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Abstract 

Background: Dipeptidyl-peptidase-4 (DPP4) identifies a dermal fibroblast lineage involved 

in scaring during wound healing. The role of DDP4 in tissue fibrosis, however, is unknown. 

The aim of the present study was to evaluate DPP4 as a potential target for the treatment of 

fibrosis in systemic sclerosis (SSc). 

Methods: The expression of DPP4 was analyzed by real-time PCR, immunofluorescence and 

Western blot. The activity of DPP4 was modulated by overexpression, knockdown and 

pharmacological inhibition using Sitagliptin and Vildagliptin. The effects of DPP4 inhibition 

were analyzed in human dermal fibroblasts and in different mouse models of SSc (n=6). 

Results: The expression of DPP4 and the number of DPP4 positive fibroblasts were 

increased in fibrotic skin of SSc patients in a TGF-β dependent manner. DPP4 positive 

fibroblasts expressed higher levels of myofibroblast markers and collagen (p<0.001). 

Overexpression of DPP4 promoted fibroblast activation, whereas pharmacological or genetic 

inactivation of DPP4 reduced proliferation, migration, expression of contractile proteins and 

release of collagen by interfering with TGF-β-induced ERK signaling (p<0.001). DPP4-

knockout mice were less sensitive to bleomycin-induced dermal and pulmonary fibrosis 

(p<0.0001). Treatment with DPP4 inhibitors promoted regression of fibrosis induced by 

bleomycin- or chronic graft-versus-host disease and ameliorated fibrosis in TSK1 mice 

(p<0.001). The antifibrotic effects were associated with reduced inflammation.  
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Conclusion: DPP4 characterizes a population of activated fibroblasts and regulates TGF-β-

induced fibroblast activation. Inhibition of DPP4 exerts potent anti-fibrotic effects in well 

tolerated doses. These results may have direct translational implications as DPP4 inhibitors 

are already in clinical use for diabetes. 

 

Systemic sclerosis (SSc) is a chronic fibrotic disease, that is associated with the highest case 

specific mortality of all connective tissue diseases (1). The central histopathologic hallmark 

of SSc is the uncontrolled and persistent activation of fibroblasts, which release excessive 

amounts of extracellular matrix (2). Fibroblasts are key effector cells in fibrotic diseases. 

Fibroblasts are, however, not a uniform population of cells, but compose of functionally and 

phenotypically different subsets. Emerging evidence highlights that chronic inflammatory 

diseases including rheumatoid arthritis are associated with dysbalances in the ratio of 

different fibroblast subsets and that those shifts may drive disease progression (3-7). The 

complexity of different fibroblast subsets in fibrotic diseases such as SSc is less well 

understood. However, it is well established that fibroblasts in fibrotic diseases can acquire an 

activated, so-called myofibroblast phenotype (8, 9). Although transforming growth factor β 

(TGF-β) has emerged as a core pathway of fibroblast activation in SSc and in other fibrotic 

diseases, the molecular mechanisms underlying the persistent activation in fibroblasts remain 

incompletely understood (10). 

Dipeptidyl-peptidase-4 (DPP4, also known as CD26) exists either as a type II transmembrane 

protein or as a soluble form (11, 12). DPP4 functions as serine protease that hydrolyses 

proline or alanine from the N-terminus of a broad range of polypeptides (13, 14). DPP4 

inactivates incretin hormones such as glucagon-like peptides or glucose-dependent 

insulinotropic peptide to inhibit insulin secretion and to promote diabetes mellitus. These 

findings have been successfully translated from bench-to-bedside and DPP4 inhibitors are 
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currently widely used for the treatment of diabetes mellitus (15). However, the substrates of 

DPP4 are not restricted to incretin hormones, but include also a broad range of other soluble 

mediators such as chemokines. Moreover, DPP4 can modulate intracellular signaling not only 

via proteolytic cleavage of substrates, but also via direct interaction with key-regulatory 

molecules such as CD45 or adenosine deaminase, playing immune regulatory functions (16, 

17). DPP4 has been playing a costimulatory role in T cells, to promote T- and B cell 

activation (13, 18). Treatment with DPP4 inhibitors lowered the incidence of autoimmune 

disorders in patients with diabetes mellitus (19). Of particular interest, Rinkevich and 

coworkers recently demonstrated that DPP4 expression identifies an embryonic fibroblast 

lineage with unique functions in wound healing (20). They demonstrated that DPP4-

expressing fibroblasts accounted for the bulk of connective tissue deposition upon surgical 

wounding. Inhibition of DPP4 reduced scaring without negatively affecting wound closure, 

suggesting that DPP4 inhibition may offer an avenue for selective targeting of a fibroblast 

population with high capacity of matrix production, while not affecting other populations 

with more homeostatic functions (20). However, the concept of a DPP4-expressing 

subpopulation of active, matrix-producing fibroblasts has not yet been translated and 

validated in the context of SSc. 

