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Abstract

Introduction: In animal models of systemic inflammation, the endogenous nucleoside adenosine controls

inflammation and prevents organ injury. Dipyridamole blocks the cellular uptake of endogenous adenosine and

increases the extracellular adenosine concentration. We studied the effects of oral dipyridamole treatment on

innate immunity and organ injury during human experimental endotoxemia.

Methods: In a randomized double-blind placebo-controlled study, 20 healthy male subjects received 2 ng/kg

Escherichia coli endotoxin (lipopolysaccharide; LPS) intravenously after 7-day pretreatment with dipyridamole, 200

mg slow release twice daily, or placebo.

Results: Nucleoside transporter activity on circulating erythrocytes was reduced by dipyridamole with 89% ± 2% (P

< 0.0001), and the circulating endogenous adenosine concentration was increased. Treatment with dipyridamole

augmented the LPS-induced increase in the antiinflammatory cytokine interleukin (IL)-10 with 274%, and resulted

in a more rapid decrease in proinflammatory cytokines tumor necrosis factor-a (TNF-a) and IL-6 levels directly after

their peak level (P < 0.05 and < 0.01, respectively). A strong correlation was found between the plasma

dipyridamole concentration and the adenosine concentration (r = 0.82; P < 0.01), and between the adenosine

concentration and the IL-10 concentration (r = 0.88; P < 0.0001), and the subsequent decrease in TNF-a (r = -0.54;

P = 0.02). Dipyridamole treatment did not affect the LPS-induced endothelial dysfunction or renal injury during

experimental endotoxemia.

Conclusions: Seven-day oral treatment with dipyridamole increases the circulating adenosine concentration and

augments the antiinflammatory response during experimental human endotoxemia, which is associated with a

faster decline in proinflammatory cytokines.

Trial registration: ClinicalTrials (NCT): NCT01091571.

Introduction
During sepsis, unopposed and prolonged activation of

the innate immune system can induce significant collat-

eral damage to host tissues, resulting in a high mortality

rate. During inflammation, the extracellular concentra-

tion of the purine nucleoside adenosine rapidly increases

[1-3]. Subsequent receptor activation acts as a physiolo-

gical negative-feedback mechanism that dampens the

inflammatory response [4]. Indeed, administration of

adenosine-receptor agonists exerts antiinflammatory and

tissue-protective effects and reduces mortality in animal

models of systemic inflammation [5,6].

Dipyridamole blocks the equilibrative nucleoside

transporter (ENT), which facilitates the transmembra-

nous diffusion of adenosine (Figure 1). Dipyridamole

will increase the extracellular endogenous adenosine

concentration, mainly in situations of increased extracel-

lular formation of adenosine, such as occurs during

hypoxia or inflammation [7]. In animals, the administra-

tion of ENT blockers attenuates LPS-induced leukopenia

and tumor necrosis factor-a (TNF-a) production [8]

and reduces the severity of tissue injury in several

inflammatory models [9-11].* Correspondence: p.pickkers@ic.umcn.nl
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We hypothesized that dipyridamole may ameliorate

the excessive and prolonged activation of the immune

response that can occur during systemic inflammation.

Therefore, in a proof-of-concept study in healthy volun-

teers, we examined whether pretreatment with dipyrida-

mole curtails the activation of the innate immune

system during experimental endotoxemia and prevents

(subclinical) organ damage.

Materials and methods
Healthy volunteers

This study was approved by the local ethics committee

and registered (http://www.clinicaltrials.gov, NCT01

091571). After signing for informed consent, 20 healthy

male volunteers participated. Because of significant dif-

ferences in the innate immune response between male

and female subjects during experimental endotoxemia,

we included only male subjects [12]. All volunteers were

asked not to take any drugs or caffeine-containing

substances 48 hours before the start of the endotoxemia

experiment. Subjects were randomized in a double-

blinded fashion to 7-day pretreatment with dipyridamole

(200 mg BID orally, Persantin Retard; Boehringer-Ingel-

heim, Alkmaar, The Netherlands; n = 10) or placebo

(microcrystalline cellulose, n = 10), based on the fact

that a steady state occurs after 3 days, and previous stu-

dies that examined the effects of dipyridamole during

ischemia were also performed after 7 days of treatment

[13]. Oral dipyridamole and placebo capsules were pro-

vided and labeled by the Department of Clinical Phar-

macy of the Radboud University Nijmegen Medical

Center according to GMPstandards. Both capsules had

the same appearance.

