makes sense for negative

n.

The degree of Xn is |n|; the degree of Yn is |n| − 1 for n �= 0, while Y0 = 0.
In the literature, Xn is called the n-th Chebyshev polynomial of the first kind

and Yn+1 is called the n-th Chebyshev polynomial of the second kind (such that
the n-th Chebyshev polynomials have degree n for n ≥ 0).

The couples (Xn,Yn) satisfy the Pell equation X2− (T 2−1)Y 2 = 1. Conversely,
we have:

Proposition 2.2. Let R be an integral domain of characteristic zero, and let Z be a
non-constant polynomial in R[T ]. If X and Y in R[T ] satisfy X2−(Z2−1)Y 2 = 1,
then X = ±Xn(Z) and Y = Yn(Z) for some n ∈ Z.

Proof. See [5], Lemma 2.1. Since X−n = Xn and Y−n = −Yn, we do not need to
put ± in front of Yn(Z). �

The Chebyshev polynomials also satisfy the following identity:

Proposition 2.3. In Q(T ), the following equality holds for all n ∈ Z:

(2.2) Tn = Xn

(
T + T−1

2

)
+

T − T−1

2
Yn

(
T + T−1

2

)
.

Proof. Define W := T +
√
T 2 − 1, then W−1 = T −

√
T 2 − 1. Now formula (2.1)

becomes

Wn = Xn

(
W +W−1

2

)
+

W −W−1

2
Yn

(
W +W−1

2

)
�
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2.2. Cyclotomic and root-of-unity polynomials. Let Φn ∈ Z[T ] denote the
n-th cyclotomic polynomial. This is defined as Φn(T ) =

∏
x∈(Z/nZ)∗(T −ζxn), where

ζn is a primitive n-th root of unity. This is an irreducible polynomial in Z[T ]. The
cyclotomic polynomials satisfy Tn − 1 =

∏
a|n Φa(T ) (see [8], Ch. 13, §2). By the

Möbius Inversion Theorem, this implies

(2.3) Φn(T ) =
∏
a|n

(Tn/a − 1)μ(a),

where μ denotes the Möbius function (see [8], Ch. 2, §2).

Proposition 2.4. Let n ≥ 2 and let n =
∏k

i=1 p
ei
i be its prime decomposition. Let

d :=
∏k

i=1 p
ei−1
i . Then

Φn(T ) ≡ 1 + (−1)k+1T d (mod T 2d).

Proof. Since n ≥ 2, we have
∑

a|n μ(a) = 0 (see [8], Prop. 2.2.3). Therefore, it

follows from equation (2.3) that

Φn(T ) =
∏
a|n

(1− Tn/a)μ(a).

We compute this product modulo T 2d. If n/a ≥ 2d, then (1− Tn/a)μ(a) is con-
gruent to 1 (mod T 2d). Therefore, we only need to consider the factors where
a > n/(2d). On the other hand, if a is not squarefree, then μ(a) = 0 and
(1− Tn/a)μ(a) = 1.

The only squarefree a dividing n such that a > n/(2d) = (
∏k

i=1 pi)/2 is a = n/d.
So we have

Φn(T ) ≡ (1− T d)μ(n/d) (mod T 2d).

If k is even, then μ(n/d) = 1 and we have the desired result. If k is odd, then
μ(n/d) = −1, and we have (1−T d)−1 = (1+T d)(1−T 2d)−1 ≡ 1+T d (mod T 2d).

�

Corollary 2.5. Let d ∈ N and s ∈ {−1, 1}. Then there exist infinitely many n ∈ N

such that

Φn(T ) ≡ 1 + sT d (mod T 2d).

Proof. Factor d as
∏k

i=1 p
ei
i and let m :=

∏k
i=1 p

ei+1
i . If r is any squarefree number

coprime to m, then it follows from Proposition 2.4 that Φrm(T ) is congruent to
1±T d (mod T 2d), where the sign of T d is determined by the parity of the number
of factors in r. �

Definition 2.6. We call a polynomial F ∈ Z[T ] a root-of-unity polynomial if it
satisfies one of the following three equivalent conditions:

(1) F is a divisor of Tu − 1 for some u > 0.
(2) F or −F is a product of distinct cyclotomic polynomials.
(3) F (0) = ±1, F is squarefree and all the zeros of F are roots of unity.