In the present study, we aimed to characterize the role of DPP4 in fibroblast activation and 

tissue fibrosis. We demonstrate that 1.) DPP4 marks a population of activated fibroblasts, 

increased in SSc and in experimental fibrosis in a TGF-β dependent manner; 2.) DPP4 

regulates fibroblast activation and collagen release in vitro and in vivo; 3.) pharmacological 

inhibition of DPP4 with approved drugs induces regression of pre-established fibrosis in well 

tolerated doses, and 4.) despite consistent anti-inflammatory effects across different murine 

models, the anti-fibrotic effects are mainly mediated on DPP4 expression in tissue-resident 

cells such as fibroblasts.   
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Material and Methods 

 

Additional, more detailed information on Material and methods can be found in the 

supplement of this manuscript. 

 

Patients and cells 

Skin biopsies were obtained and dermal fibroblasts were isolated from 23 SSc patients and 21 

healthy volunteers matched for sex and age. All SSc patients fulfilled the ACR/EULAR 

criteria for SSc (21). According to LeRoy classification of systemic sclerosis, 15 (65.2%) 

patients were diffuse and 8 (34.7%) patients belonged to the limited cutaneous subset of SSc.  

Sixteen patients were female, seven were male. The median age of patients with SSc was 

52.7±12.3 years (mean ± SD), and their median disease duration was 4.3 ± 2.2 years. 5 

(21.7%) patients were treated with immunosuppressive drugs at the time of biopsy (low dose 

steroids, methotrexate) or had received in the past cyclophosphamide or rituximab. All 

patients and healthy volunteers signed an informed consent approved by the local institutional 

review board.  

Serum samples were collected from 50 SSc (53.8% diffuse cutaneous SSc) patients fulfilling 

the ACR/EULAR criteria and 30 healthy controls. The median age of SSc patients was 55.6 

±13.4 years (mean±SD) with a mean disease duration of 7.2 ± 3.4 years (mean ± SD). 11 

(22,0%) patients were under treatment with immunosuppressive drugs.  

In addition to human fibroblasts, murine fibroblasts were isolated from DPP4 knockout 

(DPP4-KO) mice and wildtype (WT) littermates (22). 
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Western blot analysis   

Proteins were separated by SDS-PAGE and transferred to a polyvinylidene difluoride 

membrane. The membranes were incubated with antibodies against SMAD3 (Santa Cruz 

Technologies, Heidelberg, Germany), pp44/p42 MAPK (Erk1/2), p44/p42 MAPK (Erk1/2), 

SAPK/JNK, pp38 MAPK. p38 MAPK, pAkt, Akt (pan), pNF-kB p65, NF-kB p65, pSRC 

(Cell Signaling, Boston, USA) or DPP4, pJnk (Abcam, Cambridge, UK) primary antibody 

and HRP-conjugated secondary antibodies (Dako, Hamburg, Germany). Blots were 

visualized by ECL. β-actin was used as loading control (23).  

 

Inhibition of canonical and non-canonical TGF-β pathways 

To investigate the effect of TGF-β non-canonical pathway on DPP4 expression, dermal 

fibroblast were incubated with the ERK inhibitor FR180204 (10µM) (Tocris Bioscience, 

Bristol, UK), the JNK inhibitor SP600125 (80µM) (Tocris Bioscience), the p38 inhibitor 

SP202190 (1µM) (Tocris Bioscience), the AKT inhibitor GSK690693 (0.1µM) (Tocris 

Bioscience), the SRC inhibitor SU6656 (500nM) (Tocris Bioscience), the NF-kB inhibitor 

Bengamide B (0.1µM) (Tocris Bioscience), the ABL inhibitor imatinib (1µg/ml) (Novartis, 

Basel, Switzerland), or the JAK inhibitor Ruxolitinib (5µM) (LC Laboratories, Boston, USA) 

for 4 hours before stimulation with TGFβ (10ng/ml) (24, 25). To block the canonical 

pathway, SIS3 (3µM, Sigma-Aldrich, Steinheim, Germany) was used. SD208 was used to 

inhibit the TGF-β receptor I-kinase activity (26, 27). Total RNA was isolated with the 

NucleoSpin RNA II extraction system (Machery-Nagel, Düren, Germany) and reverse 

transcribed into complementary DNA (cDNA) with random hexamers. 
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Immunohistochemistry and immunofluorescence staining 

Formalin-fixed, paraffin-embedded human or murine skin sections or fibroblasts fixed in 4% 

PFA were stained with antibodies against αSMA (Life Technologies, Darmstadt, Germany), 

DPP4, vimentin or prolyl-4-hydroxidase, CD45, CD3 and B220 (all from Abcam), pERK 

(Cell Signaling). HRP-conjugated or Alexa Fluor antibodies (Life Technologies) were used 

as secondary antibodies. Irrelevant isotype matched antibodies served as controls (9). Nuclei 

were counterstained using DAPI (Santa Cruz). The staining was analyzed using a Nikon 

Eclipse 80i microscope (Nikon, Badhoevedorp, Netherlands).  

