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Abstract—A fully integrated dipole antenna with a balun for 

ultra-wideband (UWB) radio in the band 6-9 GHz utilizing a 

flexible and rigid printed circuit board is presented in this paper. 

The balun utilizes broadside-coupled microstrips and is 

integrated in the rigid part of the printed circuit board, while the 

radiator is placed in the flexible part. The antenna with the balun 

covers the frequency-band 6.0-8.5 GHz at VSWR<2.0, and 5.5-

11.0 GHz at VSWR<2.5. Moreover, simulated and measured 

radiation patterns, and antenna efficiency above 86.0 % is 

observed. 

  
Index Terms—Balun, broadside-coupled, circular, dipole 

antenna, UWB, Ultra-wideband 

I. INTRODUCTION 

nitially the frequency-band 3.1-10.6 GHz was opened for 
commercial use of ultra-wideband (UWB) radio by the 

Federal Communications Committee (FCC) [1]-[13]. In the 
beginning the 3.1-4.8 GHz, also known as the Mode 1 band 
group quickly became the primary frequency-band. Later on 
legal respiratory around the world has adopted additional 
constraints on the use of the UWB frequency-band [9]-[11]. 
As a result the frequency-bands 6-8.5, 6-9, and 6-10.6 GHz 
have lately received an increased attention [10]-[11].  

Until present many promising ideas for wideband antennas 
with omni-directional pattern and linear phase have been 
presented [14]-[33]. For instance, contributions in band 
control and notching have been achieved [26], [28], [33]. 
However, the scope has so far been mostly of performance of 
the antenna element, wireless link properties, but not so much 
on how the antenna can be used and integrated in a UWB 
system. To address this problem the authors proposed a fully 
integrated dipole antenna with a balun on flex-rigid substrate 
[12]. Using this flex-rigid concept the antenna is made on the 
flexible part of the flex-rigid structure, and in the rigid part the 
integrated balun provides a good electrical conversion to 
single-ended 50-Ω systems.  

However, our previously presented antenna is for Mode 1 
UWB [12], i.e., 3.1-4.8 GHz. In this paper an antenna for the 
6-9 GHz frequency band is presented. Furthermore, in this 
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paper measured full 360° radiation patterns and antenna 
efficiency are presented. A wheeler cap [34] was used to 
perform the antenna efficiency measurements. Moreover, 
additional details are given and explained about the flex-rigid 
printed circuit board build-up. 
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II. OVERVIEW OF THE SYSTEM 

As shown in Fig. 1(a) the prototype was manufactured 
using a flex-rigid printed circuit board (two metal-layers in the 
flexible part and four in the rigid part). The LF8520, LF0100, 
LF0110 and AP8525 are from DuPont™ Pyralux® laminate 
series. The rigid and the flexible substrates are processed 

Circular Dipole Antenna with Integrated Balun 
for Ultra-wideband Radio 6-9 GHz 

Magnus Karlsson, Owais, Joakim Östh, Adriana Serban, Shaofang Gong, Member, IEEE, Magnus Jobs 
and Mathias Grudén  

I 

 

 

Circular dipole antenna 

Single-ended 
feed-line

21 mm
Rigid part 

SMA 
connector

Polyimide 
foil 

(b)

Fig. 1. Circular dipole antennas: (a) Substrate build-up, and (b) photo of the 
antenna positioned in the x-y plane.

(a)   



  
 

together in a printed circuit board bonding process, i.e., the 
adhesive layers are used to bond the polyimide layers.  

A. Circular dipole antenna 

Fig. 1(b) shows a circular dipole antenna realized using the 
flex-rigid substrate. The antenna is positioned in the x-y plane, 
and φ=0 (Horizontal plane) is along the x-axis. It is seen that 
the radiating antenna element is placed entirely on the flexible 
part of the substrate. Furthermore, the balun is integrated in 
the rigid part of the substrate. The backside of the rigid part 
(Metal 4) is completely covered with metal to make through-
board ground vias possible, and to provide additional 
solderable ground-junctions for the SMA connector. Drilled 
vias with a diameter of 0.3 mm are used for grounding. 

B. The distributed balun used with the dipole antenna 

Fig. 2 shows an illustration of the broadside-coupled balun. 
The balun is used together with the dipole antennas and built 
with the broadside-coupled microstrips [15], [34]. By 
implementing the balun in a multilayer structure a more 
compact design is achieved. The single-ended microstrip-line 
is placed on Metal layer 1. The differential microstrip-line of 
the balun is placed on Metal layer 2, directly beneath the 
microstrip-line on Metal-layer 1. The two lines then exhibit a 
strong broadside-coupling, and since the arm ends of the 
differential line are grounded at their ends there is a 180º 
phase-shift between Port 2 and 3. Metal 2 is also the metal-
layer where the radiator is placed, i.e., the differential feed-
line is directly routed to the antenna [12]. 
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Fig. 2. Layout and cross-section of the broadside-coupled balun. 

III. RESULTS 

Design and simulation were done with ADS2008 (Update 
2) from Agilent Technologies Inc. Electromagnetic 
simulations were done with Momentum, a built-in 2.5D field 
solver of method of moment. 

