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Abstract We report on the implementation of a coher-

ent dipole shower algorithm along with an automated im-

plementation for dipole subtraction and for performing

POWHEG- and MC@NLO-type matching to next-to-leading

order (NLO) calculations. Both programs are implemented

as add-on modules to the event generator HERWIG++.

A preliminary tune of parameters to data acquired at LEP,

HERA and Drell-Yan pair production at the Tevatron has

been performed, and we find an overall very good descrip-

tion which is slightly improved by the NLO matching.

1 Introduction

Many physics analyses at the Large Hadron Collider (LHC)

are nowadays based on Monte Carlo simulations [1–5],

e.g. for acceptance determination or even for background

subtraction. With the high precision aimed for in many anal-

yses it is mandatory to provide many of the simulations with

the highest possible theoretical accuracy. For most processes

this is now next-to-leading order (NLO) in the perturbative

expansion of Quantum Chromodynamics (QCD). During

the last decade, enormous progress was made in the devel-

opment of techniques to match NLO calculations on the one

hand and to merge multiple jet tree level matrix elements on

the other hand with parton shower algorithms.

First attempts to improve parton shower emission pat-

terns with the information from the full matrix element for

the hardest gluon emission were made with so-called matrix

element corrections [6, 7], that have long been implemented

in the standard event generators. The next big improvement

was made when matrix elements for multiple hard emissions

were merged with parton shower algorithms, first for e+e−

annihilation processes [8, 9] and then also for hadronic col-

lisions [10]. An alternative approach was proposed in [11],

where different implementations have been systematically

compared as well. The experience that was made with these
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algorithms over the last years [12] has lead to further im-

provements [13, 14] such that now the systematic uncertain-

ties due to e.g. matching scale dependence have been signif-

icantly reduced.

Matching to NLO matrix elements has been initiated

first with a phase space slicing method [15–17]. A more

systematic matching has then been introduced by Frix-

ione and Webber in the MC@NLO approach [18]. This ap-

proach has then been generalised to include massive par-

tons [19]. Many processes have been included in the mean-

time [20–22]. As the algorithm depends on subtraction terms

for a specific parton shower implementation, the first ver-

sions of MC@NLO have been tailored to work with HER-

WIG only. Now, it also works with HERWIG++, i.e. as the

subtraction scheme has been generalised towards the HER-

WIG++ parton shower implementation, all processes avail-

able in the MC@NLO package can also be showered with

HERWIG++ to achieve formal accuracy at NLO [23].

As the matching of NLO matrix elements and parton

shower algorithms takes place perturbatively to the speci-

fied order, i.e. the next-to-leading order, there is formally an

ambiguity left that can be used to devise alternative match-

ing schemes. One such scheme has been proposed by Nason

[24] and now goes under the name POWHEG. The guiding

principle of this algorithm is to allow for a matching algo-

rithm that does not introduce events with negative weight,

as the MC@NLO prescription does. This approach has also

been very successfully established during the last years and

implemented as a separate program package [25]. Many

processes are available in this program package [26–30].

However, the method itself is also used by other groups to

match NLO calculations with parton showers within a given

shower package. Many processes are available with HER-

WIG++ [31–35] or SHERPA [36]. The internal implementa-

tions benefit from the inclusion of truncated showers (see

below).

On the parton shower side, a number of new parton

shower algorithms have been developed during the last

years, partly together with the rewrite of old generators
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[37, 38]. Many new developments have addressed the idea

of implementing a shower that is directly related to the sub-

traction terms commonly used in NLO calculations. This

led to the implementation of parton showers with splitting

kernels based on the Catani–Seymour subtraction scheme

[39, 40] for NLO calculations [41, 42], which was proposed

in [43]. Similar ideas are followed with other subtraction

schemes as e.g. in the VINCIA shower [44] where QCD an-

tenna subtraction terms are facilitated.

With more and more NLO calculations being matched

one-by-one the question arises whether this step can be

automated. In fact, the POWHEG method is already a first

step into this direction, as the method as such is indepen-

dent of the showering algorithm. In particular, no specific

subtraction terms or the like are needed in order to match

a given NLO calculation to any shower. There are subtleties

on the shower side, though. The POWHEG method guaran-

tees to give the hardest emission within the parton evolution

and ensures that this is generated according to the phase

space weighting of the NLO matrix element. However, if

the shower does not evolve in the same hardness measure

as the POWHEG algorithm, one has to introduce so-called

truncated showers. This has been discussed already in early

POWHEG implementations [45] and is now part of HER-

WIG++ [14] and SHERPA [13].

Many NLO calculations are available as ready-to-use

computer codes that often come as packages that include

a number of processes at NLO already. Most of these codes

use the Catani–Seymour subtraction method to regularise

infrared divergences. More recently, also the complete au-

tomation of NLO calculations has been discussed with first

tools readily available [46, 47], based on the approach [48].

Some more calculations are already based on a fully au-

tomated tool chain [49–53]. Part of this progress relies on

the automatic generation of Catani–Seymour subtraction

terms [54–56] or FKS subtraction terms [57]. The latest de-

velopments unify the matching of multiple tree–level emis-

sions and the matching of NLO corrections to the Born level

[58, 59].

In this paper we introduce an implementation of a par-

ton shower based on the Catani–Seymour subtraction terms,

similar to the showers introduced in [41, 42]. The goal of

the implementation is to provide a framework for an auto-

matic matching of NLO computations to a parton shower.

The use of the subtraction terms is highly beneficial as

the MC@NLO like matching, that is based on a subtrac-

tion of the parton shower contribution to the NLO observ-

able becomes trivial. Together with a framework to han-

dle POWHEG like matching we will have the possibility to

check systematics within a single implementation. By us-

ing a shower based framework we may directly make use

of truncated showers in order to minimise systematic uncer-

tainties inherent to the matching formalism. As a first step

in this programme we present the shower implementation,

which is embedded as a module in the HERWIG++ event

generator. In addition we present NLO matchings to the ba-

sic QCD processes.

The paper is organised as follows. In Sect. 2 we introduce

the dipole shower in detail. Section 3 introduces the imple-

mentation of an automatic matching with this parton shower,

that we call MATCHBOX. In Sects. 5, 6 and 7 we present

comparisons to data from LEP, HERA and the Tevatron, re-

spectively. In Sect. 8 we consider the matching of the Z0

plus jet matrix element at NLO which contains less trivial

colour structures as well.

2 Dipole showers

The dipole shower algorithm outlined in [60] has been im-

plemented as an add-on module to HERWIG++, [1]. In this

section we briefly review its properties and give a full de-

scription of the implementation.

The authors have shown that parton showers based on

Catani-Seymour subtraction kernels [39] correctly repro-

duce the Sudakov anomalous dimensions and properly in-

clude effects of soft gluon coherence, upon using an or-

dering of emissions in transverse momenta as defined by

the emitting dipoles. The simple inversion of the kinematic

parametrisation used in the context of NLO subtraction,

however, does not resemble a physical picture for initial

state radiation. An alternative has been suggested and im-

plemented in the simulation presented here.

2.1 Starting the shower

The dipole shower starts evolving off a hard sub process,

which is assigned colour flow information in the large-Nc

limit. This colour flow information is used to first sort all

coloured partons attached to the hard sub process into colour

singlets. Practically, this is done by making use of the fact

that a colour singlet is ‘simply connected’ in the sense of

its colour flow topology: Any parton i in a colour singlet

can be reached from a parton j in the same singlet by just

following colour lines and changing from a colour to an

anti-colour line at an external gluon. Each colour singlet

is now an independently evolving entity, and can only split

into two colour singlets in the presence of a g → qq̄ split-

ting. In the next step, the partons in each singlet are sorted

such that colour connected partons are located at neighbour-

ing positions, when representing the singlet group of par-

tons as a sequence. Note that these sequences may be open

or closed: We will call a sequence open, or non-circular, if

there exists a circular permutation of the elements in it such

that the partons at the first and last position are not colour

connected. Conversely, if there does not exist such a permu-

tation, the sequence is called circular or closed. The possi-

ble sequences are depicted in Fig. 1. Once this sorting has

been accomplished, we will refer to these singlet sequences
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Fig. 1 Examples of parton emission from dipole chains. In these ex-

amples always the upper dipole has been considered for emissions.