 

Mouse models of SSc 

Bleomycin-induced skin fibrosis - preventive and therapeutic dosing 

DPP4-KO mice and wildtype (WT) littermates were injected subcutaneously with bleomycin 

or 0.9 % sodium chloride (NaCl),  for four weeks (28, 29). Another group of mice was treated 

in parallel with the DPP4 inhibitor, Sitagliptin 10mg/kg (Selleckchem, Houston, USA), 

throughout the four weeks of bleomycin-challenge.   

In the therapeutic, fibrosis was first induced by injection of bleomycin for three weeks (30). 

Thereafter, treatment with Sitagliptin 3mg/kg and 10mg/kg and Vildaglipin 1.5mg and 

15mg/kg (Biomol, Hamburg, Germany) was initiated for another three weeks, while mice 

were further challenged with bleomycin. The outcome was analyzed after six weeks after the 

first injection of bleomycin. Mice injected with 0.9% sodium chloride served as controls. 

 

Sclerodermatous chronic graft-versus-host disease (cGvHD) 

In the B10.D2→Balb/c (H-2(d)) minor histocompatibility antigen-mismatched model, 

cGvHD was induced by allogeneic transplantation of 5×106 splenocytes and 1×106 bone 

marrow cells from B10.D2 mice into sub-lethally irradiated BALB/c (H-2d) mice. BALB/c 
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(H-2d) mice transplanted with splenocytes and bone marrow cells isolated from BALB/c (H-

2d) mice served as controls (31, 32). Treatment started after appearance of first clinical signs 

of cGvHD at day 21 post transplantation, and the outcome was analyzed after six weeks. 

 

Bleomycin-induced pulmonary fibrosis 

DPP4-KO and WT mice were intratracheally injected with bleomycin or 0.9 % NaCl (27). 

Mice were sacrificed 4 weeks after injection. A subgroup of mice was treated with Sitagliptin 

in doses of 10mg/kg from days 1 - 28. 

 

Generation of bone marrow chimeric mice 

Mixed-bone marrow chimeras were generated by transplanting bone marrow from DPP4-KO 

mice into WT mice or vice versa. Before transplantation, recipient mice (DPP4-KO or WT-

mice) were sub-lethally irradiated (33). Bone marrow cells were isolated from tibial and 

femoral bones of DPP4 KO donor mice and injected into WT mice (KOWT mice) or 

DPP4-KO (KOKO). Similarly, bone marrow cells from WT mice were injected into 

DPP4-KO mice (WTKO) and into wildtype mice (WTWT). Fibrosis was induced by 

subcutaneous or intratracheal injections of bleomycin 10 days after bone marrow 

transplantation. 

 

Histological, biochemical and immunohistochemical analyses of the extent of fibrosis  

The extent of fibrosis was analyzed using histological, radiologic, biochemical, and 

immunohistochemical readouts. Histologic readouts included quantification of the dermal 

thickness on Hematoxylin Eosin (HE) stained sections at eight sites at 100-fold magnification 

(34), evaluation of the fibrotic area as percent of total lung area in Sirius Red stained sections 

(35); quantification of pulmonary changes using the Ashcroft score (36) and direct 
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visualization of collagen by trichrome staining (27). The total collagen content was analyzed 

biochemically using hydroxyproline assays. In addition, myofibroblasts were identified 

immunohistochemically as α-smooth muscle actin (αSMA) positive.  

 

Statistics 

All data are presented as median ± interquartile range, and differences between the groups 

were tested for their statistical significance by paired student t-tests for related samples and 

Mann-Whitney U non-parametric test for non-related samples. P-values less than 0.05 were 

considered significant. P-values are expressed as follows: 0.05 > p > 0.01 as *; 0.01 > p > 

0.001 as **; p < 0.001 as ***. 

 

Results 

DPP4 expression is increased in SSc fibroblasts 

We observed increased expression of DPP4 in the skin of SSc patients compared to matched 

healthy individuals (Fig. 1A). Co-staining with prolyl-4-hydroxylase-β (P4H) demonstrated 

that fibroblasts express high levels of DDP4. DPP4 was also expressed in B and T cells of 

SSc patients, but fibroblasts were the dominant cell type expressing DPP4 in SSc skin (Suppl. 

Fig. 1). In SSc, 75.8% (±7.8%) of P4H-positive fibroblasts were stained for DPP4, whereas 

only 29.1% (±8.3%) of fibroblasts in healthy skin expressed DPP4 (Fig. 1A). Significantly 

more DPP4-positive fibroblasts co-expressed alpha smooth muscle actin (αSMA) as 

compared to DPP4-negative fibroblasts, indicating that DPP4 marks a subpopulation of 

activated fibroblasts (Fig. 1B). We also observed increased expression of DPP4 in murine 

models of SSc such as bleomycin-induced skin fibrosis (Fig. 1C) and the B10.D2 (H-2d)  

BALB/c (H-2d) model of sclerodermatous chronic graft versus host disease (cGvHD) with 
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prominent staining of DPP4 in fibroblasts (Fig. 1C). Moreover, the protein level of DPP4 is 

elevated in SSc fibroblasts compared to dermal fibroblasts from healthy individuals (Fig. 1B).  