Let C denote the set of all root-of-unity polynomials.

Proposition 2.7. Let F ∈ Z[T ] with F (0) ∈ {−1, 1}, and let d ∈ N. Then there
exists a polynomial M ∈ C such that F ≡ M (mod T d).
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If we are working in the T -adic topology, then “F ≡ M (mod T d)” means that
M is an approximation of F with a precision of T d. Since the units of Z[[T ]] are
exactly the power series F with F (0) = ±1, the proposition can be rephrased as
follows: the set of root-of-unity polynomials is T -adically dense in Z[[T ]]∗.

Proof. Since the set C is invariant under changing sign, we may assume without
loss of generality that F (0) = 1.

The proof will be done by induction on d, which means that we will construct
better and better approximations of F . For d = 1, we can take M = 1. Now let
d ≥ 1 and assume that F ≡ M0 (mod T d), where M0 ∈ C. Then F − M0 ≡ cT d

(mod T d+1) for some c ∈ Z. If c happens to be zero, then we can take M = M0.
First consider the case c > 0. By Corollary 2.5, we can find an n1 ∈ N such

that Φn1
(T ) ≡ 1 + T d (mod T 2d) and such that Φn1

(T ) is not a factor of M0. Let
M1 := M0Φn1

(T ). Since M0(0) = 1, we get

F −M1 ≡ F −M0(1 + T d) ≡ (F −M0)−M0T
d ≡ (c− 1)T d (mod T d+1).

We can iterate this procedure. Set M2 := M1Φn2
(T ) for a Φn2

which is congruent
to 1+T d (mod T 2d), then F −M2 ≡ (c−2)T d (mod T d+1). After c steps, we have
F −Mc ≡ 0 (mod T d+1). So we can take M := Mc.

The case c < 0 is analogous; the only difference is that we need to multiply with
polynomials which are congruent to 1− T d (mod T d+1). �

3. Defining polynomials with integer coefficients

In this section, we will prove the following theorem:

Theorem 3.1. Let R be an integral domain of characteristic zero such that R[T ]
admits a diophantine degree bounding predicate (see Definition 1.1). Then Z[T ] is
diophantine over R[T ].

For R a subring of a number field, we will prove in section 4 that the assumption
of Theorem 3.1 is satisfied. In section 5, we will show how Theorem 3.1 implies the
main theorem.

In this section, we prove Theorem 3.1 in three steps: First, we give a diophantine
definition of all divisors of some Tu − 1 in R[T ]. Second, we restrict these to the
polynomials which have integer coefficients, i.e. the root-of-unity polynomials. We
also give a diophantine definition of the powers of T in R[T ]. Finally, we use
Proposition 2.7 to give a diophantine definition of Z[T ] over R[T ].

3.1. Divisors of Tu − 1. We give a diophantine definition of the elements in R[T ]
which divide Tu − 1 for some u > 0 without requiring that they have coefficients in
Z.

Proposition 3.2. In R[T ], the set of all polynomials dividing Tu − 1 for some
u > 0 is diophantine.
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Proof. Let G be in R[T ]. We claim that G divides some Tu − 1 if and only if there
exist H, S, X, Y and m in R[T ] such that the following formula is satisfied:

X2 −
((

T+T 2S3

2

)2

− 1

)
Y 2 = 1(3.1)

∧ X ≡ 1 (mod T + T 2S3 − 2)(3.2)

∧ Y ≡ m (mod T + T 2S3 − 2) ∧ m ∈ Z \ {0}(3.3)

∧ GH = 1− TS ∧ X +
(
T−S
2

)
Y ≡ 1 (mod G).(3.4)

This is a diophantine formula because a congruence A ≡ B (mod C) can be
written as (∃X)(A − B = CX) and the set Z \ {0} is diophantine because Z is
diophantine over R[T ] (see [16], Theorem 5.1).