Note that any dipole may split in two different ways, splitting either

of its legs. These competing possibilities are not shown in the transi-

tion diagrams

as dipole chains: each pair of subsequent partons in a sin-

glet sequence forms a dipole, which may radiate. For each

parton in each dipole, a hard scale is then determined as de-

fined in [60], with the restriction that no transverse momenta

larger than the ones present in the hard process are gener-

ated by the shower. This restriction can be switched off for

the first emission within the context of NLO matching.

2.2 Kinematics

For completeness we here review the kinematics parame-

trization used for dipole splitting. We referr the reader to

[60] for more details on the relevant phasespace measures.

For final state radiation, we employ a standard Sudakov

parametrization of the splitting products, using the spectator

momentum to absorb the longitudinal recoil of this splitting

such that before and after the splitting all momenta are on

their mass shell, while retaining exact energy-momentum

conservation. The parametrizations for an emission with

momentum q off a final state emitter i and in presence of

a final state spectator j (initial state spectator a) thus take

the form

qi = αipi + βipj,a + k⊥,

q = αpi + βpj,a − k⊥,

qj,a = γpj,a,

(1)

for lightlike pi , pj,a . The spacelike transverse momentum

k⊥ satisfies k⊥ · pi = k⊥ · pj,a = 0 and the other parame-

ters are constrained by q2
i = q2 = 0 and qi + q ± qj,a =

pi ± pj,a .

For initial state radiation it is crucial to allow for non-

zero transverse momenta of the incoming partons, such that

any initial state emission will contribute to the transverse

momentum transferred to the final state. In this case, for

the emission q off an initial state emitter a in presence of

a final state spectator j (initial state spectator b), we use

qa = αapa + βapj,b + k⊥,

q = αpa + βpj,b + k⊥,

qj,b = γpj,b,

(2)

for lightlike pa , pj,b . Similarly to the final state case,

the spacelike transverse momentum k⊥ satisfies k⊥ · pa =

k⊥ · pj,b = 0 and we impose the constraints q2
a = q2 = 0

and qa − q ∓ qj,b = pa ∓ pj,b .

After the shower evolution has been terminated, the event

needs to be re-aligned back to the beam axis, i.e. a Lorentz

transformation needs to be applied transforming the incom-

ing partons with finite transverse momenta back to momenta

collinear with the beam axis. Details of this procedure are

discussed in Sect. 2.5.

2.3 Modification of the splitting kernels

The Catani-Seymour dipole functions are not positive

throughout, rendering a probabilistic interpretation as re-

quired by a parton shower algorithm problematic. The re-

gion where they turn negative is readily identified as the

phasespace for large-angle, hard emission. As the shower

approximation breaks down in this region anyway, one sim-

ple possibility to cure this problem is to set the kernel equal

to zero when it becomes non-positive. For reasons of flexi-

bility and future extensions, we choose a different approach

by adding finite terms to render the dipole functions positive.

There is no first principle of what these finite terms

should look like; indeed, the dipole functions themselfs con-

tain finite, non-singular pieces, which one should abandon

in a strict approach of exponentiating singular terms only.

To this extent, we leave it to a comparison of data and Monte

Carlo, wether exponentiating finite terms should be consid-

ered a bug or a feature. Ultimately, their impact should be

included as a measure of uncertainty of the parton shower

prediction.

To be precise, we have determined the finite terms for

the initial-final and final-initial quark-gluon dipoles to sym-

metrically share the full real emission contribution (aver-

aged over event orientation) of a gluon being emitted off

a space-like quark-current,

〈

V a
qg(x, z)

〉

→
〈

V a
qg(x, z)

〉

+ (1 − x)(1 + 3xz),

〈

V
qg
k (x,u)

〉

→ 〈V
qg
k (x,u) + u

(

1 + 3x(1 − u)
)

.
(3)
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The remaining non-positive dipole function is the final-

initial gluon-gluon dipole, where a less motivated choice has

been used,

〈

V a
gg(x, z)

〉

→
〈

V a
gg(x, z)

〉

+ (1 − x)
(

1 + xz(1 − z)
)

(4)

reflecting the z ↔ (1 − z) symmetry of this splitting.

The modification of the dipole kernels have accordingly

been implemented in the automated dipole subtraction to be

discussed in Sect. 3.

2.4 Evolution of the parton ensemble

The main shower algorithm acts on a set of dipole chains,

and proceeds as long as this set is not empty. Dipole chains

are removed from the list, if they stopped evolving, i.e. if

there was no splitting selected with a p2
⊥ above the shower’s

infrared cutoff μ2
IR. The first entry in the set of dipole

chains is taken to be the current chain. For each dipole (i, j)

in the current chain (with both possible emitter–spectator as-

signments, i.e. also considering (j, i) along with (i, j)), any

possible splitting (i, j) → (i′, k, j) is considered to com-

pete with all other possible splittings of the chain. For any

such splitting, given a hard scale p2
⊥ associated to the emitter

under consideration, a scale q2
⊥ is selected with probability

given by the Sudakov form factor

�(i,j)→(i′,k,j)

(

q2
⊥,p2

⊥

)

= exp

(

−

∫ p2
⊥

q2
⊥

dq2

∫ z+(q2)

z−(q2)

dzP(i,j)→(i′,k,j)

(

q2, z
)

)

, (5)

where P(i,j)→(i′,k,j)(q
2, z) is the appropriate splitting prob-

ability as defined in [60], using the respective dipole split-

ting function Vi′,k;j .

The splitting with the largest selected value of q2
⊥ is then

chosen to be the one to happen, except the largest q2
⊥ turned

out to be below the infrared cutoff. In this case the current

chain is removed from the set of dipole chains, inserted into

the event record and the algorithm proceeds with the next

chain. The momentum fraction z is chosen to be distributed

according to dP(i,j)→(i′,k,j)(q
2
⊥, z). Since for now we use

azimuthally averaged splitting kernels, the azimuthal ori-

entation of the transverse momentum is chosen to be dis-

tributed flat. The momenta of the splitting products and

the spectator after emission are then calculated as specified

in [60].

As the evolution factors into dipole chains as indepen-

dently evolving objects, all possible emitters in the chain—

after having inserted the generated splitting—now get

the selected q2
⊥ assigned as their hard scale, or stay at

the kinematically allowed scale p2
⊥,i,j if q2

⊥ > p2
⊥,i,j .

If a g → qq̄ splitting has been selected for a circular chain,

this chain becomes non-circular. If it has been selected for

an already non-circular chain, this chain breaks up into two

independent chains exactly between the qq̄-pair, owing to

the colour structure of this splitting. This situation, along

with non-exceptional splittings is depicted in Fig. 1.

2.5 Finishing the shower

After the shower evolution has terminated, the incoming

partons with momenta pa,b in general have non-vanishing

transverse momenta with respect to the beam directions.

This necessitates a realignment of the complete event en-

countered at this stage. Following the arguments of [60],

the momenta of the evolved incoming partons pa,b are taken

to define the frame of the collision at hand, i.e. hadron mo-

menta P̃a,b . We then seek a Lorentz transformation to take

P̃a,b to the externally fixed hadron momenta Pa,b , which is

in turn used to realign the complete event.

To construct the momenta of the incoming hadrons P̃a,b ,

we require the three-momenta of P̃a,b being collinear with

the respective partonic three-momenta and define momen-

tum fractions

xa,b =
2P̃b,a · pa,b

S
. (6)

The momentum fractions are further constrained by requir-

ing that

(P̃a + P̃b)
2 = S, (7)

where S is the centre-of-mass energy squared of the colli-

sion, such that the desired Lorentz transformation exists.

The second constraint is in principle to be chosen in such

a way as to preserve the most relevant kinematic quantity of

the hard process which initiated the showering. By default,

we choose this to be the rapidity of a system X, which is

either the system of non-coloured particles at the hard sub-

process, or the complete final state in case of a pure QCD

hard scattering.

