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Abs t rac t .  This paper describes an environment whose aim is to aid 
in the development and tuning of message passing applications before 
actually running them in a real system with a large number of processors. 
Our objective is not to eliminate tests on reed machines but to be able to 
focus them in a more selective way and thereby minimize their number. 
The environment presented in this paper consists of three closely in- 
tegrated tools: an instrumented communication library, a trace driven 
simulator (Dimemas) and a visualization/analysis tool (Paraver). 

1 I n t r o d u c t i o n  

The objective of the DiP environment is to reduce the cost of parallel program 
development, both  in t ime and hardware requirements. This is achieved by ap- 
plying a set of tools that  allow the use of sequential machines for the development 
and tuning of parallel applications. In the same way that  finite element packages 
minimize the prototype and experiment requirements, the DiP objective is not to 
eliminate tests on real machines but to be able to focus them in a more selective 
way and thus minimize their number.  Before actually testing the application on 
a parallel machine, the developer should be able to optimize it for the target  
machine and to have an accurate estimate of its performance. 

The functions offered by the DiP environment fall in the areas of performance 
prediction, analysis and visualization. As a prediction tool, DiP estimates the 
performance that  a message passing application would achieve on different types 
of architectures, ranging from workstation clusters to networks of SMPs and 
MPPs.  As an analysis tool, the DiP environment is of special interest for two 
reasons: in obtaining detailed quanti tat ive statistics of an application run and 
in evaluating the effects of different factors in the performance of the applica- 
tion. Two types of factors are available. There are target  machine architectural 
parameters  and code blocks or routines duration. Finally, visualization has been 
conceived as a support  mechanism for the analysis and prediction functions, 
providing flexibility and efficiency. 

* This work has been supported by the Spanish Ministry of Education (CICYT) under 
the TIC-94-537 and TIC-95-0429 contracts. 
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Fig. 1. The DiP Environment Structure 

The two main objectives in the design of DiP were: to emphasize a clear 
division between parts of the tool set, where each module has its own function, 
and to offer flexible mechanisms to combine those modules in order to construct 
a very powerful analysis and prediction tool. From these simple concepts, this 
tool enables complex and large application analyses. 

2 T h e  D i P  e n v i r o n m e n t  

The global structure of the DiP environment is described in Figure 1. Three 
tools constitute the core of the environment: the DiP instrumented communica- 
tion library; Dimemas, a distributed memory machine simulator; and Paraver, 
a visualization and analysis tool. Translators (filters) from several trace formats 
(SDDF, PICL) to DiP trace format have been included to allow other products 
to interact with DiP. 

The arrows in Figure 1 describe the possible combinations of the different 
tools. Part of the power and usefulness of the environment comes from the flex- 
ibility it provides in sequencing the execution of the individual tools. 

The path shown in Figure 2a matches the well known parallel programs de- 
bugging and visualization process [9]. This approach is applied on many widely 
used tools (XFVM [6], Paragraph [7], HENCE [3] and Xab [2]). In this path, 
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Fig. 2. Typical path (2a) versus DiP processes (2b,2c) 

when the application is run on a parallel machine, the profiling facilities gener- 
ate a trace file with absolute times. The user can visualize this trace file and, 
based on these observations, modify the code and repeat the whole process. 

Figure 2b shows the typical path used in DiP to carry out studies on the 
influence of the simulator parameters. In this case, the application can be run 
with the DiP instrumented library on a single workstation or in a parallel sys- 
tem. The instrumented library generates a trace file with relative times, which 
characterizes the application. From this trace file, Dimemas rebuilds the behav- 
ior of the application on a parameterized target machine. A new trace file, with 
absolute times, is generated for visualization with Paraver. The simulation and 
visualization phase can be repeated several times in order to predict and analyze 
the performance of the application on different target architectures. Based on 
visualization and quantitative measurements, the user can modify the applica- 
tion source code. DiP allows users to analyze and predict the performance of 
parallel applications using a sequential machine. 

The repetition of the simulation with several architectural parameters pro- 
vides significant information on the application's behavior, that  should be used 
before recompiling the application or obtaining new traces. For example: statis- 
tics on processor utilization can be used to analyze the application load bal- 
ancing, instantaneous communication parameters can be used to evaluate the 
effect of common communication dependences, changing then communication 
latency and keeping and instantaneous transfer rate allows the analysis of the 
communication granularity,... 

