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COMMUNICATIONS

DIPOLE NEAR FIELD ANALYSIS – A CLOSED FORM
CALCULATION IN CARTESIAN COORDINATES

René Hart’anský — Jozef Sĺıžik — Lukáš Maršálka
∗

This article deals with analytical calculation of the near-field of an electric dipole in Cartesian coordinate system in a
closed form. Results of the analytical calculation are verified by numerical method.
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1 INTRODUCTION

In many areas of an electrical engineering like mea-
surement of the electromagnetic fields, antenna theory,
etc one needs to quantify mutual effect between conduc-
tive elements which are in the electromagnetic field. We
rely upon the EMF method, [1] as a classical method to
compute self and mutual impedances. The induced open-
circuit voltage (output) in conductive element 2, due to
the radiation from conductive element 1 carrying current
(input). The radiated field of conductive element 1 is usu-
ally calculated in cylindrical coordinates and the current
distribution in conductive element 2 is estimated using
antenna theory. Conductive elements are often arranged
perpendicularly to a plane. If we want calculate the mu-
tual impedance of such elements placed randomly in the
space, more suitable may be the problem formulation and
the near-field evaluation in Cartesian coordinates, partic-
ularly if we focus on the radial component. Besides this,
the computation can be done without any approximation
in a closed form - as will be shown here.

2 CALCULATION OF NEAR FIELD

OF THE ELECTRIC DIPOLE

The calculation of the electric dipole near-field based
on the geometry given in Fig. 1, where point M [x, y, z] is
the observation point and is situated in the near area of
the dipole. As opposite to [1] and [2] we do not use any
simplifications concerning the problem geometry.

The magnitude of position vectors are as follows

r =
√

x2 + y2 + z2

R =
√

x2 + y2 + (z′ − z)2

R1 =
√

x2 + y2 + (h− z)2

R2 =
√

x2 + y2 + (h+ z)2

(1)

Now, using complex representation, let us suppose the
sinusoidal current distribution as in [2]

Jz(z
′) = I0 sin(k(h− z′)) z > 0

Jz(z
′) = I0 sin(k(h+ z′)) z < 0

(2)

Fig. 1. (a) — dipole geometry for near-field analysis according to (1), and (b) – the current distribution according to (2)
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where J0 is the maximal current phasor along the the
dipole antenna (the air gap being neglected) and k – is
the wave number a real value in a lossless media.

The complex vector potential A pertaining to the
above given current distribution, from which the field
components can be expressed, is

Az =
µJ0

4π

{ h
∫

0

sin(k(h− z′))
e−jkR

R
dz′+

0
∫

−h

sin(k(h+ z′))
e−jkR

R
dz′

}

(3)

what, using Euler’s formulae, can be written as

Az(z) =
µ0J0

j8π

4
∑

ν=1

Iν (4)

where

I1 = ejkh
∫ h

0

e−jk(
√

x2+y2+(z−z′)2+z′)

√

x2 + y2 + (z − z′)2
dz′

I2 = e−jkh

∫ h

0

e−jk(
√

x2+y2+(z−z′)2−z′)

√

x2 + y2 + (z − z′)2
dz′

I3 = ejkh
∫ 0

−h

e−jk(
√

x2+y2+(z−z′)2−z′)

√

x2 + y2 + (z − z′)2
dz′

I4 = e−jkh

∫ 0

−h

e−jk(
√

x2+y2+(z−z′)2+z′)

√

x2 + y2 + (z − z′)2
dz′

(5)

Since the magnetic field is determined by rotation of vec-

tor potential: ~H = rot ~A/µ , in Cartesian coordinate sys-
tem, due to existence of Az component only, we have

Hx =
1

µ

∂Az

∂y
, Hy = − 1

µ

∂Az

∂x
. (6)

Further we confine ourselves only to x-axes compo-
nents of the magnetic field (y−axes component will be
calculated similarly) using (4) and (5). Now, if the rota-
tion will precede the integration we get

∂I1
∂y

= ejkh
h
∫

0

∂

∂y

e−jk(R+z′)

R
dz′

= ejkh
h
∫

0

y(−1− jkR)
e−jk(R+z′)

R3
dz′

∂I2
∂y

= e−jkh

h
∫

0

y(−1 + jkR)
e−jk(R−z′)

R3
dz′

∂I3
∂y

= ejkh
h
∫

0

y(−1− jkR)
e−jk(R+z′)

R3
dz′

∂I4
∂y

= e−jkh

h
∫

0

y(−1 + jkR)
e−jk(R−z′)

R3
dz′

(7)

According to [1], the primitive functions of the above
integrals are known and so the first and the third and
the second and fourth expressions in (7) give

P1(z
′) =

ye−jk(R+z′)