The levels of soluble DPP4 in the serum did not differ between patients with limited 

cutaneous and diffuse cutaneous SSc and healthy controls (Suppl. Fig. 2A). The enzymatic 

activity of DPP4 also did not differ between serum samples of SSc patients and controls.  

 

TGF-β induces DPP4 expression in fibroblasts via ERK 

Incubation of normal human dermal fibroblasts with recombinant TGF-β mimicked the DPP4 

expression pattern of SSc fibroblasts with increased protein levels of DPP4 after 24 and 48 h 

(Fig. 2A), but normal mRNA levels (data not shown). We next analyzed, whether stimulation 

with TGF-β may induce the enzymatic activity of DPP4 in human dermal fibroblasts. Indeed, 

stimulation of SSc fibroblasts with recombinant TGF-β for 24 h upregulated DPP4 activity 

and this increase in activity correlated with the increase in DPP4 protein levels (Suppl. Fig. 

2B). Consistent with the results in vitro, we observed increased expression of DPP4 in skin 

fibroblasts of mice with fibroblast-specific overexpression of a constitutively active TGF-β 

receptor type 1 (TBRact) compared to control mice (Fig. 2A). Moreover, treatment of 

bleomycin-challenged mice with SD208, a specific inhibitor of the TGF-β receptor I-kinase 

activity, prevented the bleomycin-induced upregulation of DPP4 protein (Fig. 2A). To 

identify which intracellular signaling cascades mediate the stabilization of DPP4 protein by 

TGF-β, we knocked down SMAD3 by siRNA in fibroblasts. However, knockdown of 

SMAD3 did not inhibit the stimulatory effects of TGF-β on DPP4 expression (Fig. 2B). 

Comparable results were obtained by incubation with the SMAD inhibitor SIS3. We thus 

tested the role of various non-canonical TGF-β pathways using specific inhibitors against 

various non-canonical intracellular mediators of TGF-β. Inhibition of ERK kinases 

ameliorated the stimulatory effects of TGF-β on DPP4 expression, whereas inhibition of 
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SRC, cABL, JAK, AKT, p38, NfκB and JNK did not interfere with TGF-β-induced DPP4 

expression (Fig. 2C).  

 

DPP4 regulates fibroblast activation and collagen release 

To investigate the functional role of DPP4 in fibroblast activation, we first sorted DPP4-

expressing and DPP4-negative fibroblasts from the skin of mice (Suppl. Fig. 3A) and 

analyzed the transcription of key profibrotic genes. DPP4-expressing fibroblasts expressed 

higher levels of Col1a1, Col1a2 and Acta2 mRNA (which encodes for αSMA) than DPP4-

negative fibroblasts. Similar results were obtained when DPP4-positive and DPP4-negative 

fibroblasts were isolated from the lungs (Suppl. Fig. 3B).  

Further, we compared the fibrotic potential of fibroblasts isolated from DPP4-knockout mice 

(DPP4-KO fibroblasts) to that isolated from wildtype control littermates. DPP4-KO 

fibroblasts were less responsive to the stimulatory effects of TGF-β. Fibroblast-to-

myofibroblast transition was impaired in DPP4-KO fibroblasts with reduced expression of 

αSMA and impaired formation of stress fibers upon stimulation with TGF-β as compared to 

control fibroblasts (Fig. 3A). Moreover, TGF-β failed to induce the mRNA levels of Col1a1, 

Col1a2 and Acta2 or to increase the release of collagen in murine DPP4-KO fibroblasts (Fig. 

3A). DPP4-KO fibroblasts also demonstrated delayed closure of the gap in scratch assays as 

compared to control fibroblasts (Suppl. Fig. 4). Consistently, treatment with the DPP4 

inhibitor sitagliptin inhibited the stimulatory effects of TGF-β on murine fibroblasts (Fig. 

3A). 

Overexpression of DPP4 in human fibroblasts increased the mRNA levels of ACTA2, 

COL1A1 and COL1A2 and the levels of collagen protein secreted into the supernatant (Suppl. 

Fig.5). Incubation of SSc fibroblasts with sitagliptin ameliorated TGF-β-induced fibroblast-
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to-myofibroblast transition, prevented upregulation of COL1A1 and COL1A2 mRNA by 

TGF-β and reduced the release of collagen from human dermal fibroblasts (Fig. 3B).  

We next aimed to characterize, how DPP4 inhibition interferes with TGF-β-induced 

fibroblast activation. We thus analyzed the effects of DPP4 inhibition on canonical and non-

canonical TGF-β pathways that have been implicated in the pathogenesis of fibrotic diseases. 

