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Abstract

A hexanucleotide (GGGGCC) repeat expansion in C9ORF72 is the most common genetic contributor to amyotrophic
lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Reduced expression of the C9ORF72 gene
product has been proposed as a potential contributor to disease pathogenesis. Additionally, repetitive RNAs and
dipeptide repeat proteins (DPRs), such as poly-GR, can be produced by this hexanucleotide expansion that disrupt a
number of cellular processes, potentially contributing to neural degeneration. To better discern which of these
mechanisms leads to disease-associated changes in patient brains, we analyzed gene expression data generated
from the cortex and cerebellum. We found that transcripts encoding heat shock proteins (HSPs) regulated by the
HSF1 transcription factor were significantly induced in C9ORF72-ALS/FTLD patients relative to both sporadic ALS/
FTLD cases and controls. Treatment of human neurons with chemically synthesized DPRs was sufficient to activate
a similar transcriptional response. Expression of GGGGCC repeats and also poly-GR in the brains of Drosophila lead
to the upregulation of HSF1 and the same highly-conserved HSPs. Additionally, HSF1 was a modifier of poly-GR
toxicity in Drosophila. Our results suggest that the expression of DPRs are associated with upregulation of HSF1 and
activation of a heat shock response in C9ORF72-ALS/FTLD.
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Frontotemporal dementia, Frontotemporal lobar degeneration, HSF1, Heat shock response

Introduction
Amyotrophic lateral sclerosis (ALS) is an adult onset

neurodegenerative disease characterized by the loss of

upper and lower motor neurons and muscle atrophy.

Patients become progressively paralyzed and develop

difficulty speaking, swallowing, and eventually breathing.

Survival is typically limited to 2–5 years from the time

of onset, and current treatment options remain limited.

About 90% of cases are seemingly “sporadic” without a

family history of disease and about 10% are familial.

Hundreds of distinct variants in more than a dozen

genes, many of which act with high penetrance, can

increase a person’s risk of developing ALS [46, 51].

The most common genetic contributor to ALS is a

hexanucleotide (GGGGCC) repeat expansion within the

first intron of C9ORF72 [14, 45]. Carriers of the

C9ORF72 expansion can also present with frontotem-

poral dementia (FTD), which is characterized by fronto-

temporal lobar degeneration (FTLD) of the brain. In

many cases, these initially diverse diagnoses can progress

towards the inclusion of neurological features from each

condition leading many to believe they are spectrums of

the same disorder [52]. In addition, both diseases can

be characterized by the presence of TDP-43 positive

inclusions [37].

Three distinct mechanisms have been proposed for how

the C9ORF72 expansion contributes to the development

of ALS and FTLD. First, C9ORF72-ALS brains display
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reduced abundance of C9ORF72 transcripts, suggesting

that a loss-of-function mechanism may contribute to

disease [14]. Although complete loss of C9ORF72 in mice

leads to fatal autoimmunity and changes in microglia, no

obvious signs of neurodegeneration or neural dysfunction

have yet been reported in these animals [8, 23, 39].

Second, mutant transcripts containing the GGGGCC

repeats form intranuclear RNA foci that may sequester

RNA binding proteins and lead to nucleolar stress

[14, 20]. Finally, dipeptide repeat proteins (DPRs) were

unexpectedly found to be translated from both sense and

antisense transcripts containing these repeats [34]. Several

DPRs are toxic when overexpressed in model systems

[11, 26, 33, 55], and have been shown to affect di-

verse cellular pathways, including RNA processing

and nucleocytoplasmic transport [51, 52, 56].

The transcriptional response that occurs in various

brain regions in ALS and FTLD patients has the poten-

tial to provide useful insights into whether genetic

subgroups of patients display common or divergent

mechanisms, and for validating proposed mechanisms

through which mutations act. Here, we explored

RNA-sequencing data from C9ORF72 and sporadic pa-

tients, and identified distinct transcriptional responses in

these two patient classes. We validate a C9ORF72-speci-

fic transcriptional signature in a large patient cohort.

Additionally, we find that similar transcriptional changes

occur in human neurons treated with DPRs and in

gain-of-function Drosophila models.

Methods

Bioinformatics

The processed gene expression count matrix of the

brain-derived RNA-seq datasets from Prudencio et al.

were obtained via GEO (GSE67196). The data was

analyzed using the R library “edgeR” as described by

Prudencio et al., with modifications as follows [41, 47].