R(R+ z′ − z)
,

P2(z
′) =

ye−jk(R−z′)

R(R− z′ + z)

(8)

and to express x− component of the magnetic field using
(4) and (6) after some manipulation we can put down

Hx =
J0

j8π

{

ejkh
[

P1(h)− P1(0)
]

+ e−jkh
[

P2(h)− P2(0)
]

+ ejkh
[

P2(−h)− P2(0)
]

+ e−jkh
[

P1(−h)− P1(0)
]

}

(9)

after putting (8) into (9) and relaying on forms (1) and
processing in the same way also the other component we
arrive to

Hx = −j
J0

4π

y

x2 + y2

{

e−jR1 + e−jkR2

−e−jkr
[

e−jkh
(

1 + e2jkh
)]

}

=

= −j
J0

4π

y

x2 + y2

{

e−jR1 + e−jkR2

−2e−jkr cosh(kh)

}

Hy = j
J0

4π

y

x2 + y2

{

e−jR1 + e−jkR2

−2e−jkr cosh(kh)

}

.

Hz = 0

(10)

The electric field of the electrical dipole can be de-

termined directly from the Maxwell equation, using ~B =

rot ~A , from

~E =
1

jωǫ
rot ~A (11)

giving the three components of the electric field in Carte-
sian coordinate system

Ex =
1

jωǫ

(

∂Hz

∂y
− ∂Hy

∂z

)

=

jJ0xk

4πωǫ (x2 + y2)

{

(h− z)
e−jkR1

R1

−(h+ z)
e−jkR2

R2
+ 2z

e−jkr

r
cos(kh)

}

Ey =
1

jωǫ

(

∂Hx

∂z
− ∂Hz

∂x

)

=
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Fig. 2. (a) – amplitude of x -axes component of the electric field as a
function of x and, (b) – the error related to numerical computation

FEKO

Fig. 3. (a) – phase of x -axes component of the electric field as a
function of x , and (b) – the error related to numerical computation

FEKO

Fig. 4. (a) – amplitude y -axes component of the electric field as a
function of x , and (b) – the error related to numerical computation

FEKO

Fig. 5. (a) – phase of y -axes component of the electric field as a
function of x , and (b) – the error related to numerical computation

FEKO

jJ0yk

4πωǫ (x2 + y2)

{

(h− z)
e−jkR1

R1

−(h+ z)
e−jkR2

R2
+ 2z

e−jkr

r
cos(kh)

}

Ez =
1

jωǫ

(

∂Hy

∂x
− ∂Hx

∂y

)

=

jJ0zk

4πωǫ (x2 + y2)

{

(h− z)
e−jkR1

R1

−(h+ z)
e−jkR2

R2
+ 2z

e−jkr

r
cos(kh)

}

.

(12)

In the above equations it holds

k

4πωǫ
=

√

µ/ǫ

4π
(13)

giving in vacuum value of 30.
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3 VERIFICATION

The final equation of component of the electric field
Ez is obviously the same in Cartesian coordinate system
as in the cylindrical coordinate system. The electric com-
ponent of radiated field Ez can be found elswhere, for
instance also in [1] and [2], however in the Cartesian co-
ordinate system the closed form of electric components
Ex and Ey are hard to find in available literature. To ver-
ify the correctness of Ex and Ey calculation a numerical
Method of moments was used as implemented in com-
mercial software FEKO. For these calculations of the field
components of a conductive element, the half-wave dipole
configuration with negligible radius was used.

In Fig. 2 a comparison of the numerically obtained x-
axes component of the near electric field (ringed line) and
closed analytical calculation of its magnitude is shown.
We see that the waveforms are almost identical relating
the shape and the values as documented in Fig. 2(b).
Because that software FEKO allows only voltage feeding
of dipole it was necessary to modify current in equation
(12) to get identical initial conditions for numerical and
analytical calculation.

A plot of the phase of x-axes near electric field com-
ponent shown in Fig. 3, possesses the close similarity as
well, the shape of analytical and numerical calculations
is almost the same.

Next the verification of analytical and numerical solu-
tions are presented for the y -axis component of electric
field as a dependence on x− coordinate, of namplitude
Fig. 4, and phase Fig. 5.

4 DISCUSSION

In this article have been analytical expressed radiated
components of the electromagnetic field of the conductive
element half-wave dipole. The solution of the radiated
electromagnetic field is known for cylindrical coordinate
system and describe in literature. The electromagnetic
near field expression for the Cartesian coordinate system
is not known and not available in literature. Analytical

calculation other characteristics (mutual impedance, in-
put impedance, etc.) of two orthogonal conductive ele-
ments in the cylindrical coordinate system are difficult or
error loaded, because have to used Cartesian coordinate.
Analytical solution of electric components of the electro-
magnetic field was verified by numerical method.
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