The polynomial T +T 2S3 is never constant, so Proposition 2.2 says that formula
(3.1) is equivalent to

(3.5) X = ±Xn

(
T+T 2S3

2

)
and Y = Yn

(
T+T 2S3

2

)
for some n ∈ Z.

Since Xn(1) = 1, the condition (3.2) forces the “±” sign in (3.5) to be positive.
Since Yn(1) = n, it follows from (3.3) that n = m; hence, n �= 0.

The formula (∃H,S)(GH = 1− TS) is equivalent to saying that G(0) is a unit.
This is certainly satisfied if G divides Tu − 1.

Since GH = 1 − TS, we have S ≡ T−1 (mod G). So, the last part of formula
(3.4) becomes equivalent to

Xn

(
T+T−1

2

)
+
(

T−T−1

2

)
Yn

(
T+T−1

2

)
≡ 1 (mod G).

Using Proposition 2.3, this is equivalent to Tn ≡ 1 (mod G). Without loss of
generality, we may assume that n > 0 (otherwise multiply both sides by T−n).
Then Tn ≡ 1 (mod G) is equivalent to G | Tn − 1. �

3.2. Powers of T and root-of-unity polynomials. In this section, we show
that the set of powers of T and the set of root-of-unity polynomials are diophantine
over R[T ]. Here R[T ] is any integral domain of characteristic zero. Some of the
arguments in this section were inspired by [4] and [18].

We need to work with absolute values on a number field K. We refer to [13],
Ch. III, §1. There are “finite” (non-archimedean) absolute values coming from
discrete valuations on K, and there are “infinite” (archimedean) absolute values
of the form |x|σ = |σ(x)|, where σ : K ↪→ C is an embedding. Usually, absolute
values are normalized in a different way: |σ(x)| for real embeddings and |σ(x)|2 for
complex embeddings. With the usual normalization, we have the product formula
for all x ∈ K∗ (see [13], Ch. III, Prop. (1.3)):

(3.6)
∏
p

|x|p = 1,

where the product ranges over all absolute values (finite and infinite). A conse-
quence of this is the following: if x ∈ K∗ and |x|p < 1 for some prime p, then there
must be a prime q such that |x|q > 1. This consequence remains true even if one
uses a different normalization for the absolute values.

Definition 3.3. Let d ≥ 1 be an integer. Define the set Gd as the set of all
polynomials G ∈ Q̄[T ] such that
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(1) The coefficients of G are algebraic integers.
(2) The degree of G is at most d.
(3) For every coefficient γi of G, we have |σ(γi)| ≤ 2d−1 for all embeddings

σ : Q̄ ↪→ C.
(4) G(2d + 1) is an integer.

For every such polynomial, its coefficients generate a certain number field K.
Therefore we only need to consider the finitely many embeddings K ↪→ C in the
third condition.

Some obvious elements of Gd are the polynomials with integer coefficients of
degree at most d with coefficients in the interval [−2d−1, 2d−1]. We will show that
these are the only elements of Gd.

Lemma 3.4. Fix an integer d ≥ 1 and take two distinct elements A and B in Gd.
Then A(2d + 1) �= B(2d + 1).

Proof. Let K be a number field containing the coefficients of A and B and let O
be its ring of integers.

Let D := A − B and write D(T ) =
∑e

i=0 δiT
i with δe �= 0. To ease notation,

write h := 2d + 1. We want to prove that D(h) �= 0, so assume that D(h) = 0.
Then

(3.7) δeh
e = −

e−1∑
i=0

δih
i.

Take an infinite absolute value | · | on K (coming from an embedding K ↪→ C). The
coefficients of A and B have absolute value at most 2d−1; therefore |δi| ≤ 2d. Since
δe ∈ O is integral over Z, we have |δe|p ≤ 1 for every finite absolute value on K.
As explained in the beginning of this section, this implies that |δe| ≥ 1 for some
infinite absolute value on K. If we take an absolute value | · | such that |δe| ≥ 1,
then (3.7) implies the following contradiction:

he ≤ |δehe| ≤
e−1∑
i=0

|δi|hi ≤ 2d
he − 1

h− 1
= he − 1. �

Proposition 3.5. All elements of Gd have integer coefficients.