Statistical inference was performed with two methods

which we refer to as “double cut-off” and “FDR”. For the

“double cut-off” method, as described by Prudencio et

al., differentially expressed genes called by this approach

had to pass two filters: one cut-off of absolute log2fold

change > 2 and a second cut-off of unadjusted p-value <

0.05. For the “FDR” method, the false discovery rate was

controlled using the Benjamini-Hochberg method [44]

and all genes below a threshold FDR of 0.05 were con-

sidered to be significantly differentially expressed. Add-

itionally, a generalized linear model (glmFit() in edgeR)

was used to model the effect of gender rather than the

exactTest() function, which resulted in slight differences

in the number of differentially expressed genes found

using the double cut-off method when compared to the

original published analysis. Hypergeometric tests were

used to compare sets of genes. Note that a pseudocount

of 0.01 was used for plotting log2(CPM).

Protein-protein interaction networks were generated

using GeNets hosted at the Broad Institute (apps.broa-

dinstitute.org/genets) based on the InWeb network [28].

Associated gene ontology (GO) terms for biological

process based on the GO Consortium were obtained with

multiple testing correction for p-values using g:Profiler

[43]. GO term clustering was performed with Revigo

(reduce and visualize gene ontology, http://revigo.irb.hr/)

[50] to support the identification of representative

biological processes terms.

Brain samples

Protocols were approved by the Mayo Clinic IRB and

Ethics Committee on Human Experimentation. In-

formed consent for post-mortem tissue was obtained

from all individuals or the appropriate next-of-kin. The

diagnosis of ALS and/or FTLD was based on neuro-

logical and pathological examination and C9ORF72

repeat expansion status was determined using

repeat-primed PCR and the cohort was described in

Prudencio et al., including TDP-43 pathology [42]. See

Additional file 1: Table S1 for patient characteristics. For

transcript measurements by quantitative RT-PCR on

human brains, total RNA was extracted and 500 ng of

RNA with RNA integrity values (RIN) higher than 7,

measured by an Agilent Bioanalyzer, and was used for

reverse transcription to synthesize cDNA as previously

described [41]. Using a SYBR green assay (Life Tech-

nologies) samples were run in triplicate on an ABI Prism

7900HT Real-Time PCR System (Applied Biosystems).

Relative mRNA expression of examined genes was nor-

malized to GAPDH and RPLP0 values, the endogenous

transcript controls. Primer sequences are provided in

Additional file 2: Table S2. Statistical differences were

calculated by one-way ANOVA followed by Dunn’s mul-

tiple comparison tests using GraphPad Prism. Associa-

tions between HSF1 and heat shock related transcripts

were evaluated using a Spearman’s test of correlation.

Neuron production and cell culture experiments

Neurons were generated from HuES-3-Hb9:GFP based

on the following neuron differentiation protocol [6].

Human embryonic stem cells were cultured in mTeSR

(Stemcell technologies) on matrigel (Corning)-coated

plates. For motor neuron differentiation, the media was

changed to 1:1 Neurobasal:DMEM/F12 (Life Technolo-

gies) supplemented with N2 (StemCell Technologies),

B27 (Life technologies), Glutamax (Life Technologies),

non-essential amino acids (Life technologies). For the

first week, this neural media was supplemented with

retinoic acid (Sigma Aldrich, 1 μM), smoothened agonist

(SAG, DNSK, 1 μM), BMP inhibitor (LDN-193189,
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DNSK, 100 nM) and TGF-beta inhibitor (SB431542,

DNSK, 10 μM). Then, for the second week, this neural

media was supplemented with retinoic acid, smoothened

agonist, GSK3-beta inhibitor (SU-5402, DNSK, 4 μM),

and gamma-secretase inhibitor (DAPT, DNSK, 5uM).

Upon completion of the differentiation protocol, cells

were dissociated with accutase (Innovative Cell Tech-

nologies) to single cells and sorted via flow-cytometry

for GFP-positive cells to yield GFP-positive neurons,

which were plated on poly-D-lysine(Sigma Aldrich)/

laminin(Life Technologies)-coated plates. Neurons were

maintained in Neurobasal medium supplemented with

N2, B27, Glutamax, non-essential amino acids, and

neurotrophic factors (BDNF, GDNF, CNTF), and allowed

to mature for two weeks before experiments with dipep-

tide repeat proteins (DPRs). Recombinant biotin-tagged

DPRs, (each 20 amino acids in length (poly-GA,

poly-GP, or poly-GR with 10 repeats or scrambled

control poly-GAPR with 5 repeats) were synthesize by

Anaspec with > 95% purity and dissolved in DMSO

(Sigma). Following DPR treatment, RNA was extracted

after 24 h via an RNeasy Minikit (Qiagen), and cDNA

prepared with iScript (Bio-Rad). qRT-PCR reactions

were performed with iTaq SYBR green (Bio-Rad) on a

C1000 touch thermal cycler with CFX real-time system

(Bio-rad). Relative expression was normalized to

GAPDH. Primers were designed from the MGH Primer-

Bank and synthesized by IDT. Primer sequences are

provided in Additional file 2: Table S2. Viability was

measured with CellTiter-Glo (Promega) on a Cyta-

tion3 reader (Biotek). All cell lines tested negative for

mycoplasma using the MycoAlert detection kit (Lonza

LT07–518).