2.6 Cluster hadronization

The cluster hadronization model, originally proposed in [61],

is the hadronization model used by the HERWIG++ event

generator. The model in its initial stage just after par-

ton showering, performs a splitting of gluons into quark-

antiquark pairs such that in the large-Nc limit a set of colour

singlet clusters emerge from the event under consideration.

These clusters are then subsequently converted into

hadrons, by either splitting them into clusters of lower in-

variant mass or performing directly the decay to meson

pairs, in case another qq̄ pair is ‘popped’ from the vac-

uum inside the cluster, or baryon pairs, where the creation

of a diquark-antidiquark pair is assumed. Further details of

the model will not be discussed here.
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The main assumption of the model is however, that both

quarks are located on their constituent mass shell, and glu-

ons are as well assigned a non-vanishing constituent mass,

entering as a parameter of the model. In the standard HER-

WIG++ parton shower, acting as a 1 → 2 cascade, only

scales and momentum fractions of the splittings are de-

termined during the evolution, the full kinematic informa-

tion being constructed after the end of the perturbative

evolution. This setup thus straightforwardly allows to in-

clude the constituent masses in this particular step. Since

the dipole shower preserves momentum conservation locally

to each splitting, ending up with a set of massless partons,

such a treatment is not possible.

The way to perform the ‘reshuffling’ of the massless par-

ton momenta to their constituent mass shells is chosen to be

the following algorithm: Let Qc be the total momentum of

all final state partons and perform a boost Λc to the centre-

of-mass system of Qc, ΛcQc = (Q̂c,0). The boosted parton

momenta pi are now put on the constituent mass shell, in-

cluding a global rescaling of their three-momenta,

pi =
(

|pi |,pi

)

→ p′
i =

(
√

ξ2|pi |2 + m2
c,i, ξpi

)

. (8)

Momentum conservation then implies the following relation

be satisfied,

Q̂c =
∑

i

√

ξ2|pi |2 + m2
c,i, (9)

which may be solved numerically to yield a value for ξ . Fi-

nally the inverse boost Λ−1
c is applied to the new parton mo-

menta p′
i .

2.7 Comparison to other dipole-type showers

As has been extensively discussed in Ref. [60], one of

the main differences of our implementation as compared to

similar approaches, [41, 42], is the way initial state radiation

is handled. The effect of the alternative scheme, in which

every initial state emission can contribute to the final state

transverse momentum, has been studied at parton level

in [60]. For enabling a consistent subtractive NLO match-

ing (cf. Sect. 4.1), the shower is allowed to fill the available

phase space.1 Additionally, we include a simple modifica-

tion of αs for low scales, such as to allow shower evolution

to very small scales. Algorithms along these lines have been

pointed out as an alternative modelling of intrinsic trans-

verse momentum [62]. For the shower implementation at

hand, this is of particular importance when considering deep

inelastic scattering where no intrinsic p⊥ can be generated

at the end of the evolution without the scattered electron tak-

ing up parts of the resulting recoil.

1A restriction of not generating higher-p⊥ partons than those present

in the hard subprocess is applied if no matching is performed.

3 The matchbox framework

Closely related to the dipole shower implementation, though

technically independent of it, is the development of the

MATCHBOX module. MATCHBOX is based on an extended

version of THEPEG, the extensions providing functional-

ity to perform hard process generation at the level of NLO

QCD accuracy and easing the setup of run time interfaces to

external codes for hard process generation. We have imple-

mented an automated generation of subtraction terms based

on the dipole subtraction formalism [39], based on the infor-

mation available from THEPEG matrix element implemen-

tations, which will be discussed in further detail in Sect. 3.4.

A full NLO calculation to be run in the MATCHBOX frame-

work only requires the implementation of tree-level and one-

loop amplitudes, the presence of colour (and spin) correlated

amplitudes for the Born process and the presence of a phase

space generator appropriate to the process under considera-

tion. Figure 2 sketches the involved software modules and

their interaction with an external implementation of a NLO

calculation.

Besides being capable of performing a Monte Carlo in-

tegration of ‘plain’ NLO corrections, the main purpose of

MATCHBOX is to turn a NLO calculation into a matched cal-

culation to be consistently combined with a parton shower.

Here, functionality is especially provided to calculate the in-

clusive NLO cross section differential in the Born degrees of

freedom, which, along with a matrix element correction to

the shower, is the main ingredient to the POWHEG method

of combining parton showers and NLO QCD corrections.

MATCHBOX is automatically generating matrix ele-

ment corrections from the NLO real emission contribu-

tion. It further allows the possibility to overcome prob-

lems in the POWHEG matching owing to radiation zeroes

in the Born matrix element. The matrix element correction

Fig. 2 A sketch of the interaction of the Matchbox and dipole

shower modules as integrated in HERWIG++. To perform a matched

NLO calculation an external code only has to provide tree-level and

one-loop amplitudes along with colour- and spin-correlated amplitudes

of the Born process and an appropriate phase space generator
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splitting kernel, which is essentially defined by the ratio of

real emission and Born matrix elements squared is turned

into the corresponding distribution including the Sudakov

form factor by using the EXSAMPLE library, [63]. EXSAM-

PLE allows the efficient sampling of distributions of this

type, without having to provide any analytic knowledge on

the splitting kernel or trying to estimate enhancement fac-

tors to simpler functions such as dipole splitting kernels.

EXSAMPLE is also used to sample emissions in the dipole

shower implementation.

3.1 Notation

We consider NLO calculations carried out using the dipole

subtraction method, [39]. Instead of using the notation es-

tablished there, we unify the indices of all possible dipoles

to ease readability, as expressions become quite complicated

especially when considering the POWHEG type matching.

For the subtraction dipoles we choose the notation

Dij,k, D
a
ij , D

ai
k , D

ai,b → Dα, (10)

where the arguments are unified and we make explicit

the dependence on either real emission or ‘tilde’ kinemat-

ics, e.g.

Dij,k(qa, qb;q1, . . . , qn+1) → Dα

(

pα
n (qn+1) | qn+1

)

. (11)

In this notation, pn now refers to the whole phase space

point,

pa, pb; p1, . . . , pn → pn ≡ (p̂a, p̂b; p̂1, . . . , p̂n), (12)

where we have added hat symbols to the momenta to dis-

tinguish a single momentum from a complete phase space

point. The ‘tilde’ mapping and its inverse are denoted by

p̃ij (qi, qj , qk), p̃k(qi, qj , qk) → pα
n (qn+1),

qi,j,k

(

p̃ij , p̃k;p
2
⊥, z,φ

)

→ qα
n+1

(

pn;p
2
⊥, z,φ

)

.
(13)

Differential cross sections are considered in collinear fac-

torisation,

dσX

(

pn | Q,xa, xb,μF

)

= fP←a(xa,μF )fP←b(xb,μF )dσX

(

pn | Q
)

dxa dxb,

(14)

where the partonic cross section is in general of the form

dσX

(

pn | Q
)

= F(p̂a, p̂b)X(pn)dφ
(

pn | Q
)

. (15)

Here F(p̂a, p̂b) is the appropriate flux factor and X(pn)

generically denotes any contribution to the cross section

which can be cast in the above form, i.e. tree-level ampli-

tudes squared, one-loop tree-level interferences, subtraction

terms, or the ‘deconvoluted’ finite collinear terms to be dis-

cussed below. The phase space measure dφ(pn | Q) is given

by

dφ
(

pn | Q
)

= (2π)dδ

(

n
∑

i=1

pi − pa − pb − Q

)

n
∏

i=1

dd−1q̂i

(2π)d−12q̂0
i

.

(16)

In latter sections, it will turn out to be useful to rewrite this

as

dσX

(

pn | Q,xa, xb

)

= X(pn)dF(xa, p̂a, xb, p̂b)dφ
(

pn | Q
)

≡ X(pn)dφF

(

pn | Q,xa, xb

)

, (17)

where we dropped making explicit the factorisation scale de-

pendence from now on.