Treatment of human dermal fibroblasts with sitagliptin prevented the stimulatory effects of 

TGF-β on ERK signaling leading to decreased levels of phosphorylated ERK (pERK) in 

human dermal fibroblasts (Fig. 3B). However, inhibition of DPP4 did not interfere with the 

TGF-β-induced SMAD3, STAT3, SRC, AKT signaling or with cJUN and FRA2 mediated 

AP1 signaling (Suppl. Fig. 6). Consistent results were also obtained in DPP4-KO cells (data 

not shown). Moreover, upon DPP4 overexpression levels of pERK increased, while pSMAD3 

levels did not change, confirming the hypothesis that DPP4 exerts part of its effects via non-

canonical TGF-β signaling pathway (Suppl. Fig.7).   

 

DPP4-KO mice are protected from experimental dermal and pulmonary fibrosis 

To investigate whether the inhibitory effects of DPP4 inactivation on fibroblast activation in 

vitro translate into anti-fibrotic effects in vivo, we evaluated the role of genetic and 

pharmacological inactivation of DPP4 in bleomycin-induced pulmonary and dermal fibrosis.  

DPP4-KO mice appear phenotypically normal and the histological architecture of the lungs 

and the skin were not altered under homeostatic conditions (Fig. 4A). However, DPP4-KO 

mice were less sensitive to bleomycin-induced fibrosis. Pulmonary fibrosis induced by 

intratracheal injections of bleomycin was significantly ameliorated in DPP4-KO mice with 

reduced fibrotic area, decreased Ashcroft scores, less pronounced fibrotic changes on CT, 

reduced myofibroblast counts and decreased hydroxyproline content as compared to control 

littermates (Fig. 4A).  
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DPP4-KO mice were also protected from skin fibrosis induced by subcutaneous injections of 

bleomycin with reduced dermal thickness, impaired myofibroblast differentiation and 

decreased hydroxyproline content (Fig. 4B).  

In wildtype mice, preventive treatment with sitagliptin 10mg/kg, initiated together with the 

intratracheal or subcutaneous bleomycin-challenge, also improved all fibrotic readouts and 

strongly ameliorated bleomycin-induced pulmonary and dermal fibrosis. However, sitagliptin 

did not exert additional anti-fibrotic effects in DPP4-KO mice (Fig. 4), demonstrating that the 

anti-fibrotic effects of sitagliptin are indeed mediated by DPP4 inhibition and not by off-

target effects. 

 

Pharmacological inhibition of DPP4 induces regression of pre-established experimental 

fibrosis 

Using a pharmacological approach in murine SSc models, we first employed the model of 

bleomycin-induced skin fibrosis. We did not use preventive dosing schedules, but started 

treatment with the DPP4 inhibitors sitagliptin and vildagliptin only after fibrosis has already 

been established (Fig. 5A). Both DPP4 inhibitors, in both doses strongly ameliorated 

bleomycin-induced dermal thickness, accumulation of myofibroblasts and the hydroxyproline 

content compared to vehicle-treated mice (Fig. 5A). DPP4 inhibition also induced regression 

of pre-established fibrosis when comparing to pre-treatment level (Fig. 5A). Further, 

consistent with the in vitro data, pERK expression was reduced upon treatment with DPP4 

inhibitors in bleomycin challenged mice (Suppl. Fig. 8). 

To further validate the anti-fibrotic effects of pharmacological DPP4-inhibition, we next 

analyzed the effects of sitagliptin and vildagliptin in the B10.D2→Balb/c (H-2(d)) model of 

sclerodermatous cGvHD (Fig. 5B). Treatment with sitagliptin or vildagliptin, initiated after 

occurrence of first clinical signs, reduced cGvHD-induced dermal thickening, collagen 
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deposition and myofibroblast differentiation (Fig. 5B). DDP4 inhibition also reduced the 

cGvHD-induced weight loss (Suppl. Fig. 9).  

In addition to these two inflammation-driven models, we evaluated the antifibrotic effect of 

Sitagliptin in the Tsk-1 model of fibrosis as a less inflammation-dependent model of SSc. 

Sitagliptin significantly ameliorates fibrosis in Tsk-1 mice with reduced hypodermal 

thickness, myofibroblast count and hydroxyproline content as compared to vehicle-treated 

Tsk-1 mice. Treatment of Tsk-1 mice with Sitagliptin also significantly reduced the mRNA 

levels of Col1a1, of Col1a2 and of Acta2 (Suppl. Fig. 10).    

 

Anti-inflammatory effects of DPP4 inhibition 

DPP4 expression has been shown to be implicated in the regulation of B and T cell activity 

(37). Treatment with sitagliptin and vildagliptin decreased total leukocytes counts and 

reduced B and T cell numbers in the skin of mice with bleomycin-induced dermal fibrosis 

and with sclerodermatous cGvHD (Fig. 6A), demonstrating that DPP4 inhibitors also 

ameliorated inflammation in addition to its direct effects on fibroblasts.  