Experimental protocol

After local anesthesia, the brachial artery of the nondo-

minant arm was cannulated for blood pressure monitor-

ing, blood sampling, and administration of vasoactive

Figure 1 Schematic representation of the adenosine metabolism. Dipyridamole acts as an adenosine reuptake inhibitor through inhibition

of the nucleoside transporter. ADP, adenosine diphosphate; AMP, adenosine monophosphate; ATP, adenosine triphosphate; SAH, S-

adenosylhomocysteine.
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drugs [14]. A second cannula was placed in a deep ante-

cubital vein for prehydration [15]. U.S. Reference E. coli

endotoxin (Escherichia coli O:113; Clinical Center Refer-

ence Endotoxin, National Institutes of Health, Bethesda,

MD (LPS)) was administered as a bolus infusion in 1

minute (2 ng/kg) at t = 0 hours, after vortex mixing for

30 minutes. The protocol is illustrated in Figure 2.

Analytic procedures

Plasma caffeine and dipyridamole concentrations were

determined by reversed-phase high-power liquid chro-

matography (HPLC) [16]. Circulating adenosine concen-

trations were measured before and during endotoxemia,

and the activity of the ENT was measured in isolated

erythrocytes by measuring uridine uptake, as previously

described [13,17]. Concentrations of tumor necrosis fac-

tor (TNF)-a, interleukin (IL)-6, IL-1 receptor antagonist

(IL1ra), IL-10, intercellular adhesion molecule 1 (ICAM-

1), and vascular adhesion molecule 1 (VCAM-1) were

analyzed in batches by using a Luminex assay (Bio-plex

cytokine assay; BioRad, Hercules, CA, USA). The antiox-

idant capacity in blood plasma was measured by using

the ferric reducing ability of plasma (FRAP) assay,

according to the method of Benzie and Strain [18].

Forearm blood-flow measurements

Forearm blood flow (FBF, milliliters per minute per dec-

iliter forearm volume) was measured 2 hours before and

4 hours after LPS administration with venous occlusion

plethysmography (Filtrass Domed, Munich, Germany)

[19]. The vasodilator response to intrabrachial infusion

of acetylcholine (5, 20, 80 μg/min/dl) and nitroprusside

(0.6, 2, 6 μg/min/dl), and the vasoconstrictor response

to norepinephrine (0.03, 0.1, 0.3 μg/min/dl) was quanti-

fied [20]. Infusion rates of drugs and measurements of

forearm blood volume were normalized to forearm

blood volume and expressed per deciliter of forearm

volume.

Drugs and solutions

Acetylcholine (Novartis Pharma, Nurnberg, Germany)

and norepinephrine (Centrafarm BV, Etten-Leur, The

Netherlands) were dissolved in normal saline, and nitro-

prusside (Clinical Pharmacy, Radboud University Nijme-

gen Medical Centre) was dissolved in a 5% glucose

solution. All solutions were freshly prepared at the day

of the experiment.

Urine collection

Subjects collected their morning urine before treatment

with dipyridamole or placebo and on the day of the LPS

experiment. After start of the LPS infusion, urine was

collected in four 3-hour periods and during a period of

12 to 24 hours (see Figure 2). During the sampling per-

iod, urine was kept on ice. Urine volume was measured,

and creatinine, glutathione S-transferase (GST) alpha

(A1-1) and pi (P1-1), as markers of proximal and distal

tubule injury, respectively, were measured [21].