The finite collinear terms originating from counter terms

to renormalise parton distribution functions and integrated

subtraction terms are reported in [39]. These are given as

convolutions of Born-type cross sections of colour corre-

lated amplitudes with certain ‘insertion operators’, e.g. for

the incoming parton a

∫ 1

0

dz C
(

pa
n(z)

)

dφ
(

pn | Qa(z)
)

dF(xa, zp̂a, xb, p̂b), (18)

where the superscript a along with an argument z indi-

cates, that parton a’s momentum is rescaled by z. The in-

sertion operators themselves include +-distributions, and

events should be generated according to the rescaled in-

coming momentum zp̂a . A numerical implementation is at

first sight not obvious. Considering however the integration

over the momentum fraction xa , these contributions can be

rewritten in terms of a Born-type cross section multiplied by

modified PDFs along the lines of

∫ 1

0

dx

∫ 1

0

dzf (x)B(xz)P (z)

=

∫ 1

0

dxB(x)

∫ 1

x

dz

z
f

(

x

z

)

P(z) (19)

and the +-distributions can be expressed in a way to allow

for numerical implementation. All possible contributions for

light quarks are implemented in MATCHBOX.

Any NLO cross section within the dipole subtraction thus

takes the form

σNLO =

∫

∣

∣MB(pn)
∣

∣

2
u(pn)dφF

(

pn | Q,xa, xb

)

+

∫

[

2 Re
〈

M
∗
B(pn)MV (pn)

〉

+
〈

MB(pn)
∣

∣I
∣

∣M(pn)
〉]

ǫ=0

× u(pn)dφF

(

pn | Q,xa, xb

)
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+

∫

〈

MB(pn)
∣

∣(P̃ + K̃)
∣

∣M(pn)
〉

× u(pn)dφ̃F

(

pn | Q,xa, xb

)

+

∫ (

∣

∣MR(qn+1)
∣

∣

2
u(qn+1)

−
∑

α

Dα

(

pα
n (qn+1) | qn+1

)

u
(

pα
n (qn+1)

)

)

× dφF

(

qn+1 | Q,xa, xb

)

, (20)

where the insertion operators I are given in [39] and have

been implemented for light quarks in full generality as well.

P̃, K̃ and dφ̃F denote the deconvoluted versions of the fi-

nite collinear terms originating from the insertion operators

P, K given in [39]. Here, the test functions u(pn) refer to

the class of events to be generated by a Monte Carlo realisa-

tion of the above integrals, and MB,R denote the Born and

real emission amplitudes, respectively. Since only the struc-

ture of the real emission and subtraction terms turns out to be

relevant for matching purposes, we from now on collectively

denote Born, virtual and insertion operator contributions by
∫

∣

∣MBV (pn)
∣

∣

2
u(pn)dφF

(

pn | Q,xa, xb

)

.

Since all the integrals will be dealt with by means of

Monte Carlo methods, differentials are expressed in terms

of a Jacobian expressing the physical variables in terms of

random numbers and a volume element on the unit hyper-

cube of these random numbers, e.g.

dφ
(

pn | Q
)

=

∣

∣

∣

∣

∂pn

∂r

∣

∣

∣

∣

dkr. (21)

We identify ratios of differentials to actually mean the ratios

of the corresponding functions multiplied by the Jacobian

in use to express them in terms of random numbers, e.g. for

two cross sections we define

dσX(qm | Q)

dσY (pn | Q)
≡

X(qm)

Y (pn)

∣

∣

∂qm

∂rq

∣

∣

∣

∣

∂pn

∂rp

∣

∣

. (22)

3.2 Phasespace generation and matrix elements

MATCHBOX organizes differential cross sections directly

in terms of the physics quantities entering their definition

to maintain a maximum of flexibility and transparency.

The structure described in the following enables several lev-

els of implementing new processes or interfacing external

codes at runtime, while keeping the already existing steer-

ing of HERWIG++ event generation in terms of subprocess

selection and cuts unaltered.

At leading order, a differential cross section is decom-

posed in terms of PDFs provided through existing infras-

tructure, phasespace generation and a squared matrix ele-

ment for the process of interest. These contributions can be

implemented in one single class. Alternatively, phasespace

generation can be separated into an independent implemen-

tation, while matrix elements squared may still be provided

for each subprocess directly; they can also be decomposed

into helicity amplitudes multiplying a given colour structure.

In the latter case, the relevant colour algebra needs to be

provided through an independent class and amplitudes can

be calculated independently of a given subprocess in a con-

vention that all momenta are outgoing. Other conventions

are possible, requiring information on how a physical sub-

process is crossed to the amplitude’s convention. The case

of providing colour decomposed helicity amplitudes is most

relevant for the fully automatic generation of subtraction

terms to be discussed below.

Another important ingredient to generating events ac-

cording to a given differential cross section is the informa-

tion which (tree-level) Feynman diagrams do contribute to

a given subprocess, and which large-Nc colour flows are as-

sociated to these diagrams. Though the diagram information

is unphysical, it has been included in THEPEG primarily for

the purpose of setting up the event record in a most meaning-

ful way. As for the modularity provided for the contributions

to a differential cross section, diagram information and/or

colour flows can be provided by either direct implementa-

tion,2 or can be generated automatically by a dedicated tree-

level diagram generator based on the vertex objects present

in HERWIG++, and the colour algebra implementation pro-

viding information on which partons are considered colour

connected for a given colour structure. The weights driving

selection of colour flows are then determined automatically.

The diagram information is used by MATCHBOX to de-

termine subtraction terms for real emission contributions to

NLO calculations, and can be used for efficient phasespace

generation. A phasespace generator based on mapping out

the peak structure relevant to the contributing diagrams is

part of MATCHBOX, [65].

At NLO, differential cross sections receive contributions

from subtracted real emission matrix elements, and the finite

remainder of the sum of integrated subtraction terms and vir-

tual corrections. Various conventions of defining this finite

remainder are supported, as well as the choice between di-

mensional regularization and dimensional reduction (includ-

ing conversion from DR to MS renormalized one-loop am-

plitudes). The finite piece of one-loop corrections can, simi-

larly to the implementation of tree-level matrix elements, be

either directly implemented in terms of the Born/one-loop

interference or as colour decomposed helicity amplitudes.

The contributions from integrated subtraction dipoles be-

have similar to the Born contribution as discussed in the pre-

vious section, with the exception that colour correlated ma-

2A dedicated code is available to convert diagrams generated by

QGRAF to code required by the MATCHBOX infrastructure [64].
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trix elements are required, which will be discussed in the

following.

3.3 Handling of colour bases

Any QCD amplitude |M〉, considered here a vector in colour

space with spin quantum numbers implicit, can be decom-

posed in terms of a finite set of colour structures |α〉 as

|M〉 =
∑

α

Mα|α〉. (23)

For a given choice of a colour basis {|α〉} it is instructive to

consider the equivalent object of a plain complex vector,

|M〉 ↔ M ≡ (M1, . . . , Mdc ) (24)

for a colour basis of dimension dc. Within this approach,

and owing to the fact that the most common choice of

colour bases are not orthogonal (with the notable excep-

tion of [66]), calculating a squared matrix element or sim-

ilarly a Born/one-loop interference thus requires knowledge

of a scalar product matrix Sαβ = 〈α|β〉, in terms of which

a colour-summed, squared matrix element is calculated as

|M|2 = M†SM.

Similarly, colour correlated matrix elements can be ex-

pressed as

〈M|Ti · Tj |M〉 = M
†T

†
i S̃Tj M, (25)

where S̃ is the scalar product matrix for a final state with an

additional parton and the Ti are appropriate representations

of the colour charge operators. A more detailed description

of this paradigm is given in [67]. Within this context, we are

mainly concerned with the fact that this treatment is blind

to a particular choice of basis, and linear algebra otherwise

which is performed with help of the linear algebra package

of BOOST. Based on this fact, MATCHBOX provides a very

generic notion of a colour basis, implementing precisely this

picture and requiring from a particular choice of colour ba-

sis solely the calculation of scalar products between colour

structures, as well as the matrix elements of the Ti .