We next aimed to characterize the contribution of DPP4 inactivation in leukocytes to the anti-

fibrotic effects of DPP4 inhibition. Therefore, we generated chimeric mice by transplanting 

bone marrow from DPP4-KO mice in WT-littermates (DPP4-KOWT mice with selective 

knockout of DPP4 in bone marrow derived cells such as leukocytes) and vice versa 

(WTDPP4-KO mice with inactivation of resident, non-hematopoietic cells) (Fig. 6B) and 

induced fibrosis by intratracheal or subcutaneous injections of bleomycin, respectively. While 

the extent of pulmonary and dermal fibrosis of DPP4-KOWT was comparable to that of 

WTWT control mice, fibrosis was strongly ameliorated in WTDPP4-KO mice. Of note, 

all readouts of pulmonary and dermal fibrosis in WTDPP4-KO mice were comparable to 
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that of DPP4-KODPP4-KO mice (Fig. 6B and Suppl. Fig. 11), characterizing resident cells 

such as fibroblasts as major target cells for the anti-fibrotic effects of DPP4 inhibitors.   

 

Discussion 

We demonstrate in the present study that DPP4 expression is increased in SSc patients and in 

different murine models of skin fibrosis. We found no difference in the serum levels of DPP4 

between healthy controls and SSc patients, as previously shown (38, 39), suggesting that 

DDP4 expression is regulated locally in fibrotic tissues. Although DPP4 is not specifically 

expressed in fibroblasts, co-staining with fibroblast markers demonstrated that fibroblasts are 

the predominant cell type expressing DPP4 in SSc skin and that the majority of SSc 

fibroblasts in situ are positive for DPP4. Of particular interest, we demonstrate that DPP4 

expression marks a population of activated fibroblasts. DPP4-positive fibroblasts in SSc skin 

showed increased expression of prototypical myofibroblast marker αSMA compared to 

DPP4-negative cells. Moreover, dermal and pulmonary fibroblasts expressing DPP4 

demonstrated increased transcription of type I collagens and Acta2 as compared to DPP4 

negative fibroblasts from the same mice. A recent landmark study by Rinkevich et al. 

reported a DPP4-positive fibroblast population in embryonic skin that possess high 

fibroproliferative potential that expands upon tissue injury to promote wound healing (20). 

The findings of Rinkevich et al. and our results together suggest that a subpopulation of 

DPP4-positive fibroblasts expand to drive persistent tissue remodeling and tissue fibrosis in 

SSc. However, further studies with lineage tracing experiments are required to further 

confirm this conclusion.    

We provide evidence that TGF-β is a factor that may drive the expansion of DPP4-positive 

fibroblasts. We demonstrate on multiple experimental levels that non-canonical TGF-β 

signaling is stimulating DPP4 expression: 1.) Stimulation of cultured dermal fibroblasts with 
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recombinant TGF-β upregulated the expression of DPP4 protein in normal dermal fibroblasts. 

2.) DPP4 levels were increased in SSc fibroblasts as compared to fibroblasts isolated from 

healthy individuals. 3.) Overexpression of TBRIact increases DPP4 expression in the skin of 

mice, thus confirming that TGF-β is sufficient to increase DPP4 expression in fibroblasts in 

vitro and in vivo. 4.) Inhibition of the non-canonical TGF-β signaling mediator ERK, inhibits 

the stimulatory effects of TGF-β on DPP4 expression. 5.) Selective inhibition of TGF-β 

signaling prevented the upregulation of DPP4 in experimental fibrosis, highlighting that 

TGF-β signaling is required for the overexpression of DPP4 in experimental fibrosis.  

The upregulation of DPP4 had direct functional consequences and promoted activation of 

certain non-canonical TGF-β pathways in fibroblasts. Inactivation of DPP4 reduced the TGF-

β-induced activation of ERK signaling in cultured fibroblasts as well as experimental fibrosis. 

ERK is an important intracellular mediator of TGF-β, which is activated in SSc and targeted 

inhibition of ERK has been shown to ameliorate experimental fibrosis (40, 41). Other 

intracellular cascades regulated by TGF-β were not affected by DPP4 inhibition. The 

molecular mechanisms underlying the selective regulation of ERK by DPP4 require further 

studies.  

Consistent with the central role of TGF-β signaling in fibrogenesis, the inhibitory effects of 

DPP4 on TGF-β signaling directly translated into inhibition of fibroblast activation. 