Proof. Take any G ∈ Gd and write G =
∑d

i=0 γiT
i (where we allow γd = 0). Let

h := 2d + 1. We have the following bound for any infinite absolute value:

|G(h)| ≤
d∑

i=0

|γi|hi ≤ 2d−1 h
d+1 − 1

h− 1
=

hd+1 − 1

2
.

In Lemma 3.4, we showed that G(h) cannot take the same value for two different
elements G of Gd. Since G(h) ∈ Z by definition of Gd and |G(h)| ≤ (hd+1 − 1)/2, it
follows that Gd has at most hd+1 elements. But we already know hd+1 elements in
Gd, namely the polynomials of degree ≤ d with integer coefficients in [−2d−1, 2d−1].
It follows that these are the only elements of Gd. �

We have a diophantine definition of the divisors of Tu − 1 in R[T ], but we only
want those divisors with integer coefficients. We take care of this using the following
proposition.
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Proposition 3.6. Let K be a number field. Let F ∈ K[T ] be a non-constant
polynomial satisfying F (0) ∈ {−1, 1} whose zeros (over an algebraic closure) are
all roots of unity. Let d be an integer greater than or equal to the degree of F . Then
F ∈ Gd if and only if F (2d + 1) ∈ Z.

Proof. The “only if” direction is immediate; it remains to prove the “if” direction.
Conditions 2 and 4 in the definition of Gd are trivially satisfied. Let e be the degree
of F (then e ≤ d) and write

(3.8) F (T ) =
e∑

i=0

αiT
i.

Over an algebraic closure, F can be factored as

(3.9) F (T ) = αe(T − ζ1) · · · (T − ζe),

where every ζi is a root of unity. We see that F (0) = αe(−1)e
∏e

i=1 ζi. This must
be equal to 1 or −1; therefore αe is also a root of unity. Since roots of unity are
algebraic integers, all coefficients of F are algebraic integers.

Write σe,i for the i-th elementary symmetric polynomial in e variables. Since
σe,i has

(
e
i

)
terms, it follows that αi = αe ·σe,i(ζ1, . . . , ζe) is the sum of

(
e
i

)
roots of

unity. Let | · | be an infinite absolute value on K. Then we have |αi| ≤
(
e
i

)
. Since(

e
i

)
≤ 2e−1 for all e ≥ 1, we have |αi| ≤ 2e−1 ≤ 2d−1. �

Proposition 3.7. Let K be a number field and let F ∈ K[T ] be a polynomial whose
zeros (over an algebraic closure) are all roots of unity. Assume that F (0) = −1
and that there exists an integer d ≥ 1 such that F (2d + 1) = (2d + 1)d − 1. Then
F (T ) = T d − 1.

Proof. We claim that the degree of F is at most d. Indeed, let e be the degree
of F and suppose that e ≥ d + 1. We have F = αe(T − ζ1) · · · (T − ζe) with
αe and all ζi roots of unity. For any infinite absolute value | · | on K we have
|F (2d + 1)| =

∏e
i=1 |2d + 1− ζi| ≥ (2d)e = (2e)d > (2d + 1)d − 1, a contradiction.

So F has degree at most d, and we can apply Proposition 3.6. This gives F ∈ Gd.
Since the polynomials F and T d − 1 are both elements of Gd and they have the
same value at 2d + 1, Lemma 3.4 implies that they must be equal. �

Using the preceding propositions, we can now prove:

Theorem 3.8. Let R be any integral domain of characteristic zero. Then the sets
{Tn | n ≥ 0} and C are diophantine over R[T ].

Proof. First of all, Z is diophantine over R[T ] (see [16], Theorem 5.1). Since the
set {(d, (2d + 1), (2d + 1)d − 1) ∈ Z3 | d ≥ 1} is recursive, it must be diophantine
over Z, hence diophantine over R[T ]. Propositions 3.2 and 3.7 imply that the set
{T d − 1 | d ≥ 1} is also diophantine over R[T ]: this set consists exactly of the
polynomials dividing some Tu − 1 in R[T ] such that F (0) = −1 and F (2d + 1) =
(2d + 1)d − 1 for some d ≥ 1. Remark that F (a) = b is indeed a diophantine
condition; it is equivalent to (T − a)|(F − b). Then also the set {Tn | n ≥ 0} is
diophantine over R[T ].