The third possible path (shown in Figure 2c) involves the SPA (Synthetic 
Perturbation Analysis). Paraver is able to generate a perturbed trace in which 
the duration of selected routines has been modified by a certain amount.  Several 
simulations will provide an indication of the routine's effect in the execution of 
the application. Special functions have been included in the library to provide 
the possibility of marking the entry and exit of routines or code blocks. 
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3 C o m m u n i c a t i o n  L i b r a r y  I n s t r u m e n t a t i o n  

The objective of the instrumented library is to capture, in a trace file, some 
states and event records that  characterize the application. The idea is to extract 
information inherent to the application and to avoid the effects of the platform 
used for this purpose on the application. This can be done by running the in- 
strumented application on a parallel machine or by running all the processes on 
a single processor in time shared mode. DiP includes instrumentation for PVM 
and MPI. 

The key to the application characterization lies in two types of records: state 
and event. State records represent actual resource demands and their duration, 
CPU bursts for example. For a precise application rebuild, it is important  to 
achieve precision and accuracy in the measurement of the duration of the CPU 
bursts. Event records represent punctual occurrences between state records and 
can be either user defined or communication endpoints. Although the commu- 
nication records capture the relationship between different tasks, no absolute 
times are included in the trace. 

Some functions have been defined in order to introduce user defined event 
records in the trace which can be used to tag specific "events" in the code. These 
user events are used to mark the entry and exit of routines or code blocks. 

DiP supports multi-threaded applications, represented by the following three 
level process model: the application itself, the different tasks that  constitute it 
and the possibility of having multiple threads within a task. This model is general 
enough to include most of the current process models. The library has been 
extended for semaphore support for synchronization between different threads 
within a single task. 

In DiP, the probe effect problem has been reduced to the cache pollution 
caused by other processes sharing the system, specifically in the case of traces 
which are generated from a single workstation. In [10] the effect of this problem 
and the quality of the prediction are shown. The common I /O generated probe 
effect problem of interaction between the instrumentation and application be- 
havior is not present because the measurements are based on the duration of the 
CPU bursts, and absolute t ime is not used at all in the instrumentation. 

4 D i m e m a s  

Dimemas is a simulator that  reconstructs the behavior of a parallel program from 
a set of traces that  characterize the application as described in the previous sec- 
tion. New traces with absolute times can be obtained using the architectural 
model of a target machine. Dimemas also gives global statistics on the perfor- 
mance of the application. Other features supported by Dimemas include the 
ability to work with multi-threaded applications and multiprogrammed work- 
loads. 

The architecture model is simple and flexible. It is composed of a set of SMP 
(Shared Memory Processors) with a communication network. This communica- 
tion network can model a full connectivity network, (to model MPP clusters) 
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or a single bus network, (to model networks of workstations). Shared memory 
communications is also possible when several tasks share the same SMP node. 

Dimemas uses a linear function (latency and bandwidth) to model the com- 
munication time. The influence of the distance between processors is considered 
irrelevant in accordance with networks state of the art. Network conflicts are 
modeled with two different possibilities: conflict in the network usage (for the 
bus networks), limit on network connectivity and conflict in the usage of com- 
munication resources (links into the network for each individual node). 

Dimemas also models several scheduling policies (FIFO, RR, Unix like,...) to 
allow processor sharing among several threads. The model of different processors 
is reduced to a single parameter called relative processor speed, representing the 
ratio between the processor speed where the trace is obtained and the proces- 
sor speed on the target machine. An accurate value for this parameter can be 
obtained by running the sequential application on both processors, but  public 
information about processors speed is an alternative that  may also lead to useful 
results. In Section 6, prediction accuracy results are presented. 

A file system module [5] is currently being added to Dimemas in order to 
study caching policies in parallel environments and their interaction with the 
scheduling policies. A communication module has also been included for model- 
ing communication using ATM networks. 