Inactivation of DPP4 blocked TGF-β-induced fibroblast-to-myofibroblast differentiation and 

reduced the release of collagen in vitro. Genetic or pharmacologic inhibition of DPP4 also 

ameliorated experimental dermal and pulmonary fibrosis induced by bleomycin or by 

sclerodermatous cGvHD. Moreover, inactivation of DPP4 was shown to ameliorate CCL4-

induced liver fibrosis and cardiac remodeling after high-salt diet-induced heart failure (42-

44). Targeted inhibition of DPP4 was also shown to reduce scar formation after cutaneous 

wounds. The potent anti-fibrotic effects of DPP4 inhibitors may have direct translational 
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implications: 1.) Pharmacologic inhibition of DPP4 did not only prevent further progression 

of fibrosis, but also induced regression of pre-established fibrosis to below pre-treatment 

levels. 2.) Potent anti-fibrotic effects were already observed with the lower doses of both 

DPP4 inhibitors in mice, implying that standard doses as used for the treatment of diabetes 

mellitus could be effective in fibrotic diseases such as SSc. 3.) Anti-fibrotic doses of DPP4 

inhibitors are well tolerated and their application is not limited by adverse events in our 

preclinical models. 4.) DPP4 inhibitors are widely used for the treatment of diabetes, offering 

multiple drug candidates for further clinical studies.    

We provide evidence that DPP4 inhibition does not only target fibroblast activation directly, 

but also reduces inflammation. Treatment with DPP4 inhibitors reduced leukocyte counts and 

in particular T cell and B cell infiltration in murine models of SSc; both of which are 

centrally involved in the pathogenesis of SSc (1, 45). Indeed, DPP4 has been shown to 

regulate Th2 polarization and regulate B cell activation (46-49). Despite potent effects on B- 

and T cell infiltration into fibrotic tissues, our bone marrow transplantation experiments 

actually demonstrated that the pro-fibrotic effects of DPP4 predominantly required DPP4 

expression in tissue resident cells such as fibroblasts.  

DPP4 inhibitors are already in clinical use for the treatment of type 2 diabetes mellitus for 

more than 10 years. The adverse effects include in particular arthralgia or arthritis, but also 

hypersensitivity, skin-related reactions and pancreatitis. The Food and Drug Administration 

(FDA) released a warning in 2015 that DPP4 inhibitors may cause joint pain. However, 

different studies showed no increased risk of arthritis in patients treated with DPP4 inhibitors 

compared to other second-line antidiabetics. Postmarketing events of hypersensitivity 

reactions like anaphylaxis and angioedema have been reported in patients treated with DPP4 

inhibitors. However, more detailed studies revealed a similar incidence of angioedema in 
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patients treated with sitaglipin compared to placebo (50).  Similar results were reported also 

for other DDP4 inhibitors such as saxagliptin.  

In out experiments, mice treated with DDP4 inhibitors did not show evidence of adverse 

events on clinical monitoring or on necropsy, including no evidence of arthritis or 

angioedema. 

In summary, we provide evidence that DPP4 characterizes a population of activated 

fibroblasts in SSc. However, DPP4 does not only serve as an activation marker, but is also 

functionally required for fibroblast activation and tissue fibrosis. Targeted inactivation of 

DPP4 exerted potent anti-fibrotic effects in different models of experimental dermal and 

pulmonary fibrosis. These results may have direct translational implications as DPP4 

inhibitors are already in clinical use for diabetes.   
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Figure Legend 

 

 

Figure 1. DPP4 expression is increased in systemic sclerosis and murine models of SSc.  

A Immunohistochemistry staining of DPP4 in skin of patients with SSc and healthy 
volunteers and immunofluorescence (IF) staining of DPP4 and P4H and its quantification 
(n=9 for each). Representative images are shown at 200- and 600-fold magnification.  B 
Expression of DPP4 in αSMA positive cells and quantification (n=6 for each). Representative 
images are shown at 400-fold. DPP4 protein in SSc and healthy skin analyzed by Western 
blot and its quantification (n=6 for each). C DPP4 expression in bleomycin-induced (bleo) 
skin fibrosis analyzed by IF microscopy and Western blot. Representative images are shown 
at 400-fold (n=5 for each). DPP4 expression in murine fibroblasts of sclerodermatosus 
chronic graft versus host (cGvHD) disease model analyzed by IF microscopy and Western 
blot and its quantification (n=5 for each). Representative images are shown at 600-fold. 
Nuclei are stained with DAPI (blue). Results are shown as mean ± SEM. *p≤0.05, 
**p≤0.001, ***p≤0.0001 as determined by Mann-Whitney test. 

 

Figure 2. Induction of DPP4 by TGF-β.  
A Expression of DPP4 upon stimulation with TGF-β analyzed by Western blot and its 
quantification (n=5 for each). DPP4 protein level in murine skin overexpressing TGF-β 
receptor type I (TBRIact) assessed by Western blot and its quantification (n=5 for each). 
Effects of treatment with selective TBRI inhibitor SD208 on DPP4 protein level in bleomycin 
induced skin fibrosis analyzed by Western blot and its quantification (n=5 for each). B Effect 
of SMAD3 knockdown on TGF-β induced expression of DPP4 and its quantification (n=5 for 
each). C TGF-β induced DPP4 protein level upon inhibition of non-canonical TGF-β 
pathway by SRC, ABL, JNK, JAK, NFκB, AKT, p38, ERK and SMAD inhibitors analyzed 
by Western blot and its quantification (n=5 for each). Inhibition of TGF-β receptor I kinase 
activity with SD208 served as positive control. Results are shown as mean ± SEM. *p≤0.05, 
**p≤0.001, ***p≤0.0001 as determined by Mann-Whitney test. 