For the second assertion, take any F ∈ R[T ]. Proposition 3.6 shows that F ∈ C if
and only if there exists a d ≥ 1 such that F |T d−1, F (0) ∈ {−1, 1} and F (2d+1) ∈ Z.
Since Z and {T d − 1 | d ≥ 1} are diophantine over R[T ], this is a diophantine
condition. �
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3.3. All polynomials with integer coefficients. Theorem 3.8 gives us a dio-
phantine definition of C, a subset of Z[T ], over R[T ]. To see that all of Z[T ] is
diophantine over R[T ], we use Proposition 2.7. By taking remainders of the ele-
ments of C after Euclidean division by T d, we get all elements of Z[T ] with constant
coefficient 1 or −1. In order for Euclidean division to be diophantine, we need a
diophantine degree bouding predicate. To get all elements of Z[T ], we just need to
add an integer to the polynomials we get as remainders.

Proof of Theorem 3.1. We have to show that Z[T ] is a diophantine subset of R[T ],
assuming that R[T ] has a diophantine degree bounding predicate δ. Let X be an
element of R[T ]. We claim that X is in Z[T ] if and only if

(∃M,Q,R,D, c)(X = R+ c ∧ c ∈ Z ∧ M ∈ C(3.10)

∧ (∃d ≥ 1)(D = T d) ∧ M = QD +R ∧ δ(TR+ 1, D)).(3.11)

Assume that X is indeed in Z[T ]. Then set c := X(0) − 1 and R := X − c
such that R(0) = 1. Let d be such that δ(TR + 1, T d) is true and set D := T d.
Apply Proposition 2.7 to find an M ∈ C such that R ≡ M (mod T d) and let
Q := (M −R)/T d. Now it is clear that (3.10) and (3.11) are satisfied.

Conversely, assume that (3.10) and (3.11) are satisfied. We have to show that
X ∈ Z[T ]. Since C ⊆ Z[T ], we know that M is in Z[T ]. Formula (3.11) implies that
deg(TR + 1) ≤ d; hence R = 0 or deg(R) < d. It follows that R is the remainder
of the Euclidean division of M by D = T d; therefore R ∈ Z[T ]. Since c ∈ Z, it also
follows that X ∈ Z[T ]. �

4. Diophantine definition of degree

As in the Introducion, let K be a number field and let R be a subring of K
with fraction field K. We will show that the relation “deg(X) ≤ deg(Y )” (where
we assume X �= 0 and Y �= 0) is diophantine over R[T ]. This relation is clearly a
degree bounding predicate.

To give a diophantine definition of “deg(X) ≤ deg(Y )”, we use the fact that
“negative degree” is a discrete valuation on K(T ). More precisely, if F,G ∈ R[T ],
then vT−1(F/G) := deg(G)− deg(F ) defines a discrete valuation on K(T ). There-
fore, the problem reduces to showing that the discrete valuation ring at T−1 in
K(T ) is diophantine. For this, we need certain quadratic forms used by Kim and
Roush (see [9]) to prove undecidability for rational function fields over so-called
p-adic fields with p odd. This undecidability has been generalised to arbitrary
function fields over p-adic fields with p odd (see [11] or [6]).

Definition 4.1. Let p be a prime number. A field K is called p-adic if K can be
embedded in a finite extension of Qp.

It is clear from this definition that every number field is p-adic for every p. For
the rest of this section, we fix any odd prime p.

We introduce some notations and definitions concerning quadratic forms:

Definition 4.2. 〈a1, . . . , an〉 stands for the quadratic form a1X
2
1 + . . . anX

2
n. If we

have two quadratic forms 〈a1, . . . , an〉 and 〈b1, . . . , bm〉, then we define a product

〈a1, . . . , an〉〈b1, . . . , bm〉 =
〈a1b1, . . . , anb1, a1b2, . . . , anb2, . . . , a1bm, . . . , anbm〉.
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A quadratic form 〈a1, . . . , an〉 is called isotropic over a field K if there exists a
non-zero vector (x1, . . . , xn) ∈ Kn such that a1x

2
1 + . . . + anx

2
n = 0. It is called

anisotropic otherwise.