Drosophila lines

Animals were raised and maintained at 18 °C on

standard cornmeal-molasses food. The UAS-(G4C2)n

transgenic models [9, 25], UAS-(GR)36 model [33], and

the HSF overexpression (OE) mutant, HSF[+t8] [22], are

previously defined. UAS-(GR)36, control, and mutant

HSF[+t8] were obtained from Bloomington Drosophila

Stock Center.

qPCR in the adult fly nervous system

UAS-(G4C2)n or UAS-(GR)36 transgenes were driven

by elavGS, a drug-inducible Gal4 driver that expresses

only in neurons. Crosses were setup and maintained at

24 °C. Female progeny with the desired genotype were

collected and matured to 1-3d before being transferred

to vials containing 40μg/ml of RU486. Animals were

aged on RU486-infused food 16d while being flipped

onto fresh drug-infused food every 2-days. Total RNA

was collected from heads of frozen animals using Trizol,

converted to cDNA using random primers, and analyzed

by qPCR using SYBR Green. All primers were previously

developed with the exception of dHSF1, dHSP70,

dBAG3, dStip1, dFkbp4 (Fkbp59), and dChordc1 [5, 12].

Data was normalized to the housekeeping gene, RP49

[17]. Primer sequences are provided in Additional file 2:

Table S2. Full genotypes for (G4C2)n are as follows:

w1118/yw;; UAS-(G4C2)n, elavGS/+. (GR)36 animals,

w1118/yw; UAS-(GR)36/+; elavGS/+, were compared to

controls, w1118/yw;;. For analysis of HSF mutant expres-

sion, briefly, male HSF OE mutant flies were crossed to

w1118 virgin females and maintained at 24 °C. Male

progeny were collected and aged to 5d before analysis.

Full genotype: w1118;; HSF[+t8]/+. Control w1118 males

were maintained and aged in parallel.

External eye analysis

Scoring of the external eye phenotype for (G4C2)49 was

done using a 0–8 scale previously defined where 0 =WT

eye and 8 = lethality (extreme toxicity) [25]. (G4C2)49

expression causes an average degenerative score of 4–5

across multiple studies. Scoring of the external eye

phenotype for (GR)36 was done using a 0–11 scale

where 0 =WT eye and 11 = lethality (extreme toxicity)

(Additional file 3: Figure S5). (GR)36 expression causes

an average degenerative score of 5–6 across multiple

studies.

For optimal eye phenotypes, crosses for (G4C2)n were

setup and maintained at 24 °C and (GR)36 at 21 °C.

Male progeny with the desired genotype were collected

daily and matured to 1-2d before imaging on a Leica

Apo16 microscope. Severity of the external eye pheno-

type was determined post-imaging while looking for

changes in red pigmentation, ommatidial organization,

and eye size. Full genotypes for (G4C2)n are as follows:

“Control” = w1118;; UAS-(G4C2)n, Gmr-Gal4/+ and

“HSF OE” = w1118;; UAS-(G4C2)n, Gmr-Gal4/HSF[+t8].

Full genotypes for (GR)36 are as follows: “Control” =

w1118; UAS-(GR)36/+; Gmr-Gal4/+ and “HSF OE” =

w1118; UAS-(GR)36/+; Gmr-Gal4/HSF[+t8].

Drosophila beta-galactosidase western blots

Western blots are as previously described [25].

Results

Identification of a C9ORF72-associated transcriptional

signature in patient brain samples

There remains much to be learned concerning the mecha-

nisms by which the repeat expansion in C9ORF72 contrib-

utes to ALS and FTLD. Recently, RNA-sequencing

datasets were generated from the frontal cortex as well as

the cerebellum of sporadic ALS cases, C9ORF72-ALS cases

and controls [41]. In Prudencio et al., a “double-cutoff

method” was used for identifying genes whose expression

was significantly changed in each class of ALS patient
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relative to controls (methods). Although such methods are

useful for identifying changes in gene expression, they tend

to be more sensitive to large fold-changes in less abundant

transcripts, while modest fold-changes in abundant

transcripts may go undetected (Additional file 4: Figure S1)

[3, 29]. We reasoned that further analyses of these data

might provide new insights into the disease mechanisms

acting in C9ORF72 and sporadic patients, respectively.

