
D i P : A Paral le l P r o g r a m D e v e l o p m e n t
Environment*

Jesus Labarta , Sergi Girona, Vincent Pillet, Toni Cortes, Luis Gregoris

Departament d'Arquitectura de Computadors - CEPBA
Universitat Polit~cnica de Catedunya

[jesus,sergi,vincent,toni,luisg] @ac.upc.es
URL: http ://www.ac.upc.es/hpc

Abs t rac t . This paper describes an environment whose aim is to aid
in the development and tuning of message passing applications before
actually running them in a real system with a large number of processors.
Our objective is not to eliminate tests on reed machines but to be able to
focus them in a more selective way and thereby minimize their number.
The environment presented in this paper consists of three closely in-
tegrated tools: an instrumented communication library, a trace driven
simulator (Dimemas) and a visualization/analysis tool (Paraver).

1 I n t r o d u c t i o n

The objective of the DiP environment is to reduce the cost of parallel program
development, both in t ime and hardware requirements. This is achieved by ap-
plying a set of tools that allow the use of sequential machines for the development
and tuning of parallel applications. In the same way that finite element packages
minimize the prototype and experiment requirements, the DiP objective is not to
eliminate tests on real machines but to be able to focus them in a more selective
way and thus minimize their number. Before actually testing the application on
a parallel machine, the developer should be able to optimize it for the target
machine and to have an accurate estimate of its performance.

The functions offered by the DiP environment fall in the areas of performance
prediction, analysis and visualization. As a prediction tool, DiP estimates the
performance that a message passing application would achieve on different types
of architectures, ranging from workstation clusters to networks of SMPs and
MPPs. As an analysis tool, the DiP environment is of special interest for two
reasons: in obtaining detailed quanti tat ive statistics of an application run and
in evaluating the effects of different factors in the performance of the applica-
tion. Two types of factors are available. There are target machine architectural
parameters and code blocks or routines duration. Finally, visualization has been
conceived as a support mechanism for the analysis and prediction functions,
providing flexibility and efficiency.

* This work has been supported by the Spanish Ministry of Education (CICYT) under
the TIC-94-537 and TIC-95-0429 contracts.

666

Fig. 1. The DiP Environment Structure

The two main objectives in the design of DiP were: to emphasize a clear
division between parts of the tool set, where each module has its own function,
and to offer flexible mechanisms to combine those modules in order to construct
a very powerful analysis and prediction tool. From these simple concepts, this
tool enables complex and large application analyses.

2 T h e D i P e n v i r o n m e n t

The global structure of the DiP environment is described in Figure 1. Three
tools constitute the core of the environment: the DiP instrumented communica-
tion library; Dimemas, a distributed memory machine simulator; and Paraver,
a visualization and analysis tool. Translators (filters) from several trace formats
(SDDF, PICL) to DiP trace format have been included to allow other products
to interact with DiP.

The arrows in Figure 1 describe the possible combinations of the different
tools. Part of the power and usefulness of the environment comes from the flex-
ibility it provides in sequencing the execution of the individual tools.

The path shown in Figure 2a matches the well known parallel programs de-
bugging and visualization process [9]. This approach is applied on many widely
used tools (XFVM [6], Paragraph [7], HENCE [3] and Xab [2]). In this path,

667

7
r .]

I : : ' ~ U ' L : ' : : - Z ']

2a 2b 2c

Fig. 2. Typical path (2a) versus DiP processes (2b,2c)

when the application is run on a parallel machine, the profiling facilities gener-
ate a trace file with absolute times. The user can visualize this trace file and,
based on these observations, modify the code and repeat the whole process.

Figure 2b shows the typical path used in DiP to carry out studies on the
influence of the simulator parameters. In this case, the application can be run
with the DiP instrumented library on a single workstation or in a parallel sys-
tem. The instrumented library generates a trace file with relative times, which
characterizes the application. From this trace file, Dimemas rebuilds the behav-
ior of the application on a parameterized target machine. A new trace file, with
absolute times, is generated for visualization with Paraver. The simulation and
visualization phase can be repeated several times in order to predict and analyze
the performance of the application on different target architectures. Based on
visualization and quantitative measurements, the user can modify the applica-
tion source code. DiP allows users to analyze and predict the performance of
parallel applications using a sequential machine.