3.4 Automated dipole subtraction

MATCHBOX provides an automated generation of subtrac-

tion terms according to the dipole subtraction formalism

[39]. Similar implementations exist in other event gen-

erators, [54, 68, 69]. The MATCHBOX implementation is

smoothly integrated with the hard process generation frame-

work of THEPEG, and offers modified subtraction terms

to match the evolution kernels used in the dipole shower,

cf. Sect. 2.3. All dipole kernels and insertion operators for

massless quarks have been implemented, and the framework

is general enough to straightforwardly include the contribu-

tions relevant for massive quarks, parts of which are already

present [70].

The process dependent ingredients needed to set up sub-

traction terms, in particular colour- and spin-correlated ma-

trix elements, can either be provided directly through a gen-

eral set of interfaces, or methods providing colour-ordered

subamplitudes may be implemented. In the latter case,

the infrastructure outlined above is employed to evaluate

colour correlations and spin correlations by means of trans-

lating the correlation tensors used in [39] to a correlation of

amplitudes of different gluon helicity.

Which dipoles will contribute to a given process is deter-

mined from the diagram information discussed in Sect. 3.2.

Subtraction dipoles are determined by a simple algorithm of

checking, for any contributing diagram, if any two external

coloured legs are attached to the same vertex. By remov-

ing this vertex from the diagram information, the diagram

of the corresponding ‘underlying Born process’ is obtained

along with a mapping of how the parton momenta need to

be assigned to the underlying Born process. Conversely,

the same pairing of diagrams provides a way to identify

which real emission processes are to be considered given

any Born process. This information is used when setting

up the inclusive NLO cross section calculation and generat-

ing matrix element corrections for the parton shower. From

a given matrix element object implementing a real emission

contribution, MATCHBOX checks a set of Born matrix ele-

ment objects provided along with the real emission ones for

the underlying Born processes obtained and adds all match-

ing pairs to the calculation if there exists a subtraction dipole

object which claims responsibility for the given pairing.

Similarly, all insertion operator implementations present are

checked if they claim responsibility for a given Born pro-

cess, thus completing the setup of a NLO calculation.

3.5 Summary of fixed-order cross sections

Fixed-order cross sections at LO or NLO can be assembled

with MATCHBOX through a series of interfaces at different

levels such as (colour and/or spin correlated) squared ma-

trix elements and Born-virtual interferences, or directly at

the level of colour ordered helicity amplitudes. If the tree

level contributions are available via the amplitude level in-

terface, subtraction terms are setup in a completely auto-

matic way requiring no user intervention or additional in-

formation. Hybrids of these interfaces are as well possible,

allowing e.g. one-loop corrections to be provided at the level

of the Born-virtual interference, while real emission matrix

elements are given at the amplitude level.

Given a physical process determined by incoming had-

rons or leptons, and a final state which can explicitly con-

tain jets, all contributing subprocesses are determined and

diagram information is generated for use in phase space gen-

eration and the setup of subtraction terms. The complete LO

or NLO calculation is then injected as a THEPEG SubPro-

cessHandler object into the stage of event generation.
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For running unmatched calculations, a group of events

consisting of real emission and ‘tilde’ phase space points

is provided along with the relative weights of the individ-

ual contributions present in the group. The sum of these

weights, i.e. real emission minus subtraction term contribu-

tions is driving the cross section integration and potentially

event unweighting.

More details on the MATCHBOX framework, particularly

the interfacing and/or implementation of contributions to

a fixed-order cross section are given in Appendix A.

4 NLO matching with matchbox

4.1 Subtractive NLO matching

Owing to the fact that the dipole shower implementation

uses splitting kernels which precisely equal the dipole sub-

traction terms, following the steps leading to MC@NLO here

results in a very simple matching.3 This subtractive match-

ing is basically identical to the NLO calculation itself, ex-

cept that instead of event groups now a single real emission

phase space point is generated from the subtracted real emis-

sion contribution. In an algorithmic manner, the matching

may thus be expressed very simply:

– Generate Born-type events pn with density

∣

∣MBV (pn)
∣

∣

2
dφF

(

pn | Q,xa, xb

)

, (26)

– generate real-emission type events qn+1 with density

(

∣

∣MR(qn+1)
∣

∣

2
−

∑

α

Dα

(

pα
n (qn+1) | qn+1

)

)

× dφF

(

qn+1 | Q,xa, xb

)

, (27)

– and feed either into the dipole shower.

A subtlety, however, arises here. Since we are interested

in describing the hardest emission according to the exact

real emission matrix element, the parton shower should not

generate harder emissions than the one fixed from the NLO

calculation. Practically, this is implemented by calculating

the pα
⊥ as defined by the inverse ‘tilde’ mapping from each

dipole configuration α, since the kinematics of the emission

appears differently depending on the emitting dipole con-

sidered. pα
⊥ is communicated as a veto scale to the dipole

shower, which is not allowed to generate emissions with

p⊥ > pα
⊥ off the emitter, emission and spectator partons

used to evaluate Dα . Another approach, in which the dipole

shower is generally not allowed to emit at scales p⊥ larger

than final state transverse momenta can equivalently be used

3Though the kinematic parametrisation differs from the one used

in the subtraction context, it can be related to the usual ‘tilde’

parametrisation by a boost in case a single emission is considered.

and may become the default in a future version. This treat-

ment is then very similar to the HERWIG shower in use with

the traditional MC@NLO implementation.

4.2 NLO matching with matrix element corrections

The splitting kernels to be used for a matrix element correc-

tion are given by the ratio of real emission and Born ma-

trix elements squared, weighted by (in principle) arbitrary

weight functions for each kinematic mapping of a subtrac-

tion term, i.e. for each subtraction term. It is most simple

to choose the subtraction terms themselves to define these

weight functions. This has the advantage that all divergences

but the divergence associated to the subtraction term Dα are

divided out from the real emission matrix element, and dy-

namical features of the Born matrix element, like peaks ow-

ing to unstable particles, are flattened out in the splitting ker-

nel considered.

Within this procedure, one faces three major problems:

– Some of the subtraction dipoles, in particular the ones

with initial state emitter and final state spectator or vice

versa, are not positive-definite. This makes a Monte Carlo

treatment of the corresponding Sudakov-type distribution

hard to implement. Since the regions, where these dipole

kernels become negative correspond to hard, large an-

gle parton emission, it is clear that this problem can be

cured by changing the irrelevant finite terms of the sub-

traction dipoles, provided they are consistently taken into

account in the integrated ones. Within the MATCHBOX

implementation this has so far been carried out for the qq

initial-final dipoles, which have been modified to repro-

duce the matrix element squared for gluon emission off

the corresponding vector current and are thus positive by

definition.

– The Born matrix element squared may contain zeroes.

In this case, its inverse is obviously ill-defined.

– The implementation of the parton densities at hand, which

enter as a ratio in the splitting kernels as well, may not be

stable in particular for large x in the sense that the inter-

polation used oscillates around zero rather than tending

to zero smoothly. This poses a problem similar to the ze-

roes in the Born matrix element, however now without

any physical interpretation.

The latter two problems can be solved by introducing

an auxiliary cross section dσscreen(pn | Q;p2
⊥) which enters

into the definition of the splitting kernels

dPα

(

p2
⊥, z,φ | pn

)

= d3r
Dα(pn | qα

n+1)
∑

β Dβ(p
β
n (qα

n+1) | qα
n+1)

×
dσR(qα

n+1 | Q,x′
a, x

′
b)

dσB

(

pn | Q,xa, xb

)

+ dσscreen,α(pn | Q;p2
⊥)

, (28)
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where we have already written the splitting kernel differ-

ential in the random numbers determining p2
⊥, z and φ,

and the dependence of qα
n+1 = qα

n+1(pn;p
2
⊥, z,φ) on the

splitting variables is understood implicitly. In order not to

change the divergence structure implying the resummation

of large logarithms, the screening cross section needs to van-

ish as p2
⊥ → 0. Since Born zeroes cannot occur for p2

⊥ → 0

(the QCD singularities factor in this limit with respect to

the Born process) Eq. (28) is free of these problems. If,

in addition, the screening cross section does not depend on

the parton distributions, the technical issues with PDFs be-

coming zero are cured as well.