Statistical analyses

The effect of dipyridamole was analyzed by using a

repeated measures analysis of variance (ANOVA), with

post hoc tests for specific time points (Bonferroni).

Further to substantiate the possible mechanism of action

Figure 2 Schematic presentation of the endotoxemia experiments.
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of dipyridamole, Pearson correlations were conducted to

explore the correlation between plasma levels of dipyri-

damole, adenosine, and cytokines. The lines were calcu-

lated from linear regression analyses.

The area under the curve (AUC) of the increase in

FBF was calculated (before and after LPS administra-

tion). The LPS-mediated difference was compared

between groups by using an unpaired Student t test.

The effect of endotoxemia on FRAP was tested by using

a repeated measures ANOVA. Because data had a gaus-

sian distribution, data are expressed as mean ± SEM,

unless specified otherwise. Nonparametric data are illu-

strated as box-and-whiskers. A P value < 0.05 was con-

sidered statistically significant.

Results
Demographic characteristics

The demographic characteristics were comparable

between groups (Table 1). Plasma caffeine concentra-

tions immediately before LPS administration were <

0.06 mg/L in both the dipyridamole and the placebo

groups. The incidence of side effects was not signifi-

cantly different between the dipyridamole and the pla-

cebo groups.

Effect of dipyridamole on circulating adenosine

The plasma dipyridamole concentration at the moment

of LPS administration (t = 0) averaged 1.8 ± 0.3 and 0.0

± 0.0 mg/L for the dipyridamole and placebo groups,

respectively.

Uridine uptake into the erythrocyte via the ENT was

profoundly inhibited by dipyridamole: from 113 ± 9

nmol/109 erythrocytes/min at baseline to 11 ± 2 nmol/

109 erythrocytes/min immediately before the LPS

experiment (P < 0.0001). In placebo-treated subjects,

uridine transport was 112 ± 7 nmol/109 erythrocytes/

min at baseline and 124 ± 7 nmol/109 erythrocytes/min

immediately before the LPS experiment (P = 0.86).

Seven-day treatment with dipyridamole resulted in a

higher adenosine concentration before the LPS adminis-

tration; 22.6 ± 2.7 nmol/ml compared with 11.1 ± 1.8

nmol/ml in the placebo group (P < 0.01). The adenosine

concentration further increased with 2.1 ± 2.8 and 2.1 ±

0.9 nmol/ml after administration of LPS in both groups

(P = 0.99, difference between both groups). Dipyrida-

mole concentrations correlated strongly with peak ade-

nosine concentrations (r = 0.82; P < 0.01, see Figure 3a).

Innate immune response

Inflammatory parameters during human endotoxemia

During the first hour after LPS administration, the total

white blood cell count decreased from 6.2 ± 0.3 to 2.2 ±

0.3 × 109/L and from 5.7 ± 0.6 to 2.2 ± 0.3 × 109/L for

dipyridamole- and placebo-treated subjects, after which

there was an increase to 13.6 ± 0.7 × 109/L and 11.9 ±

0.6 × 109/L at 8 hours after LPS (P = 0.07). Dipyrida-

mole-treated subjects had significantly higher amounts of

circulating monocytes in the period of 4 to 8 hours after

LPS, with a peak at 8 hours after LPS administration

(0.64 ± 0.08 × 109/L in dipyridamole-treated subjects ver-

sus 0.37 ± 0.03 × 109/L in placebo; P = 0.04). The

increase in body temperature after administration of LPS

was similar in the dipyridamole and placebo groups; from

36.5°C ± 0.1°C to 38.0°C ± 0.2°C and from 36.4°C ± 0.1°C

to 38.2°C ± 0.1°C, respectively (P = 0.76 between groups).