The repetition of the simulation with several architectural parameters pro-
vides significant information on the application's behavior, that should be used
before recompiling the application or obtaining new traces. For example: statis-
tics on processor utilization can be used to analyze the application load bal-
ancing, instantaneous communication parameters can be used to evaluate the
effect of common communication dependences, changing then communication
latency and keeping and instantaneous transfer rate allows the analysis of the
communication granularity,...

The third possible path (shown in Figure 2c) involves the SPA (Synthetic
Perturbation Analysis). Paraver is able to generate a perturbed trace in which
the duration of selected routines has been modified by a certain amount. Several
simulations will provide an indication of the routine's effect in the execution of
the application. Special functions have been included in the library to provide
the possibility of marking the entry and exit of routines or code blocks.

668

3 C o m m u n i c a t i o n L i b r a r y I n s t r u m e n t a t i o n

The objective of the instrumented library is to capture, in a trace file, some
states and event records that characterize the application. The idea is to extract
information inherent to the application and to avoid the effects of the platform
used for this purpose on the application. This can be done by running the in-
strumented application on a parallel machine or by running all the processes on
a single processor in time shared mode. DiP includes instrumentation for PVM
and MPI.

The key to the application characterization lies in two types of records: state
and event. State records represent actual resource demands and their duration,
CPU bursts for example. For a precise application rebuild, it is important to
achieve precision and accuracy in the measurement of the duration of the CPU
bursts. Event records represent punctual occurrences between state records and
can be either user defined or communication endpoints. Although the commu-
nication records capture the relationship between different tasks, no absolute
times are included in the trace.

Some functions have been defined in order to introduce user defined event
records in the trace which can be used to tag specific "events" in the code. These
user events are used to mark the entry and exit of routines or code blocks.

DiP supports multi-threaded applications, represented by the following three
level process model: the application itself, the different tasks that constitute it
and the possibility of having multiple threads within a task. This model is general
enough to include most of the current process models. The library has been
extended for semaphore support for synchronization between different threads
within a single task.

In DiP, the probe effect problem has been reduced to the cache pollution
caused by other processes sharing the system, specifically in the case of traces
which are generated from a single workstation. In [10] the effect of this problem
and the quality of the prediction are shown. The common I /O generated probe
effect problem of interaction between the instrumentation and application be-
havior is not present because the measurements are based on the duration of the
CPU bursts, and absolute t ime is not used at all in the instrumentation.

4 D i m e m a s

Dimemas is a simulator that reconstructs the behavior of a parallel program from
a set of traces that characterize the application as described in the previous sec-
tion. New traces with absolute times can be obtained using the architectural
model of a target machine. Dimemas also gives global statistics on the perfor-
mance of the application. Other features supported by Dimemas include the
ability to work with multi-threaded applications and multiprogrammed work-
loads.

The architecture model is simple and flexible. It is composed of a set of SMP
(Shared Memory Processors) with a communication network. This communica-
tion network can model a full connectivity network, (to model MPP clusters)

669

or a single bus network, (to model networks of workstations). Shared memory
communications is also possible when several tasks share the same SMP node.

Dimemas uses a linear function (latency and bandwidth) to model the com-
munication time. The influence of the distance between processors is considered
irrelevant in accordance with networks state of the art. Network conflicts are
modeled with two different possibilities: conflict in the network usage (for the
bus networks), limit on network connectivity and conflict in the usage of com-
munication resources (links into the network for each individual node).

Dimemas also models several scheduling policies (FIFO, RR, Unix like,...) to
allow processor sharing among several threads. The model of different processors
is reduced to a single parameter called relative processor speed, representing the
ratio between the processor speed where the trace is obtained and the proces-
sor speed on the target machine. An accurate value for this parameter can be
obtained by running the sequential application on both processors, but public
information about processors speed is an alternative that may also lead to useful
results. In Section 6, prediction accuracy results are presented.

A file system module [5] is currently being added to Dimemas in order to
study caching policies in parallel environments and their interaction with the
scheduling policies. A communication module has also been included for model-
ing communication using ATM networks.