Following the method by Kim and Roush, we need to work over a field satisfying
Hypothesis (H):

Definition 4.3. Let L be a p-adic field with p odd and let vp be a discrete valuation
on L extending the p-adic valuation on Q. We say that L satisfies Hypothesis (H)
if and only if L contains elements α and π such that

(1) vp(π) is odd and π is algebraic over Q.
(2) α is a root of unity.
(3) L contains a square root of −1.
(4) The quadratic form 〈1, α〉〈1, π〉 is anisotropic (i.e. has no non-trivial zeros)

in the completion Lp.
(5) The quadratic form 〈1, α〉〈1, π〉 is isotropic in all 2-adic completions of

Q(α, π,
√
−1).

Proposition 4.4 ([9], Proposition 8). Let K be a p-adic field for an odd prime p
and let vp be a discrete valuation on K extending the p-adic valuation on Q. Then
there exists a finite extension L of K which satisfies Hypothesis (H).

The next two propositions deal with certain quadratic forms. Our variable T is
the inverse of the variable t that Kim and Roush use.

Proposition 4.5 ([9], Proposition 7). Let L be any field of characteristic 0 and
suppose that 〈1,−α〉〈1, π〉 is an anisotropic quadratic form over L. Let F ∈ L(T )
be such that vT−1(F ) is non-negative and even. Then one of the following two is
anisotropic over L(T ):

〈T,−αT,−1,−F 〉〈1, π〉,(4.1)

〈T,−αT,−1,−αF 〉〈1, π〉.(4.2)

The following proposition follows from [9]. However, here we use a reformulation
by Eisenträger (see [6], Theorem 8.1).

Proposition 4.6. Let L be a p-adic field satisfying Hypothesis (H) for elements α
and π in L. Let U ⊆ L(T ) be such that U ∩Q is dense in Qp1

×· · ·×Qpm
for every

finite set of rational primes {p1, . . . , pm}. Let G ∈ L(T ) be such that vT (G) = −2
and vT−1(G) = 1. Assume that the coefficients of G are algebraic over Q. Then
there exist γ3, γ5 ∈ U such that, if we let

(4.3) F := (1 + T−1)3G(T ) + γ3T
−3 + γ5T

−5,

then the following quadratic forms are both isotropic over L(T ):

〈T, αT,−1,−F 〉〈1, π〉,(4.4)

〈T, αT,−1,−αF 〉〈1, π〉.(4.5)

The most natural choice for U would be U = L. However, for our applications,
U needs to be diophantine in L(T ). In the article by Kim and Roush, U is a subset
of L. However, since enlarging the set U only weakens the proposition, we can even
take U in L(T ).

Taking these last two propositions together, we can prove the following:
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Proposition 4.7. Let L and U be as in Proposition 4.6 with the additional condi-
tion that every element A ∈ U satisfies vT−1(A) ≥ 0. Let X ∈ L(T ) with algebraic
coefficients and define

G(T ) :=
(T + T 2) +X3

T 3 + T 2X3
.

Then vT−1(X) ≥ 0 if and only if there exist γ3, γ5 ∈ U such that the quadratic
forms (4.4) and (4.5) are both isotropic with F as in (4.3).

Proof. Write GN := (T +T 2)+X3 and GD := T 3+T 2X3 such that G = GN/GD.
Assume that vT−1(X) ≥ 0. Then vT−1(GN ) = −2 and vT−1(GD) = −3 such
that vT−1(G) = 1. If vT (X) ≥ 1, then vT (GN ) = 1 and vT (GD) = 3 such that
vT (G) = −2. If vT (X) ≤ 0, then vT (GN ) = 3vT (X) and vT (GD) = 2 + 3vT (X)
such that vT (G) = −2. In short, if vT−1(X) ≥ 0, then we have vT−1(G) = 1 and
vT (G) = −2. Proposition 4.6 gives us that (4.4) and (4.5) are indeed isotropic for
some choice of γ3 and γ5 in U .