Utilizing a false discovery rate (FDR) threshold of 5%, we

sought to identify changes in abundantly-expressed tran-

scripts and found 56 transcripts that were differentially

expressed between C9ORF72-ALS cortex and controls at

this confidence interval (Additional file 4: Figure S1,

methods). Comparison of sporadic ALS patient and control

cortex with these same metrics identified 65 differentially

expressed transcripts, most (61) of which were downregu-

lated. Consistent with the previous report that sporadic

and C9ORF72 ALS patients display distinct transcriptional

signatures relative to controls, we found no overlap in the

identity of transcripts that we identified as differentially

expressed in the cortex of sporadic ALS and C9ORF72

ALS patient classes (Fig. 1b) [41]. However, the majority of

the genes we had found as likely to be differentially

expressed in sporadic and C9ORF72-ALS patients had not

been previously identified [41], validating the importance

of reanalyzing these sequencing data using the methods we

employed (Additional file 5: Table S3, Additional file 4:

Figure S1, see Methods).

In C9ORF72-ALS, the cortex is characterized by dis-

tinct p62-positive DPR neuronal inclusions and the cere-

bellum contains abundant DPR inclusions [1, 30, 34, 41].

Hence, we reasoned that identifying transcripts with

expression changes shared in both the frontal cortex and

the cerebellum might lead us to genes and pathways that

were reproducibly induced by the C9ORF72 repeat ex-

pansion. Strikingly, 27 of the 56 transcripts differentially

expressed in the C9ORF72-ALS cortex were also

significantly changed in the C9ORF72-ALS cerebellum

(p = 2.93*10− 40; Fig. 1c). Comparison of the fold expres-

sion changes in these 27 transcripts between these two

regions in C9ORF72-ALS brains revealed a strong posi-

tive correlation (R2 = 0.88). Notably, we identified in-

creased abundance for 26 of these 27 transcripts in both

brain regions relative to controls (Fig. 1d). The one ex-

ception was the C9ORF72 transcript itself which showed

reduced abundance (57% cortex, FDR = 0.0169; 42%

cerebellum, FDR = 2.75*10− 5), in agreement with previ-

ous studies of patient brains [14, 52, 53]. In contrast to a

a d

b

e

c

f g

Fig. 1 Identification of specific cellular pathways perturbed in sporadic ALS and C9ORF72-ALS a Diagram of RNA-seq datasets obtained from the
frontal cortex and cerebellum by Prudencio et al. b Comparison of the significant (FDR < 0.05) differentially expressed transcripts in C9ORF72-ALS

(C9-ALS) and sporadic ALS (sALS). Note, there were no common transcripts between C9ORF72-ALS and sporadic ALS in either brain region.
c Comparison of the differentially expressed transcripts by brain region. d Correlation of the fold change (log2) of changed transcripts in
C9ORF72-ALS that were common to both brain regions (Spearman’s R2) e, f Gene ontology (GO) analysis revealed cellular processes affected in

C9ORF72-ALS and sALS. g Protein-protein interaction analysis of proteins encoded by the transcripts changed in C9ORF72-ALS revealed a protein
chaperone network
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prior analysis, we detected no significant transcriptional

changes between the cerebellum of sporadic ALS cases

and controls (Fig. 1b), consistent with this region being

histologically unremarkable in sporadic cases [2].

To determine if the transcripts significantly changed in

C9ORF72 and sporadic ALS cortex pointed to particular

pathways that might be responding to disease processes,

we carried out gene ontology (GO) analysis. Transcripts

identified in C9ORF72-ALS were significantly associ-

ated with response to topologically incorrect proteins

(p = 2.13*10− 6) and protein folding (p = 4.57*10− 7)

(Fig. 1e). In contrast, differentially expressed transcripts

detected in sporadic ALS were associated with functions

in the mitochondrial respiratory chain complex assembly

(p = 8.53*10− 21) and related terms (Fig. 1f), and included

9 members of the NADH dehydrogenase (complex I) en-

zyme and 6 components of cytochrome oxidase C (com-

plex IV) (Additional file 6: Figure S2A). These findings

suggest that the transcriptional responses in the C9ORF72

and sporadic ALS cortex might be reflective of changes in

protein and mitochondrial homeostasis, respectively. We

also asked whether any of the C9ORF72-associated tran-

scripts encoded proteins that interact in particular com-

plexes. Using the InWeb protein-protein interaction

network [28], analysis of the 56 differentially expressed

transcripts from C9ORF72 cortex identified an interaction

network involving heat shock proteins (HSPs) and protein

chaperones, with HSPA1B (HSP70) and HSPB1 (HSP27)

at its hubs (Fig. 1g). Examination of protein interactions

from the 221 transcripts differentially expressed in the

C9ORF72 cerebellum revealed a similar and expanded

network of more than 80 interactors that was centered on

the same core HSPs (Additional file 6: Figure S2B).