5 P a r a v e r

Paraver is the visualization and analysis part of the tool-set. Paraver offers a
single type of view flexible enough to represent a large amount of information. It
consists of a Gant t diagram with one line for each object to be represented (the
type of object can be selected for each window among processors, application,
tasks or threads). The information for each line may be represented with an
encoded color (each color represents a possible state for different objects) or as
a time function. User events and/or communication between several objects can
be included in the same view. Users can select the information to be displayed
in a very flexible way based on the tool structure presented in Figure 3. Two
basic processes can be applied using Paraver: the visualization and static analysis
process and the Synthetic perturbation analysis process.

The visualization process structure is represented by the left side of Figure 3
and is applied to every display window controlled with DiP. The functions of the
visualization process are managed from different modules, each of them filtering

information on to the next. The filter module VT-] selects which events (user

and communication events) must be passed on to the next modules, e.g. display

those messages with a specific tag. The semantic module I f] only computes

the values to be represented, using the information associated to each window.
The visualization module ~ is responsible for the representation of events on
the screen, for the pointing device management and for the window creation
(through the zoom facility or a user command). The static analysis module

670

Fig, 3. Paraver Internal Structure

computes statistics (processor utilization, number of communications,...) on all
the trace files or only in a user selected area. User specific functions can be
developed and linked using a procedural interface.

DiP offers a single window to display information, but all the application's
behavior can be displayed on this one. The semantic module allows the user
to select what kind of information will be displayed. For example, the user can
select to display the information as contained in the trace file, only displaying
the current object state (communication overhead, waiting for processor, useful
computation time, waiting for resources,...). However, if the object is a task,
with several threads, the user may want to display whether some thread in the
current task is running or to select the number of threads within the task that
are currently waiting for resources. The user can extend the semantic module
capabilities by linking user functions. Another example is to display applications
and select to draw the number of threads currently running; the information
displayed is the instantaneous parallelism profile of an application.

The Synthetic Perturbation Process, on the right side of Figure 3, has been
developed to help the user to find execution bottlenecks. It shows how to modify
applications to enhance performance and highlight hardware critical parameters
for the application. We have adapted [11] the Synthetic Perturbation Analysis
(SPA) technique based on a factorial design experiments [8].

671

300 ~ 600

200 40O
~linstantaneous

i r '110 MB/s
o o I 1 MB/s

1 0 . 1 MB/s
100 200

0 0
0 100 1000 10000 0

Latency time (micrt~etl~nds)
FFT

100 1000 I(X~O
Latency time (microseconds)

PDE

Fig. 4. FFT and PDE application time

8~ instantaneous
f-'110 MB/s
8 1 1 MB/s
l l 0 . 1 MB/s

The application code must be instrumented, manually or using compilation
techniques, to mark those functions and code blocks which are going to be an-
alyzed. This process is also separated into different modules: the Critical Path
[-@--] module finds the critical path of the application, the Profile module

displays the percentage of time spent by each function (code block) in the critical
path with reference to the global application time, and the Synthetic Perturba-
tion Analysis module ~ prepares a set of modified trace files where some of

the records (those corresponding to the blocks selected by the user) are modi-
fied by a certain amount. Statistical analysis is presented with the information
obtained with these modified trace files and by rerunning Dimemas several times.

The SPA module can help the user to answer questions such as: " What will
the total time gain be in the application execution if the execution lime of one
function is improved by 5~?', " What is the influence of the communication
latency on the total execution time?' and " What is the interaction effect of two
functions?'.

6 E x a m p l e s

This section includes some practical examples on how the DiP environment can
be used for several purposes in the areas of: the evaluation of the influence of
communication speed and performance prediction.

6.1 I n f l u e n c e o f N e t w o r k

The influence of communication latency on overall application time for F F T and
PDE applications is analyzed in Figure 4. This figure shows how latency has a
strong influence on PDE because this application has a lot of communications.
On the other hand, on F F T the bandwidth is the important issue, because it
does not communicate very often and uses large messages.

Figure 5 shows the influence of network conflicts in the behavior of the ap-
plication. As expected, the influence is higher as the communication bandwidth
decreases, simply because the network is busy for more time.