A. Impedance bandwidth 

Fig. 3 shows voltage standing wave ratio (VSWR) 
simulations and measurements of the circular dipole antennas 
on the flex-rigid substrate. The VSWR simulation and 
measurement results with the balun are shown. It is seen in the 
simulated and measured results in Fig. 3 that the circular 

dipole antenna has a wide impedance bandwidth (VSWR<2.0 
in the 6.0-8.5 GHz frequency-band). Furthermore, it is seen 
that the antenna has a VSWR<2.5 bandwidth from 5.5 to 11.0 
GHz. A small shift in frequency is also seen which is likely 
due to the fact that the simulated phase velocity is lower than 
the actual. 
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Fig. 3. Circular dipole antenna VSWR simulation and measurement with 
balun. 
 

B. Radiation pattern 

It is seen in Fig. 4(a)-(e) that the antenna has a wide-angled 
radiation pattern, and that the simulated results correlate well 
with the measured results. Fig. 4(a)-(c) shows the φ=0º 
(Horizontal plane) radiation pattern at 6.5, 7.5 and 8.5 GHz, 
respectively. Some disagreement between simulation and 
measurement are observed. In the front half-sphere (upper 
half) the agreement is good, but in the lower half-sphere some 
disagreements exist. This is likely due to the fact that the 
electromagnetic field couples to the ground of the SMA-
connector and the ground-plane in the rigid part (in Metal 
layer 3, while the antenna is placed in Metal layer 2 in the 
flexible part). Fig. 4(d) and (e) shows the φ=90º (Vertical 
plane) radiation pattern at 6.5 and 8.5 GHz, respectively. The 
vertical radiation patterns show similar relation between 
simulation and measurement as the horizontal radiation 
patterns. For instance, a small peak around 210°, i.e., a minor 
ground back-up effect when the SMA-connector is diagonally 
behind the radiator. 
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Fig. 4. Simulated and measured results of the antennas: (a) radiation pattern at 
6.5 GHz, φ=0, (b) radiation pattern at 7.5 GHz, φ=0, (c) radiation pattern at 8.5 
GHz, φ=0, (d) radiation pattern at 6.5 GHz, φ=90, and (e) radiation pattern at 
8.5 GHz, φ=90. 
 

C. Efficiency and linearity  

Table 1. Antenna efficiency 
Frequency (GHz) 6.5 7.5 8.5 

Simulated (%) 93.0 92.2 91.3
Measured (%) 86.0 97.2 91.1 

 

Table 1 shows antenna efficiency. It is seen that the antenna 
provides high antenna efficiency throughout the measured 
frequency-band, i.e., between 86.0 and 97.2 %. The antenna 
efficiency was measured with a wheeler cap. Simulation was 
conducted on the antenna without balun, with the differential 
port as reference. The measurement was done when the 
antenna is fed by the balun, i.e., the single ended port of the 
balun is the reference. Therefore the antenna efficiency 
simulation and measurement should be compared with this 
difference in mind, i.e., this is the reason why maximum 
measured antenna efficiency can be higher than maximum 
simulated value. The simulation shows that the antenna 
efficiency decreases with increased frequency, which is due to 
increased substrate loss. Moreover, the slightly lower 
measured value at 6.5 GHz is likely due to the filtering 
characteristics of the balun [12]. 

Fig. 5 shows the measured S21 phase response from a 
transmission between two identical antennas, including the 
contribution from one transmitter antenna and one receiver 
antenna. It is seen that the established radio link has good 
phase linearity. A secondary conclusion that can be drawn 
from the linear phase response is that there is only one 
dominating phase centre of the radiator, i.e., any possible 
radiation contribution from the balun is low compared to the 
contribution from the antenna.  
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Fig. 5. Measured S21 phase response (transmission between two identical 
circular dipole antennas). 

IV. DISCUSSION 

The simulations and measurements of the circular dipole 
antenna show that the antenna has a typical radiation pattern 
as expected from a common dipole antenna. Since ADS 
Momentum cannot handle finite-size substrate, the flexible 
and the rigid parts were therefore simulated as isolated 
components. This fact adds constraints to the model accuracy, 
i.e., balun filtering and antenna-balun coupling effects are not 
seen in the simulation. The balun has as presented in [12] a 
bandpass like characteristic. This is good property to reject 
outbound signals, but it also reduces the antenna efficiency 
close to the band edges. From radiation point of view a 
general agreement is seen, but some difference between 
simulation and measurement is observed for the back-lobe. 
This is likely due to the fact that the ground-plane of the balun 
and the grounded metal body of the SMA connector is closer 
to the propagation path, i.e., the electromagnetic fields couples 
more in this direction [15], [34].  

V. CONCLUSION 

A circular dipole antenna implemented using the flex-rigid 
substrate covers the upper UWB band used in Europe (6.0-8.5 
GHz) at a measured VSWR<2.0. Moreover, the antenna 
covers 5.5-11.0 GHz at VSWR<2.5. Furthermore, good phase 
linearity is observed when the antenna is used in a wireless 
transmission test. Finally, high antenna efficiency above 86 % 
is achieved within the frequency-band. As a result the antenna 
can be either used as a free-stand component or integrated in a 
UWB system. 
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