 

Figure 3. Inactivation of DPP4 inhibits fibroblast activation und collagen release. 

A Murine DPP4-KO fibroblasts: Representative images (shown at 200-fold magnification) 
and quantification of αSMA and stress fibers in WT and DPP4-KO fibroblasts upon 
stimulation with TGF-β (n=5 for each). Nuclei are stained with DAPI (blue). mRNA levels of 
Col1a1, Col1a2, Acta2 mRNA and collagen release in WT and DPP4-KO fibroblasts upon 
stimulation with TGF-β (n=5 for each). Murine fibroblasts with pharmaceutical inhibition of 
DPP4: Col1a1, Col1a2, Acta2 mRNA levels and collagen release (n=5 for each). B 
Pharmacological inhibition of DPP4 in human dermal fibroblasts.  Representative images 
(at 200-fold magnification) and quantification of αSMA and stress fibers in human dermal 
fibroblasts treated with sitagliptin upon TGF-β stimulation (n=5 for each). Treatment with 
Sitagliptin decreases the stimulatory effects of TGF-β on COL1a1 and COL1a2 mRNA and 
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decreases collagen protein release (n=8 for each). Levels of phosphorylated ERK upon 
stimulation with TGF-β and treatment with Sitagliptin analyzed by Western blot and its 
quantification (n=5 for each). Results are shown as mean ± SEM. *p≤0.05, **p≤0.001, 
***p≤0.0001 as determined by Mann-Whitney test. 

 

Figure 4. DPP4-KO mice are partially protected from experimental bleomycin-induced 

pulmonary and dermal fibrosis.  

A Bleomycin-induced pulmonary fibrosis: Representative images of Sirius Red, 
hematoxylin and eosin (HE)-stained sections (at 200-fold magnification) and high resolution 
computed tomography (CT) scans of the lungs. Quantification of the fibrotic area (n=6 for 
each), Ashcroft score (n=6 for each) and density quantification on CT in Hounsfield Units 
(HU) (n=6 for each). Myofibroblast counts and (n=6 for each) hydroxyproline content of the 
lung (n=6 for each). B Bleomycin-induced dermal fibrosis: Representative images of HE-
stained sections of the bleomycin-induced skin fibrosis mouse model shown at 200-fold 
magnification. Dermal thickness quantification (n=8 for each), myofibroblast count (n=8 for 
each) and hydroxyproline content of the skin (n=8 for each). Results are shown as mean ± 
SEM. p≤0.05, **p≤0.001, ***p≤0.0001 as determined by Mann-Whitney test. 

 

Figure 5.  Pharmacological inhibition of DPP4 induces the regression of bleomycin- and 

cGvHD-induced experimental fibrosis.  

A Bleomycin-induced dermal fibrosis: Treatment scheme. Representative images of 
hematoxylin and eosin (HE) - stained sections of murine skin shown at 100 fold 
magnification (n=6 for each) and quantification of dermal thickness (n=6 for each),  
myofibroblast counts (n=6 for each) and hydroxyproline content of the skin (n=6 for each).  
B Sclerodermatous cGvHD: Experimental outline. Representative images of HE-stained 
sections of murine skin shown at 100 fold magnification. Dermal thickness quantification 
(n=6 for each), myofibroblast counts (n=6 for each) and hydroxyproline content (n=6 for 
each). Results are shown as mean ± SEM. *p≤0.05, **p≤0.001, ***p≤0.000 as determined by 
Mann-Whitney test. 

 

Figure 6.  Anti-inflammatory effects of DPP4 inhibition in the lung 

A Numbers of CD45, B220 and CD3 positive cells in bleomycin-challenged mice treated 
with DPP4 inhibitors (n=6 for each). Numbers of CD45 and B220 positive cells in cGvHD 
mice treated with DPP4 inhibitors. B Chimeric mice: Generation of mixed-bone marrow 
(BM) chimeras from DPP4 knockout or wildtype mice. Representative images of Sirius red 
staining, trichrome staining and high resolution computed tomography (CT) scans of the 
lungs of the chimeric mice (n=6 for each). Quantification of the fibrotic area (n=6 for each), 
Ashcroft score (n=6 for each) and fibrotic changes on CT-scans measured in Hounsfield 
Units (HU) (n=6 for each). Hydroxyproline quantification (n=6 for each) and myofibroblast 
counts (n=6 for each). Results are shown as mean ± SEM. *p≤0.05, **p≤0.001, ***p≤0.000 
as determined by Mann-Whitney test. 
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