672

�9 i n s t a n t a n e o u s

10 MB/s

�9 1 MBIs

1 0 a MB/s

PUll (~onno~vi[y Bus Contenuon
Latency t i m e = 10 micros

FFT-I Dimensional

Fig. 5. Full connectivity network versus Bus Contention

7 8 9 15 16 17]]

 90. 97 TI -2.7299 7H
114[14.99s254131.46o633193.o13o4211]14132.644082 [67.7440271140.541845[]

17.13% 9.470/0 2.57 % II I 0.29 ~o [0.27 % [1.53 % II

Table 1. PDE-2 prediction results FFT-1 prediction results

6.2 P r e d i c t i o n

In this section we present some results obtained using the prediction capabilities
of the tools. The objective was to predict the performance of the F F T and PDE
applications on an SP2 when only a SGI workstation is available. The trace files
were obtained by running the application on the SGI workstation, on a t ime
shared environment. The instrumented communication library used was a PVM
public domain version.

The parameter for the relative processor speed between one node of an avail-
able SP2 and our SGI, was obtained by running the sequential application on
both processors. Table 1 contains the seconds spent for the reM execution, the
seconds predicted by the simulator and the error average. The columns represent
the dimension of the problem (2 n) and the rows reflect the number of processors
employed by the application.

The results show that the accuracy of the prediction is fairly good. Even if
the traces are obtained on a single multiuser workstation and the prediction is
for a dedicated SP2, our approach shows up as very significant and falls within
the range of accuracy that would be sufficient before carrying out very detailed
tunings on a given target machine.

6.3 S P A E x a m p l e

The code used in this example is a Triangular System of Equations which uses a
block cyclic data distribution and a broadcast communication model of solution
blocks. The result of the SPA analysis is the % of time gain from reference
(initial) execution times. The first part of the analysis module gives the routines

673

Profile Values SPA values
% of CP time % of total CPU time % of time gain

routines RUN OVH COM SUM RUNIOVHISUM BLK TotalIBLKIRUN

main 73.67 0.00 0.00 73.67 90.95 0.00 90.95 0.00 9.21 8.78 9.09
receive 2.65 0.37 18.50 21.52 5.27 0.75 6.02 23.43 0.36-0.34 0.53

forward 2.73 1.62 0.00 4.35 1.25 0.75 2.00 0.00 0.15 0.67 0.13

Table 2. (RUN=Running, OVH=Overhead, COM=Communicating, BLK=Blocked)

profile (Table 2 Profile values). Only the three most consuming routines are
shown in this table.

It is obvious that the function main is the most CPU consuming and also the
most influent on the critical path although its contribution to it is not as impor-
tant as to the total CPU time. We can also see that the receive routine spent
18.5% of the total execution time waiting for messages. One possible analysis is
" What will be the total execution time gain of my application if I reduce one of
these functions by 10~ f '

Table 2 (SPA values) shows that a 10% optimization of the routine main (by
looking in more detail at the code and cache locality issues for example) would
result in a 9.21% improvement in the total execution time. These results are a
bit better than what its contribution to the critical path~had suggested (7.3%).
The reduction of the computation time within the receive and forward routines
would minimally influence the performance. Relatively the receive routine would
improve more than the forward, but the static analysis indicates that it has a
slightly higher contribution to the critical path.

7 R e l a t e d W o r k

Many other tools are currently available, ranging from the programming envi-
ronment at the source code level, as HENCE [3], to the post-mortem visualization
tools like Paragraph [7]. Unlike the DiP environments, most of them like XPVM
[6] assume that all programming resources are available. The DiP approach is
also to provide a set of tools usually found separately thus providing more effi-
ciency. These tools are : an instrumented library as PICL [7], Pablo [15] (SDDF
[1]) , or AIMS [16] but instead of generating wall time events trace files we
propose a relative times approach, a trace driven simulator as Proteus [4], a
visualization tool as Paragraph [7], Xab [2], Paradyn [12], XPVM [6] or PARvis
[14] but based on a single type of representation providing powerful features
not available on all tools, profiling and statistics functionalities as AIMS [16] or
Pablo [15] and prediction possibilities as Speedy [13] or AIMS [16].