Conversely, assume that vT−1(X) < 0. We must show that one of the forms (4.4)
or (4.5) is anisotropic for every γ3, γ5 with non-negative valuation at T−1. Since
vT−1(X) ≤ −1, we have vT−1(GN ) = 3vT−1(X) and vT−1(GD) = −2 + 3vT−1(X).
Therefore vT−1(G) = 2. Since vT−1(γi) ≥ 0, it follows from (4.3) that vT−1(F ) = 2.
Hypothesis (H) says that 〈1, α〉〈1, π〉 is locally anisotropic at p; hence it is also
globally anisotropic over L. Since L contains

√
−1, signs in quadratic forms do not

matter. Therefore, we can apply Proposition 4.5. �

Theorem 4.8. Let R be a subring of a number field. In the ring R[T ], the relation
“deg(X) ≤ deg(Y )” with X and Y being non-zero elements of R[T ] is diophantine
over R[T ].

Proof. Since the non-zero elements of R[T ] form a diophantine subset of R[T ] (see
[12, Théorème 3.1]), we can construct a diophantine interpretation of the fraction
field K(T ) over R[T ]. Let L be a finite extension of K which satisfies Hypothesis
(H). Using a basis of L as a K-vector space, there is a diophantine model of L(T )
over K(T ).

Since deg(X) ≤ deg(Y ) is equivalent to vT−1(X/Y ) ≥ 0, it suffices to give a
diophantine definition of the predicate “vT−1(X) ≥ 0” with X ∈ L(T ). Let

U = {n/P | n ∈ Z ∧ P ∈ R[T ] \ {0}} ⊆ K(T ).

By construction, every element A ∈ U has vT−1(A) ≥ 0. The set U contains Q,
which is clearly dense in every Qp1

×· · ·×Qpm
. Since quadratic forms being isotropic

is a diophantine condition and U is diophantine, it follows by Proposition 4.7 that
“vT−1(X) ≥ 0” is diophantine. �

5. Recursively enumerable sets

In this final section we discuss how having a diophantine definition of Z[T ] in
R[T ] gives us that r.e. subsets of R[T ]k are diophantine.

Theorem 5.1. Let R be a recursive ring contained in a number field and let S be
a recursively enumerable subset of R[T ]k (for some k ≥ 1). Then S is diophantine
over R[T ].
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Proof. Denef showed (see [4]) that r.e. subsets of Z[T ]k are diophantine over Z[T ].
Since Z[T ] is diophantine over R[T ], it follows that r.e. subsets of Z[T ]k are dio-
phantine over R[T ].

Let K denote the fraction field of R; this is a number field. Let α ∈ R be such
that K = Q(α) and let d := [K : Q]. Now any element X of R[T ] can be written
as

(5.1) X =
X0 +X1α+ · · ·+Xd−1α

d−1

y

with Xi in Z[T ] and y in Z \ {0}.
Let S ⊆ R[T ] be an r.e. set. We have to show that S is diophantine. To S we as-

sociate a set T ⊆ Z[T ]d+1 using (5.1): the set T has one tuple (X0, X1, . . . , Xd−1, y)
∈ Z[T ]d+1 for every X ∈ S. This tuple (X0, X1, . . . , Xd−1, y) is not unique, but
that is not a problem: we can algorithmically try all possible tuples and take the
first one which works for a given X. This way, we have a bijection between S and
T . Moreover, the set T will also be r.e., since we can construct T from S using
a recursive procedure. Since T is a subset of Z[T ]d+1, it will be diophantine over
R[T ]. Now it immediately follows that S is diophantine:

X ∈ S ⇐⇒
(
∃(X0, X1, . . . , Xd−1, y) ∈ T

)(
Xy = X0 +X1α+ · · ·+Xd−1α

d−1
)
.

The argument for sets S ⊆ R[T ]k is very similar, using a set T ⊆ Z[T ](d+1)k. �
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