Activation of the HSF1 pathway in C9ORF72-ALS/FTLD

A well-established regulator of HSP and protein

chaperone expression is the transcription factor heat

shock factor 1 (HSF1) [57]. Hence, we wondered if the

transcriptional response we observed in the C9ORF72

brain might be at least in part mediated by activation of

HSF1. To explore this possibility, we turned our atten-

tion to established HSF1 target genes previously identi-

fied by ChIP-seq and genome-wide methods [31, 32, 49].

Consistent with the notion that a portion of the re-

sponse in C9ORF72 patient brain was mediated by

HSF1, 13 of the 27 transcripts identified as significantly

changed in both the cerebellum and frontal cortex were

among 812 genes bound by HSF1 after heat shock treat-

ment across three human cell lines (p = 1.22*10− 12) [32],

including several HSPs shown to be upregulated in the

initial small C9ORF72-ALS cohort [41].

As a next step towards investigating whether activation

of the HSF1 might be responsible for the induction of

these genes in C9ORF72 patients, we used quantitative

RT-PCR to measure the transcript abundance of HSF1

and 11 of these conserved HSP-associated transcripts in a

much larger patient cohort that also included patients di-

agnosed with FTLD and both ALS and FTLD (n = 56

C9ORF72-ALS/FTLD, n = 46 sporadic ALS/FTLD, n = 8

controls). In the frontal cortex, expression of each of these

11 HSF1 target genes was significantly increased in the

C9ORF72-ALS/FTLD cohort relative to controls (p < 0.05

or lower for each gene) and to sporadic cases (p < 0.01 or

lower) (Fig. 2a, Additional file 7: Table S4). Next, we ex-

tended our expression analyses of these 11 HSF1 targets

to the cerebellum, and again found that the abundance of

each transcript gene was significantly elevated in

C9ORF72-ALS/FTLD relative to both controls and spor-

adic ALS cases (Additional file 8: Figure S3A, Additional

file 7: Table S4). For example, we found a significant, two

orders of magnitude induction of the HSP70 transcript

HSPA1B in C9ORF72-ALS/FTLD cases relative to con-

trols. To investigate if the larger number of genes initially

detected only in the C9ORF72 cerebellum might also be

reflective of a heat shock response, we examined another

HSF1 target gene CRYAB and found it was significantly

upregulated in both C9ORF72 brain regions in this larger

patient cohort (Fig. 2a, Additional file 8: Figure S3A).

Evaluation of HSF1 expression in these same samples

demonstrated that it was significantly more abundant in

both the cortex and cerebellum relative to sporadic ALS

cases (P < 0.05) (Fig. 2b). We found a strong and consist-

ent correlation between the levels of HSF1 and each of

these C9ORF72-chaperome transcripts in both brain

regions (p < 0.0001 for each gene, Additional file 8:

Figure S3B). For instance, the relationship between the

transcript levels of HSF1 and HSPB1 yielded an R2 value

of 0.73 (95% CI 0.63–0.81) in the cortex and 0.65 (95%

CI 0.52–0.75) in the cerebellum. Taken together, these

findings indicate that HSF1 is activated in

C9ORF72-ALS and FTLD patient brains and suggests

that it is regulating the expression of the HSPs we found

to be induced there.

DPRs are sufficient to induce a C9ORF72-associated

transcriptional changes

The C9ORF72 GGGGCC repeat expansion is translated

from both sense and anti-sense transcripts through

non-ATG translation to generate 5 distinct dipeptide re-

peat proteins (DPRs), e.g. poly-glycine-arginine (poly-GR)

[18, 34, 52]. We wondered if DPRs alone were sufficient

to induce the upregulation of C9ORF72 signature tran-

scripts. Therefore, we tested the effects of synthetic DPRs

in human stem cell-derived neurons [26]. GP10, GA10 and

a scrambled GAPR5 control were not acutely toxic to the

parental human stem cell line or stem-cell derived neu-

rons. In contrast poly-GR10 resulted in a dose-dependent

decrease in the viability of stem cell-derived neurons, but
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not the stem cell from which they were produced (Fig. 3b).

In human neurons, we found that both poly-GA and

poly-GR led to the significant upregulation of

HSPA1B (p < 0.01), as well as additional C9ORF72 sig-

nature transcripts (Fig. 3c). Given that poly-GA is not

associated with decreased viability in these conditions,

this suggests that the observed transcriptional changes

are not simply a consequence of general neuronal

toxicity. There was a strong correlation (R2 = 0.58) be-

tween the degree of induction of these transcripts in

human neurons by poly-GR and the changes present

specifically in C9ORF72 brains. Upon measuring

HSF1, there was a trend for increased levels with

poly-GA and poly-GP, and the greatest increase was

again observed with poly-GR (Fig. 3d). These findings

support the notion that gain-of-function effects from

DPRs are sufficient to induce HSF1 target genes that

are upregulated in C9ORF72-associated disease.