8 C o n c l u s i o n s

In this paper we have presented an environment developed at CEPBA (Euro-
pean Center for Parallelism in Barcelona) to reduce costs in parallel program

674

development and tuning. The environment is based on a trace driven simulator
and a tool for visualizing and analyzing those traces. Its objective is to pre-
dict the performance of a message passing application on machines not readily
available while doing most of the development on a workstation. The Synthetic
Perturbation Analysis makes it possible to determine the relevance of software
and hardware parameters.

The design of the tools is modular with the objective of enabling the study
of other factors of parallel program performance such as locality and cache uti-
lization, file systems,...

The environment is being used in several industrial projects with great suc-
cess. Dimemas, with the Synthetic Perturbation Analysis capabilities, is commer-
cially available from PALLAS GmbH (Germany) and Paraver will be available
as a Public Domain product.

R e f e r e n c e s

1. R.A. Aydt. "SDDF: The Pablo Self Describing Data Format". University of Illinois at Urbana-
Champaign Technical Report, Mars 1992.

2. A. Beguelin. "Xab: A Tool for Monitoring PVM Programs". Workshop on Heterogeneous Pro-
cessing, Los Alamitos, California, pp. 92-97, April 1993

3. A. Beguelin, J. Dongarra, A. Geist, R. Manchek, K. Moore and V. Sunderam, "PVM and
HENCE: Tools for Heterogeneous Network Programming" ~ Environments and Tools for Parallel
Scientific Computing, pp 139-153, Eds: J.J. Dongarra et al., Elsevier Science Publishers, 1993.

4. E.A. Brewer et al., "Proteus: A High-Performance Parallel-Architecture Simulator", Mas-
sachusetts Institute of Technology, Technical Report MIT/LCS/TR-516, September 1991.

5. T. Cortes, S. Girona and J. Labarta, "PACA: a Cooperative File System Cache for Parallel
Machines", Euro-Par'96, Lyon, August 1996.

6. G.A. Geist, J. Kohl and P. Papadopoulos, "Visualization, Debugging and Performance in PVM",
Processings of Visualization and Debugging Workshop October 1994.

7. M. Heath and J.Etheridge. "Visualizing the Performance of Parallel Programs". IEEE Software,
pp. 29-39, Sept. 1991

8. R. Jaim, "The Art of Computer Systems Performance Analysis", John Wiley and Sons, New
York, 1991.

9. A. Hondroudakis, "Performance Analysis Tools for Parallel Programs", Edinburgh Parallel
Computing Centre, Technical Report 1995

10. J. Labarta, S. Girona, V. Pillet T. Cortes and L. Gregoris, "DIP: A Parallel Program Develop-
ment Environment", UPC-DAC Tech. Report RR-UPC-DAC-1996-04

11. G. Lyon, R. Snelick and R. Kacker, "Synthetic-Perturbation Tuning of MIMD Programs", The
Journal of Supercomputing, Vol. 8, pp 5-28, 1994.
Fifth Brazilian Symposium on Computer Architecture, Florianopolis, September 1993.

12. B.P. Miller, J.M. Cargille, R.B. Irvin, K. Kunchithapadam, M.D. Callaghan, J.K. Hollingsworth,
K.L. Karavanic and T. Newhall, "The Paradyn Parallel Performance Measurement Tools"

13. B.W. Mohr, A.D. Malony and K. Shanmugam, "Speedy: An Integrated Performance Extrapo-
lation Tool for pC-F+ Programs", University of Oregon, 1995.

14. W.E. Nagel and A. Arnold, "Performance Visualization of Parallel Programs- The PARvis En-
vironment", Research Centre Julich (KFA), Central Institute for Applied Mathematics (ZAM)
Germany 1994.

15. D.A. Reed, R.A. Aydt, R.J. Noe, P.C. Roth, K.A. Shields, B.W. Schwartz and L.F. Tavera,
"Scalable Parformance Analysis: The Pablo Performance Analysis Environment", Scalable Par-
allel Libraries Conference, IEEE Computer Society, 1993.

16. J.C.Yan, "Performance Tuning with AIMS- An Automated Instrumentation and Monitoring
System for Multicomputers", Proceedings of 27th Hawaii International Conference on System
Science, Wailea, Hawaii, Vol II, pp 625-33, January 1994.