The screening cross section has however to be taken into

account for the fixed order calculation in order to repro-

duce the correct NLO cross section and will thereby spoil

the original simplicity of using the NLO K-factor differen-

tial in the Born variables to generate events to enter the ma-

trix element corrected shower. Including the screening cross

section the fixed order cross section can then be calculated

to be constructed of densities for Born-type and real emis-

sion type events. The densities for Born-type events closely

resemble the K-factor modification,

dσinclusive

(

pn | Q,xa, xb

)

= dσBV

(

pn | Q,xa, xb

)

+

∫

d3r
dσR,inclusive(pn | Q,xa, xb)

d3r
, (29)

where

dσR,inclusive(pn | Q,xa, xb)

dkrB d3r

=
dσB(pn | Q)

dkrB

×
∑

α

Dα(pn | qα
n+1)

∑

β Dβ(p
β
n (qα

n+1) | qα
n+1)

R
(

pn | qα
n+1

)

, (30)

and

R
(

pn | qα
n+1

)

= −
dφF (qα

n+1 | Q,x′
a, x

′
b)

dφ(pn | Q)

+
dσR(qα

n+1 | Q,x′
a, x

′
b)

dσB(pn | Q,xa, xb) + dσscreen,α(pn | Q;p2
⊥)

. (31)

To generate events according to these densities, a k + 3-di-

mensional random number point is chosen, where the three

additional degrees of freedom are discarded. Owing to

the fact that the integration volume in terms of random num-

bers is the unit hypercube, this procedure produces the in-

tegration over the degrees of freedom of the parton emitted

in the real emission on average.

Events of real emission type are to be generated with den-

sity

dσR

(

qn+1 | Q,xa, xb

)

×
∑

α

R̄
(

pα
n | qn+1

) Dα(pα
n | qn+1)

∑

β Dβ(p
β
n | qn+1)

, (32)

R̄
(

pα
n | qn+1

)

=
dσscreen,α(pα

n | Q;p2
⊥)

dσB(pα
n | Q,x′

a, x
′
b) + dσscreen,α(pα

n | Q;p2
⊥)

, (33)

which is just a reweighting of the real emission contri-

bution. Events of both classes can then be showered by

a parton shower using a matrix element correction as de-

fined at the beginning of this section, and a communica-

tion of veto scales applies to the real emission contribu-

tion along the same lines as for the subtractive matching.

Note that the individual contributions are positive, as long as

the screening cross section is bounded from above by a rea-

sonable value.

Since this type of matching is independent of the parton

shower to act downstream, the actual implementation does

not make any reference to the dipole parton shower, and real

emission contributions according to the matrix element cor-

rection are generated outside any shower module, presenting

a real emission sub process supplemented with proper veto

scales, or a Born-type sub process to the shower, if radiation

has been generated according to the matrix element correc-

tion or not, respectively.

Note that, when putting the screening cross section to

zero, the original simplicity of the POWHEG-type matching

is recovered. The matrix element corrections, inclusive and

real-emission type contributions are all setup and calculated

in an automated way within the MATCHBOX implementa-

tion. The screening cross section is by default chosen from

the corresponding phase space and the dimensionality re-

quired by the phase space, i.e.

dσscreen,α

(

pα
n (qn+1) | Q;p2

⊥

)

=
(pα

⊥)2

sα(qn+1)

dφ(qn+1 | Q)

(sα(qn+1))nout
,

(34)

where pα
⊥ is the transverse momentum associated to the

mapping pα
n (qn+1), sα(qn+1) is the appropriate mass squared

of the emitter-spectator pair in pα
n , and nout is the number of

outgoing particles. Other choices may be possible.

5 Results at LEP

The variety of data acquired by the LEP experiments allow

for a systematic fit of parameters of the parton shower and
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Table 1 The parameters varied

for the fit to LEP data Parameter Range Description

αs(M
2
Z) 0.1–0.13 Input αs at Z mass.

μIR,FF 0.5 GeV–2.0 GeV Infrared cutoff for final-final dipoles

μsoft,FF 0.0 GeV–1.2 GeV Soft scale for final-final dipoles

mg,c 0.67 GeV–3.0 GeV Gluon constituent mass

Clmax 0.5 GeV–10 GeV Maximum cluster mass

Clpow 0.0–10.0 Cluster mass exponent

Clsmr 0.0–10.0 Cluster direction smearing

Psplit 0.0–1.4 Cluster mass splitting parameter

Table 2 Parameters for LO and

NLO fits to LEP data

aThis parameter was predicted

negative by PROFESSOR though

consistent with zero and has

thus been fixed

Parameter Range Description

αs(M
2
Z) 0.113185 ± 0.007281 0.117550 ± 0.005053

μIR,FF (1.416023 ± 0.306430) GeV (1.245196 ± 0.226821) GeV

μsoft,FF (0.242725 ± 0.202069) GeV 0.0 GeVa

mg,c (1.080386 ± 0.499546) GeV (1.007680 ± 0.265565) GeV

Clmax (4.170320 ± 0.589504) GeV (3.664004 ± 0.639504) GeV

Clpow 5.734681 ± 1.006965 5.687022 ± 0.869322

Clsmr 4.548755 ± 2.350193 3.115744 ± 2.436793

Psplit 0.765173 ± 0.074008 0.771329 ± 0.074248

the hadronization model. In a preliminary fit, the parame-

ters assumed to mainly determine the description of event

shape variables and jet rates as measured by the DELPHI ex-

periment [71] and jet observables as reported by the OPAL

collaboration [72] have been fitted using the RIVET [73]

and PROFESSOR [74] systems. The parameters and ranges

considered are given in Table 1, along with a short descrip-

tion. Parameters which are known to mainly affect individ-

ual hadron multiplicities have not been varied, and fragmen-

tation parameters for heavy quarks have been set equal to

the values of those for light quarks. A simple modification

of the running of αs in the infrared has been adopted by re-

placing its argument q2 → q2 +μ2
soft. This modification has

originally been motivated to supply another model for in-

trinsic transverse momentum generation by letting the initial

state shower evolve down to very small scales along the lines

of [62]. We see however no reason that it should not be con-

sidered for final state radiation as well.

Separate fits have been performed for LO and NLO pre-

dictions. LO predictions have been obtained by running

just the parton shower, using a one-loop running αs . NLO

prediction have been obtained by means of supplementing

the shower with the matrix element correction matching

without using the Born screening cross section and a two-

loop running αs . In total we find that the NLO simulation

gives a marginally better fit than the LO one, though the de-

scription of data is completely comparable within experi-

mental uncertainties.

The fitted parameter values are displayed in Table 2.

Most notably, the hadronization parameters for the LO and

NLO fit do not significantly differ. For both predictions,

a modification of the infrared running of αs seems not to

be preferred. The infrared cutoff of the parton shower is

determined more precisely by the NLO fit, which prefers

a smaller cutoff. Also αs(M
2
Z) is determined more precisely

by the NLO fit. Both αs values obtained are compatible with

the world average [75] of 0.1184, where the NLO result is

closer to this value. Note that this should be regarded a coin-

cidence at the level of the approximation considered and it is

certainly not possible to uniquely relate the obtained value to

one applying to the MS scheme. In Figs. 3 and 4 the LO and

NLO simulation results are compared for selected observ-

ables. Figure 5 shows the energy-energy-correlation, which

has not been included in the fit.

5.1 Comparison of matching strategies

The MATCHBOX framework provides the facility to switch

between the POWHEG-type matching with matrix element

corrections including or excluding the auxiliary Born screen-

ing cross section, and subtractive matching. For reasons of

systematics it is instructive to compare these approaches. No

separate fit for the variants not considered so far has been

performed and the NLO fit values as given in the previous

section have been used. The different matching strategies

give completely comparable results. If there are small visi-

ble differences, there is no clear tendency that either variant

would give a better description than any of the others. Fig-

ure 6 compares the matching strategies for the two jet rate.