Detection of C9ORF72-associated transcriptional changes

in gain-of-function Drosophila models

To test for correlations in DPR production and altered

HSF1 target gene expression in vivo, we evaluated a

Drosophila gain-of-function transgenic model engi-

neered to express 49 pure GGGGCC repeats driven by a

drug-inducible neuronal-specific ElavGS-GAL4 driver

[25, 33]. Fly models expressing toxic GGGGCC repeats

produce DPRs and RNA foci [16, 33, 54]. We found
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Fig. 2 Activation of HSF1 in C9ORF72-ALS, FTLD, and combined ALS/FTLD patients. a Quantitative real-time PCR (qRT-PCR) for HSF1 target genes
in the frontal cortex of sporadic and C9ORF72-associated disease (n = 56 C9ORF72-ALS/FTLD, n = 46 sporadic ALS/FTLD, n = 9 controls) (one-way
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frontal cortex and cerebellum of these same cases
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significant increased expression of the Drosophila

orthologs of conserved C9ORF72-associated HSPs and

protein chaperones in flies expressing 49 repeats in

neurons compared to controls (Fig. 4a). Upregulation

of HSF1-associated genes was observed in the absence

of significant animal death, arguing that the effect is

specific to expression of (GGGGCC)49. Note that

these expression changes are likely to be an under-

estimation of the actual changes caused by the re-

peats in vivo since (GGGGCC)49 was only expressed

in neurons while gene expression changes were

assayed using whole heads, including non-neuronal

tissue. Additionally, we detected an increase in HSF1

expression similar to that observed in C9ORF72 pa-

tient brains (Fig. 4a). This demonstrates that at least

part of the transcriptional response to the C9ORF72

repeat expansion is conserved in Drosophila, and is

consistent with gain-of-function effects of the

C9ORF72 repeat expansion driving the expression of

HSF1 target genes.
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Activation of the HSF1 pathway has been proposed to

be protective in several neurodegenerative diseases associ-

ated with protein aggregation as a means to combat the

cellular effects of toxic proteins [35]. Given that we ob-

served an HSF1 heat shock response in C9ORF72 patients

and model systems, we wondered whether HSF1 may be a

potential modifier of C9ORF72 gain-of-function toxicity.

To investigate this idea, we selected a fly line harboring an

additional allele of the Drosophila HSF1 ortholog (dHSF1)

[22]. We confirmed increased dHSF1 expression in this

line and noted that it was comparable to the relative

increase in dHSF1 expression observed in response to the

GGGGCC repeat expansion (Fig. 4b). The presence of

additional dHSF1 did not affect the expression of a control

LacZ transgene (Fig. 4c). We next asked if this increase in

dHSF1 would have an effect on GGGGCC-mediated

toxicity and used the Gmr-Gal4 driver to specifically

express the repeats in the fly optic system to assess

the effect on the eye. Consistent with prior observa-

tions, GGGGCC49 expression in the eye during devel-

opment led to generation of animals with eye

degeneration and disruption of the highly regular om-

matidial structure, reduced eye size, and loss of pig-

ment (Fig. 4d) [25, 33]. dHSF1 upregulation by itself

did not affect eye structure in the presence of a con-

trol GGGGCC8 (Fig. 4d). Surprisingly, we found that

GGGGCC49-induced toxicity in the external eye was

enhanced in the presence of dHSF1 overexpression

(Fig. 4d, e).

Among the repeat expansion encoded DPRs,

arginine-rich DPRs are particularly toxic in model sys-

tems, including Drosophila [33]. Given that the expression

of GGGGCC49 is associated with the production of both

DPRs and potentially toxic RNA, we assayed the tran-

scriptional effects of poly-GR in vivo. There was signifi-

cant upregulation of dHSF1 and many HSF1-regulated

transcripts in Drosophila expressing a poly-GR100 trans-

gene in neurons compared to non-transgenic controls

(Additional file 9: Figure S4). We additionally tested the

effects of modulating dHSF1 levels in the optic system of

poly-GR Drosophila again using Gmr-GAL4 to drive

transgene expression. We observed exacerbation of

poly-GR36 external eye toxicity in the presence of dHSF1

upregulation (Fig. 4h, j). These results argue that the

changes in toxicity caused by added dHSF1 in the GGGG

CC49 model is in part due to the effects of GR-dipeptide.