5 P a r a v e r  

Paraver is the visualization and analysis part of the tool-set. Paraver offers a 
single type of view flexible enough to represent a large amount  of information. It 
consists of a Gant t  diagram with one line for each object to be represented (the 
type of object can be selected for each window among processors, application, 
tasks or threads). The information for each line may be represented with an 
encoded color (each color represents a possible state for different objects) or as 
a time function. User events and/or  communication between several objects can 
be included in the same view. Users can select the information to be displayed 
in a very flexible way based on the tool structure presented in Figure 3. Two 
basic processes can be applied using Paraver: the visualization and static analysis 
process and the Synthetic perturbation analysis process. 

The visualization process structure is represented by the left side of Figure 3 
and is applied to every display window controlled with DiP. The functions of the 
visualization process are managed from different modules, each of them filtering 

information on to the next. The filter module VT-] selects which events (user 

and communication events) must be passed on to the next modules, e.g. display 

those messages with a specific tag. The semantic module I f ]  only computes 

the values to be represented, using the information associated to each window. 
The visualization module ~ is responsible for the representation of events on 
the screen, for the pointing device management and for the window creation 
(through the zoom facility or a user command). The static analysis module 



670 

Fig, 3. Paraver Internal Structure 

computes statistics (processor utilization, number of communications,...) on all 
the trace files or only in a user selected area. User specific functions can be 
developed and linked using a procedural interface. 

DiP offers a single window to display information, but all the application's 
behavior can be displayed on this one. The semantic module allows the user 
to select what kind of information will be displayed. For example, the user can 
select to display the information as contained in the trace file, only displaying 
the current object state (communication overhead, waiting for processor, useful 
computation time, waiting for resources,...). However, if the object is a task, 
with several threads, the user may want to display whether some thread in the 
current task is running or to select the number of threads within the task that  
are currently waiting for resources. The user can extend the semantic module 
capabilities by linking user functions. Another example is to display applications 
and select to draw the number of threads currently running; the information 
displayed is the instantaneous parallelism profile of an application. 

The Synthetic Perturbation Process, on the right side of Figure 3, has been 
developed to help the user to find execution bottlenecks. It shows how to modify 
applications to enhance performance and highlight hardware critical parameters 
for the application. We have adapted [11] the Synthetic Perturbation Analysis 
(SPA) technique based on a factorial design experiments [8]. 
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The application code must be instrumented, manually or using compilation 
techniques, to mark those functions and code blocks which are going to be an- 
alyzed. This process is also separated into different modules: the Critical Path 
[-@--] module finds the critical path of the application, the Profile module 

displays the percentage of time spent by each function (code block) in the critical 
path with reference to the global application time, and the Synthetic Perturba- 
tion Analysis module ~ prepares a set of modified trace files where some of 

the records (those corresponding to the blocks selected by the user) are modi- 
fied by a certain amount. Statistical analysis is presented with the information 
obtained with these modified trace files and by rerunning Dimemas several times. 

The SPA module can help the user to answer questions such as: " What will 
the total time gain be in the application execution if the execution lime of one 
function is improved by 5~?', " What is the influence of the communication 
latency on the total execution time?' and " What is the interaction effect of two 
functions?'. 

6 E x a m p l e s  

This section includes some practical examples on how the DiP environment can 
be used for several purposes in the areas of: the evaluation of the influence of 
communication speed and performance prediction. 

6.1 I n f l u e n c e  o f  N e t w o r k  

The influence of communication latency on overall application time for F F T  and 
PDE applications is analyzed in Figure 4. This figure shows how latency has a 
strong influence on PDE because this application has a lot of communications. 
On the other hand, on F F T  the bandwidth is the important  issue, because it 
does not communicate very often and uses large messages. 

Figure 5 shows the influence of network conflicts in the behavior of the ap- 
plication. As expected, the influence is higher as the communication bandwidth 
decreases, simply because the network is busy for more time. 
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Table 1. PDE-2 prediction results FFT-1 prediction results 

6.2 P r e d i c t i o n  

In this section we present some results obtained using the prediction capabilities 
of the tools. The objective was to predict the performance of the F F T  and PDE 
applications on an SP2 when only a SGI workstation is available. The trace files 
were obtained by running the application on the SGI workstation, on a t ime 
shared environment. The instrumented communication library used was a PVM 
public domain version. 