To this extent, the subtractive matching could be preferred
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Fig. 3 Some event shape variables as predicted by the leading order

and next-to-leading order simulations. Here, we additionally compare

to the standard HERWIG++ shower (version 2.5.1 with default set-

tings), showing that the dipole shower gives a significantly improved

description already at leading order

Fig. 4 The differential three jet rate as predicted by the leading order

and next-to-leading order simulations

Fig. 5 Energy-energy correlation. Note that this observable has not

been included in the fit

amongst the POWHEG-type ones owing to its smaller com-

putational complexity. This statement, however, not only in-

cludes that negative weighted events do not pose a major

problem, but also has to be verified in a process dependent

matter since there is no hint, if the behaviour observed here

is a general feature—particularly at hadron colliders.

6 Results at HERA

Owing to the approximation underlying the dipole parton

shower, diagrams contributing to parton emission of a given
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Table 3 Parameters for LO and

NLO fits to HERA data Parameter Range Description

μIR,FI (0.796205 ± 0.333340) GeV (0.718418 ± 0.210448) GeV

μsoft,FI (1.355894 ± 0.432515) GeV (1.003714 ± 0.252398) GeV

Fig. 6 Comparison of matching strategies exemplified for the Durham

two-jet rate

dipole (i, j) may be considered a gauge invariant subset

in the soft and/or collinear limits for Nc → ∞. This implies

that the infrared cutoffs and soft scales entering the emis-

sion probabilities need not be the same for all dipoles.

The emitter-spectator configurations forming gauge invari-

ant quantities in this sense are the two emitter choices for

final-final dipoles, initial-initial dipoles, and the combina-

tion of initial-final and final-initial configurations. Fitting

DIS data therefore allows one to fix the infrared cutoff and

soft scale for the latter, before finally constraining the same

parameters for initial-initial dipoles at a hadron collider,

which is considered in the next section.

For the fit described here, the same technique as for

LEP, and data accumulated by the H1 experiment [76] have

been used. For LO and NLO, the default HERWIG++ PDFs,

MSTW 2008 LO** [77, 78] and MRST 2002 NLO [79],

have been used. The same PDFs were considered for hadron

collider data to be discussed in the next section. The NLO fit

was obtained by running the matching with matrix element

correction.

The findings are similar as for the fit to LEP data. We

find a reasonable prediction of transverse energy flows over

the whole range of (x,Q2) plane. The matched NLO pre-

diction gives a comparable fit to the LO simulation, while

preferring both a smaller infrared cutoff and screening scale.

The fitted parameters are given in Table 3.

Fig. 7 Average transverse energy in the central region as measured at

HERA and compared to leading order and next-to-leading order pre-

dictions

Figure 7 shows the average transverse energy as a func-

tion of Q2 in the central detector region. This observable is

clearly improved by the NLO matching at small momentum

transfers. A more detailed analysis of DIS data including in-

clusive jet and event shape data is currently underway.

7 Results at the Tevatron

After having determined the simulation parameters for

hadronization, final state radiation, and radiation off a final-

initial dipole by fitting LEP and HERA data, two parameters

remain to be determined: the infrared cutoff and soft scale

for radiation off an initial-initial dipole. We here consider

the p⊥ spectrum of e+e− Drell-Yan pair production as mea-

sured by the CDF collaboration [80]. Since the Drell-Yan

process receives rather large QCD corrections from leading

to next-to-leading order and a still considerable correction

at NNLO, both fits have been performed by normalising

the simulation to the measured cross section. The matrix el-

ement matching including the Born screening cross section

has been used here, as for the DIS data.

The PROFESSOR algorithm here turned out not to be ap-

plicable, as the cubic interpolation was not capable of de-

scribing the complete dynamics of letting the shower evolve

to rather small infrared cutoffs, owing to the prescription of
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Table 4 Parameters for LO and NLO fits to the CDF Drell-Yan data

Parameter Range Description

μIR,II 0.367359 GeV 0.275894 GeV

μsoft,II 0.205854 GeV 0.254028 GeV

Λ⊥,valence 1.68463 GeV 1.26905 GeV

Λ⊥,sea 1.29001 GeV 1.1613 GeV

Fig. 8 Differential cross section of the Drell-Yan-pair p⊥ compared

to LO and NLO predictions. Note that the cross sections have been

normalised to the measured one

introducing a soft scale in αs as already described before.

We have therefore performed a preliminary fit by generat-

ing 300 random points uniformly in parameter space, which

here includes the infrared cutoff for initial-initial dipoles,

the soft scale for initial-initial dipoles, as well as the widths

of a Gaussian distribution for intrinsic transverse momen-

tum, Λ⊥. The latter has been chosen to be potentially differ-

ent for valence and sea partons.

Out of these random points we have picked the one with

lowest χ2 with respect to the data, again both for LO and

NLO simulations. The resulting parameters are given in Ta-

ble 4. Note that the p⊥ distribution for sea partons is nar-

rower, corresponding to a broader spatial distribution as can

be motivated on different grounds.

We show the comparison of LO and NLO simulations

in Fig. 8 showing similar systematics to the distributions

discussed before. In order to determine the predictivity of

the simulation already at this very coarse level of tuning, we

additionally show the pseudo-rapidity distribution of a third

jet in events with at least two hard jets, Fig. 9, as carried out

at CDF [81]. Reasonable agreement with data is found. On

Fig. 9 The pseudo-rapidity distribution of a third jet in events with at

least two jets. We here only show the leading order prediction in order

to check the predictivity of the tune carried out so far

top of the work presented in [60], this constitutes another

crucial test of coherent parton evolution.

8 Z
0
+ jets

In addition to the processes discussed so far we have in-

cluded the simulation of Z0/γ ∗ production in association

with a single hard jet at NLO. Matching of this process has

been discussed in the literature in both, the POWHEG and

the subtraction method [36, 82, 83].

As in the previous examples, the matrix element has been

calculated and was included in the MATCHBOX framework

as a built–in process. This time, however, the process was

included on the amplitude level, providing spin– and colour

correlated matrix elements automatically. The generic build-

ing blocks needed to test our framework are just three ampli-

tudes, implemented as complex functions, the Born, the vir-

tual (one-loop) and the real emission amplitude. The imple-

mentation and integration of the NLO amplitude at parton

level has been validated against MCFM
4 on the level of dis-

tributions and integrated cross section. In addition, the Born

amplitude was validated against the internal matrix element

in HERWIG. All tests have been carried out at the example

process pp → e+e−j . Different final states are only triv-

ial modifications of the matrix elements and are available

in the code via simple switches.

Regarding our framework, compared to the previously

discussed examples, this is the first test of the match-

4http://mcfm.fnal.gov.

http://mcfm.fnal.gov
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Fig. 10 Exclusive multiplicity of jets with p⊥ > 20 GeV

ing machinery on the amplitude level and with non-trivial

spin and colour correlations. Furthermore, with this process

almost all of the possible emitter spectator combinations

are included in order to test the automatic setup of Catani–

Seymour subtraction terms, including splittings that involve

the triple gluon coupling.

In order to study the effect of the NLO corrections, we

have studied a number of observables for different setups of

our code at parton level, namely

– LO + PS, LO with parton showers,

– NLO, NLO without parton showers, and

– NLO + PS, NLO with parton showers using matrix ele-

ment corrections.

We consider the invariant mass of the Z0/γ ∗ boson via

the electron pair in a mass window of 65 GeV < Mee <

115 GeV. In addition we ask for at least one jet with p⊥ >

20 GeV in the pseudorapidity range 0 < |η| < 5. Jets are

clustered with the kT algorithm (R = 0.7).

In Fig. 10 we show the exclusive jet multiplicity for all

the setups mentioned above. Clearly, the NLO calculation

can only have up to two jets, while additional jets are pro-

duced by the parton shower. As the NLO+PS setup already

start from harder configurations, here also the jet multiplic-

ity increases towards more realistic values as compared to

the LO+PS simulation.