Taken together, these findings suggest that augmentation

of HSF1 activity may enhance DPR-mediated toxicity in

Drosophila.

Discussion

In this study, we have identified novel differentially

expressed transcripts in C9ORF72-ALS based on analysis

of two brain regions compared to controls. Every

C9ORF72-associated transcript was not significantly

altered in sporadic ALS, suggesting that the observed

changes in this set of transcripts are not just an indicator

of neuronal loss but rather reflective of C9ORF72-

specific pathogenesis. Furthermore, we validated our

C9ORF72 transcriptional signature in a large ALS/FTLD

patient cohort and gain-of-function models.

Our findings specifically link activation of the HSF1

pathway to C9ORF72-ALS/FTLD. The HSF1 pathway is

highly conserved from budding yeast to mammals and is

an important mediator of the compensatory response to

disruptions in proteostasis, such as heat shock [49].

Impairment of HSF1 activity and loss of protein

chaperone function have been reported to occur with

ageing and in the setting of age-related neurodegeneration

[7, 21, 35]. For instance, in models of poly-glutamine

repeat-associated Huntington disease decreased expres-

sion of HSF1 target genes is observed and may contribute

(See figure on previous page.)
Fig. 4 a Control UAS-(G4C2)8 and expanded UAS-(G4C2)49 transgenes were expressed in the adult fly nervous system using the drug-inducible

Gal4 driver, elavGS, for 16d. Quantitative PCR (qPCR) analysis of endogenous dHSF1 and HSF1-regulated genes revealed significant upregulation
with (G4C2)49 expression compared to (G4C2)8 controls. Differences in expression are likely underestimated as the analyses include neuronal and

non-neuronal tissue while (G4C2)n was expressed only in neurons. b qPCR analysis of a dHSF1 overexpression mutant fly line shows endogenous
HSF is upregulated approximately 2-fold in mutant flies compared to control. c Western immunoblot analysis of expression of a control UAS-LacZ
transgene confirmed that the HSF OE mutant did not affect the Gal4/UAS expression system. d (G4C2)49 was expressed in the optic system of

control animals or HSF OE animals using Gmr-Gal4. (G4C2)49 causes toxicity seen by pigment loss, reduced eye size, and disruptions in the
normal ommatidial organization. In HSF OE animals, toxicity of (G4C2)49 is enhanced – animals have increased pigment loss, increased disruption

of ommatidial organization, and further reduced eye size. Expression of control (G4C2)8 in the fly optic system (Gmr-Gal4) of control and HSF OE
animals does not affect the external eye. e Quantification of the external eye degenerative phenotype caused by (G4C2)49 expression shows
enhancement in HSF OE animals versus control animals to be consistent and statistically significant (n = 6). Animals received a score between 0

(WT eye) and 8 (lethality caused by extreme degeneration in the optic system). (G4C2)49 expression causes an average score of 4 in controls.
f Gmr-GAL4 driven expression of (GR)36 shows toxicity in control scenarios like (G4C2)49. HSF OE in these animals also causes enhanced toxicity
(increased pigment loss, increased disruption of ommatidial organization, and reduced eye size) g Quantification of the external eye degenerative

phenotype caused by (GR)36 expression shows enhancement in HSF OE animals versus control animals to be consistent and statistically
significant (n = 7). Animals received a score between 0 (WT eye) and 11 (lethality caused by extreme degeneration in the optic system) while

(GR)36 causes an average score of 5 in controls. (All plots: mean +/− SD, unpaired, student’s t-test, *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001)
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to protein aggregation [10]. Likewise, decreased expres-

sion of a particular set of protein chaperones, including

HSP90, occurs in Alzheimer disease and Parkinson disease

[7]. In C9ORF72-ALS/FTLD, we found robust increased

expression of a family of protein chaperones and

co-chaperones, consistent with activation of a heat shock

response in this particular disease. Our study may provide

the first evidence of increased, rather than impaired, activ-

ity of HSF1 based on human brain samples for a specific

neurodegenerative disease. In addition, HSF1 is generally

not thought to be regulated at the transcriptional level in

the context of neurodegeneration. We found upregulation

of HSF1 itself in C9ORF72-ALS/FTLD and a strong cor-

relation between levels of HSF1 and its target genes. It will

be important to examine transcriptional changes in HSF1

in post-mortem brain samples of additional neurodegener-

ative diseases.

Prior studies in model systems have suggested that

HSF1 is a protective factor that helps neurons cope with

cellular stress associated with misfolded proteins and

protein aggregates [19]. Unexpectedly, we observed that

having additional HSF1 in the developing eye in two

Drosophila models of C9ORF72-ALS/FTLD was not

beneficial. Additional studies in these Drosophila models

that characterize the functional consequences of the loss

of individual HSF1-associated protein chaperones and

HSPs may be useful to further dissect the relationship

between this pathway and C9ORF72-related pathology.