The parameter for the relative processor speed between one node of an avail- 
able SP2 and our SGI, was obtained by running the sequential application on 
both processors. Table 1 contains the seconds spent for the reM execution, the 
seconds predicted by the simulator and the error average. The columns represent 
the dimension of the problem (2 n) and the rows reflect the number of processors 
employed by the application. 

The results show that  the accuracy of the prediction is fairly good. Even if 
the traces are obtained on a single multiuser workstation and the prediction is 
for a dedicated SP2, our approach shows up as very significant and falls within 
the range of accuracy that  would be sufficient before carrying out very detailed 
tunings on a given target machine. 

6.3 S P A  E x a m p l e  

The code used in this example is a Triangular System of Equations which uses a 
block cyclic data distribution and a broadcast communication model of solution 
blocks. The result of the SPA analysis is the % of time gain from reference 
(initial) execution times. The first part of the analysis module gives the routines 
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Profile Values SPA values 
% of CP time % of total CPU time % of time gain 

routines RUN OVH COM SUM RUNIOVHISUM BLK TotalIBLKIRUN 

main 73.67 0.00 0.00 73.67 90.95 0.00 90.95 0.00 9.21 8.78 9.09 
receive 2.65 0.37 18.50 21.52 5.27 0.75 6.02 23.43 0.36-0.34 0.53 

forward 2.73 1.62 0.00 4.35 1.25 0.75 2.00 0.00 0.15 0.67 0.13 

Table 2. (RUN=Running, OVH=Overhead, COM=Communicating, BLK=Blocked) 

profile (Table 2 Profile values). Only the three most consuming routines are 
shown in this table. 

It is obvious that  the function main is the most CPU consuming and also the 
most influent on the critical path although its contribution to it is not as impor- 
tant  as to the total CPU time. We can also see that the receive routine spent 
18.5% of the total execution time waiting for messages. One possible analysis is 
" What will be the total execution time gain of my application if I reduce one of 
these functions by 10~ f '  

Table 2 (SPA values) shows that  a 10% optimization of the routine main (by 
looking in more detail at the code and cache locality issues for example) would 
result in a 9.21% improvement in the total execution time. These results are a 
bit better than what its contribution to the critical path~had suggested (7.3%). 
The reduction of the computation time within the receive and forward routines 
would minimally influence the performance. Relatively the receive routine would 
improve more than the forward, but the static analysis indicates that  it has a 
slightly higher contribution to the critical path. 

7 R e l a t e d  W o r k  

Many other tools are currently available, ranging from the programming envi- 
ronment at the source code level, as HENCE [3], to the post-mortem visualization 
tools like Paragraph [7]. Unlike the DiP environments, most of them like XPVM 
[6] assume that  all programming resources are available. The DiP approach is 
also to provide a set of tools usually found separately thus providing more effi- 
ciency. These tools are : an instrumented library as PICL [7], Pablo [15] (SDDF 
[1]) , or AIMS [16] but instead of generating wall time events trace files we 
propose a relative times approach, a trace driven simulator as Proteus [4], a 
visualization tool as Paragraph [7], Xab [2], Paradyn [12], XPVM [6] or PARvis 
[14] but based on a single type of representation providing powerful features 
not available on all tools, profiling and statistics functionalities as AIMS [16] or 
Pablo [15] and prediction possibilities as Speedy [13] or AIMS [16]. 

8 C o n c l u s i o n s  

In this paper we have presented an environment developed at CEPBA (Euro- 
pean Center for Parallelism in Barcelona) to reduce costs in parallel program 
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development and tuning. The environment is based on a trace driven simulator 
and a tool for visualizing and analyzing those traces. Its objective is to pre- 
dict the performance of a message passing application on machines not readily 
available while doing most of the development on a workstation. The Synthetic 
Perturbation Analysis makes it possible to determine the relevance of software 
and hardware parameters. 

The design of the tools is modular with the objective of enabling the study 
of other factors of parallel program performance such as locality and cache uti- 
lization, file systems,... 

The environment is being used in several industrial projects with great suc- 
cess. Dimemas, with the Synthetic Perturbation Analysis capabilities, is commer- 
cially available from PALLAS GmbH (Germany) and Paraver will be available 
as a Public Domain product. 
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