The transverse momentum of the Z0 boson is shown up

to very large values in Fig. 11 as a check. This observable is

described well by the LO matrix element already, which is

not affected by parton showering in the region of high trans-

verse momenta. At NLO only a small correction is applied

in the normalization; similarly to the LO setup, the NLO be-

haviour is preserved by the matched simulation.

The azimuthal angle difference �φ12 between the first

and the second jet is displayed in Fig. 12. This observable is

strictly leading order for the NLO matrix elements while the

LO+PS setup only gets a second jet from the parton shower

alone. Population at small values results from very soft and

Fig. 11 Transverse momentum of the Z0 boson for large transverse

momenta

Fig. 12 Azimuthal angle �φ between the hardest and second hardest

jet

collinear emissions as given correctly by the parton shower

evolution while large values towards π arise in events with

widely separated jets as only generated by the hard ma-

trix element. Here is the domain of the NLO calculation.

A simulation that incorporates a matching between parton

shower and NLO calculation is hence expected to interpolate

smoothly between these two domains, following the parton

shower on the left side of the plot and the NLO calculation

on the right.

The transverse momenta of the hardest and second hard-

est jet are shown in Fig. 13. The behaviour of the hardest jet

is similar as for the transverse momentum of the Z0 boson.

The second jet, however, is only covered by the real correc-

tion part of the NLO matrix elements. Hence, the LO+PS

result is too soft, the parton shower is not hard enough to

produce as many hard second jets as given by the matrix

elements.

9 Conclusions and outlook

We have introduced a new dipole shower module for

the event generator HERWIG++ that allows for an auto-
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Fig. 13 Transverse momenta of the hardest (upper panel) and second

hardest jet

matic matching of NLO computations with a parton shower.

A tune of the hadronization module to the most impor-

tant data sets show that we can achieve very good results

from this simulation already without the inclusion of NLO

terms. Including NLO corrections at this relatively simple

level only marginally improves the results. This effect is

expected as it is known that the Catani–Seymour showers

tend to mimic the behaviour of NLO matrix elements very

well also in phase space regions well outside the collinear

limits. However, the matching poses no technical problem

and can be seen as a proof-of-concept for the idea to pro-

vide a framework for automatic matching. At this time with

relatively simple matrix elements at NLO that are provided

by internal code. Future work will concentrate in the inclu-

sion of external code via a well defined interface, following

the ideas in [84].
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Note added in proof During the editorial process of this work an-

other preprint, [83], appeared, studying in detail the systematics of

NLO matching in a setting similar to ours, though for more compli-

cated processes. While the present work focusses on presenting sim-

ple processes as proof of concept and thus refrains from giving an in-

depth analysis of NLO matching, work is in progress towards processes

involving several coloured partons. The MATCHBOX implementation

particularly aims at an assesment of matching systematics and provides

all tools needed for exploring established or newly developed matching

schemes, details of which we leave to future work.
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Appendix A: Matchbox code structure and interfaces

In this appendix, we give a brief overview of MATCHBOX’s

code structure and the interfaces available tom implement

fixed-order matrix elements.

One of the major design criteria of MATCHBOX has been

to retain the steering of hard matrix elements as already

present in THEPEG/HERWIG++, while allowing for flexible

input of new processes. This structure is reflected in Fig. 14.

Table 5 gives an overview of what contributions to

a fixed-order calculation are provided by MATCHBOX

and/or may be provided by an external code.

Appendix B: Code validation

B.1 Shower splitting kernels

The sampling of shower splitting kernels has been explic-

itly verified in situ, meaning using the full implementa-

tion as present in the simulation code, against an indepen-

dent implementation using a numerical integration to ob-

tain the Sudakov-type distributions. Figure 15 shows an ex-

ample for a final-final splitting kernel, proving correctness

of this part of the code.

B.2 NLO QCD corrections

All leading order matrix elements implemented in the

MATCHBOX framework have been cross-checked against

the HERWIG++ matrix elements.

The functionality of the automatically generated subtrac-

tion terms has been verified. Figure 16 shows a typical ex-

amples of the ratio of subtraction to real emission cross sec-

tion, plotted against each of the invariants entering the prop-

agator denominators.

The ‘plain’ NLO cross section, and the inclusive one en-

tering the matching with matrix element correction have

been checked to agree, with and without the usage of

the Born ‘screening’ cross section. The NLO cross section
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Fig. 14 Overview of the MATCHBOX class hierarchy used to as-

semble leading or next-to-leading order calculations. This diagram

also reflects one of the main design criteria of the framework, re-

taining the steering of hard subprocess generation as already pro-

vided in THEPEG/HERWIG++ (top row; classes used by THEPEG

for the hard process generation), while allowing full flexibility of im-

plementing new processes or interfacing existing codes (bottom row).

Solid lines with open arrows indicate inheritance; solid lines with black

(open) diamonds indicate aggregation of at least one (one or more) ob-

jects. The dashed lines indicate the workflow implemented in the

MatchboxFactory class to assemble a full calculation from the individ-

ual contributions. The Tree2toNGenerator class determines tree-level

diagrams contributing to a particular subprocess, while MatchboxS-

caleChoice allows for a flexible choice of renormalization and factor-

ization scales. The other classes are discussed in detail in Table 5

Table 5 Overview of some of the MATCHBOX classes providing con-

tributions to fixed-order calculations. The last two columns indicate, if

the corresponding contribution is delivered by MATCHBOX (Int), needs

to be input from an external code (Ext), or if both variants are possible.

A superscript C denotes a calculation of an amplitude with all mo-

menta outgoing, from which MATCHBOX determines the crossings to

any physical subprocess required. The operator C includes colour and

potentially spin correlations

Class Physical object Int Ext

MatchboxPhasespace |∂φ/∂r| × ×

ColourBasis |α〉 × ×

MatchboxAmplitude M
C
B,V,R – ×

|M
C
B,R |2 ×† ×

2 Re((M
C
B )∗M

C
V ) ×† ×

〈M
C
B |C|M

C
B〉 ×† ×

SubtractionDipole Dα × –

MatchboxInsertionOperator I, P + K × –

MatchboxMEBase dσB,V,R × ×∗

MatchboxNLOME dσBV × –

SubtractedME dσR − dσA × –

∗If diagram information is provided

†If amplitude information is provided

for e+e− → jets has been validated against the analytically

known K-factor of 1 + αs/π . The NLO cross section for

DIS and Drell-Yan has been checked against the existing

Fig. 15 Example comparison of sampled final-final splitting momen-

tum fraction (blue lines) versus results from a numerical integration

(turquoise lines) at two different dipole masses, sij = (100 GeV)2

(continuous lines) and sij = (50 GeV)2 (broken lines) (Color figure

online)

POWHEG implementation in HERWIG++. For deep inelastic

scattering, the subtraction terms have been modified in order

to have positive definite dipole kernels, finite terms of the in-

tegrated subtraction terms have been changed accordingly.

The functionality of the subtraction has been checked with

both variants, and the NLO cross sections with and without

modifications are found to agree.
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Fig. 16 Envelopes of the ratio of the subtraction to the real emission

cross section versus the propagator denominator for all singular con-

figurations in Z + jet production

B.3 NLO matching with matrix element corrections

A non-trivial cross check of the matrix element correction

code and EXSAMPLE as the underlying ‘working horse’,

is to consider the spectra for a gluon emission off a qq̄

dipole as generated by the shower, which is validated against

a numerical integration of the expected distribution im-

plemented in a completely independent code. By putting

the real emission matrix element entering the matching to

be equal to the sum of dipoles (the correctness of which has

been checked by verifying that the cross section of the sub-

tracted real emission matrix element is consistent with zero),

the matrix element correction must produce the same spec-

trum as the shower code. We have checked that this is in-

deed the case. It should be stressed that the machinery un-

derlying the setup of the matrix element correction is much

more complex than the shower implementation, and, that

the splitting kernel entering the matrix element correction

does depend on more parameters5 than the one parameter

of the shower kernel (corresponding to the dipole invariant

mass).
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