Pharmacological activation of HSF1 has been proposed

as a therapeutic strategy to enhance protein chaperone

function and neuronal survival in neurodegenerative

disease [36]. For instance, arimoclomol, which may act

to enhance HSF1-pathway activation, has been shown to

delay disease progression in an SOD1 overexpression

mouse model [24]. A phase II clinical trial for arimoclo-

mol was recently conducted for a subtype of familial

ALS associated with mutations in SOD1 and was found

to be well-tolerated [4]. Our findings suggest that add-

itional pre-clinical studies may be warranted if this strat-

egy is applied to other forms of ALS, especially the most

common type of ALS, C9ORF72-ALS, and associated

dementias. Additionally, the transcriptional differences

present among distinct cohorts of ALS/FTLD patients

re-emphasizes the potential importance of patient strati-

fication by genotype for future clinical trials.

Several studies have aimed to identify the specific

transcriptional changes and pathways affected by the

C9ORF72 repeat expansion in patient-based cellular

models, including iPSC-derived neurons, with little con-

cordance among them [13, 15, 27, 48]. Gene expression

changes have also been explored in a few animal models

for this disease. In a loss-of-function mouse model lack-

ing both copies of C9ORF72, transcriptional analysis of

the spinal cord from C9ORF72−/− animals revealed

significant changes in several pathways related to inflam-

mation [39]. On the other hand, gain-of-function bacterial

artificial chromosome (BAC) transgenic mouse models

harboring the human C9ORF72 repeat expansion have

been generated with varying phenotypes and transcrip-

tional changes. In one model containing exons 1–6 of hu-

man C9ORF72 with approximately 500 hexanucleotide

repeats, no significant changes in the transcriptome of the

frontal cortex at 6 months of age were reported [40]. In

another BAC mouse model with 100–1000 repeats,

immunomodulatory and extracellular matrix pathways

were identified as being altered in the frontal cortex also

at 6 months of age [38]. Although both of these BAC

mouse models exhibit DPR inclusions in the nervous sys-

tem that increase with age, evidence of neurodegeneration

was not observed. One possibility is that DPRs did not

reach sufficient levels in these models at the examined

time points to induce neurodegeneration or the transcrip-

tional changes described herein. Indeed, robust expression

of DPRs using an adeno-associated viral vector with 66

repeats was sufficient to induce DPR aggregates,

TDP-43-positive inclusions, neuronal loss, and behavioral

deficits in mice [11]. However, gene expression studies

have not yet been performed in this viral mouse model.

Using two gain-of-function Drosophila models, we

found upregulation of many Drosophila orthologs of the

same genes that were upregulated in C9ORF72 patient

brains. This is consistent with the notion that more

potent expression of DPRs in models is essential to re-

capitulate C9ORF72 transcriptional changes and disease

phenotypes. Our approach and findings starting with un-

biased transcriptional analysis of patient samples may be

useful for the characterization and assessment of existing

and new models employed to study C9ORF72 disease.

Based on our findings, we propose the following model.

The presence of the C9ORF72 repeat expansions results

in the production of various toxic DPRs. In early life, neu-

rons can degrade DPRs or perhaps sequester them into

protective p62-positive inclusions. With aging, there is a

decreased capacity of neurons to maintain proteostasis,

and environmental insults may be associated with

additional proteotoxic stress. This leads to the gradual

accumulation of DPRs and the activation of a heat shock

response to increase protein chaperones, perhaps in an at-

tempt to refold inherently unstructured DPRs. However,

increased HSF1 activity may actually contribute to

DPR-dependent toxicity. One possibility is that the result-

ing increased levels of protein chaperones may promote

the solubility or the stability of toxic DPRs. This model

could partially explain the variable disease penetrance and

expressivity by which the C9ORF72 repeat expansion acts

to cause ALS and/or FTLD. It could be that natural hu-

man variation in the HSF1 response influences when and

where the repeat expansion results in neurodegeneration.
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Conclusions
In summary, we have identified specific gene expression

changes in C9ORF72 disease that are consistent with the

activation of a HSF1-associated transcriptional response.

We found that the expression levels of HSF1 and protein

chaperones are increased in C9ORF72-ALS/FTLD

patients and in gain-of-function model systems. Our

results suggest that DPRs encoded by the C9ORF72

hexanucleotide repeat expansion are sufficient to lead to

the upregulation of HSF1 and its target genes. The ef-

fects of the HSF1 pathway on C9ORF72 pathogenesis in

models of disease that express DPRs warrants further in-

vestigation.
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