Dipyridamole treatment augmented the IL-10

response during endotoxemia (P < 0.0001 compared

with the placebo group; Figure 4). Moreover, the endo-

genous adenosine concentration 2 hours after LPS

administration correlated with peak levels of IL-10 (r =

0.88; P < 0.0001), as illustrated in Figure 3b. The LPS-

induced peak concentrations of proinflammatory cyto-

kines were not influenced by dipyridamole treatment. In

contrast, the decline of TNF-a and IL-6 levels directly

after their highest value was accelerated in dipyrida-

mole-treated subjects (P < 0.05 and < 0.01, respectively;

Figure 4). The peak IL-10 levels correlated with the

decline of TNF-a (r = -0.54; P = 0.02), but not with that

of IL-6 (r = -0.32; P = 0.18), Figure 3c and 3d.

LPS-induced end-organ dysfunction

Clinical and hemodynamic parameters during human

endotoxemia

In all volunteers, LPS administration induced the

expected flu-like symptoms. Experimental endotoxemia

resulted in a vasodilatory state, illustrated by a decrease

in blood pressure and an increase in heart rate and fore-

arm blood flow, with a maximum effect at t = 4 to 6

hours after LPS administration (Table 2). This LPS-

induced cardiovascular response was similar between

groups.

FBF response to acetylcholine, nitroprusside and

norepinephrine

Subjects treated with dipyridamole had a lower baseline

FBF (2.7 ± 0.4 versus 4.3 ± 0.5 ml/min/dl in placebo-

Table 1 Demographic characteristics

Placebo (n =
10)

Dipyridamole (n =
10)

Age (years) 21.4 ± 1.8 22 ± 2.6

Height (m) 1.86 ± 0.1 1.84 ± 0.1

Weight (kg) 84.4 ± 10.6 75.8 ± 8.5

BMI (kg/m2) 24.5 ± 3.9 22.3 ± 1.9

Heart rate (beats per
minute)

62 ± 7 60 ± 5

MAP (mm Hg) 96 ± 4 91 ± 7

Forearm volume (ml) 1,190 ± 124 1,033 ± 96

Data reported as mean ± SD.
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treated participants, P = 0.03). This baseline difference

disappeared after LPS administration: 7.3 ± 0.8 in the

dipyridamole group versus 8.6 ± 1.2 ml/min/dl in the

placebo group. No significant changes in FBF were

found in the noninfused forearm during the intrabra-

chial infusions of acetylcholine, nitroprusside, and nore-

pinephrine, excluding systemic hemodynamic effects of

these drugs. As shown in Figure 5, endothelium-depen-

dent (a) and independent vasodilatation (b) as well as

norepinephrine-induced vasoconstriction (c) were signif-

icantly impaired after endotoxemia. No significant differ-

ences were noted between the treatment groups.

Circulating adhesion molecules

Baseline plasma levels of ICAM and VCAM tended to

be higher in dipyridamole-treated subjects (ICAM:

dipyridamole, 12.0 ± 0.7 × 104 pg/ml, versus placebo,

10.0 ± 0.7 × 104 pg/ml (P = 0.05); VCAM: dipyrida-

mole, 19.1 ± 1.2 × 104 pg/ml versus placebo, 16.5 ±

0.7 × 104 pg/ml (P = 0.08)). Both ICAM and VCAM

levels increased after LPS administration (P < 0.0001),

but dipyridamole treatment did not affect the endotox-

emia-induced increase in ICAM and VCAM levels (dif-

ference between groups: P = 0.31 and P = 0.90,

respectively).

Oxidative stress

The total antioxidant capacity, as measured with FRAP,

increased during the first 2 hours after endotoxemia

from 0.96 ± 0.04 to 1.00 ± 0.03 mmol/L and from 1.06

± 0.05 to 1.16 ± 0.05 mmol/L (P = 0.08 and P = 0.02

for dipyridamole and placebo groups, respectively). No

significant difference in FRAP was found between both

groups (P = 0.36; Figure 6).

Renal injury

Endotoxemia resulted in a cumulative GSTA1-1 excre-

tion of 11.2 (6.2 to 13.0) μg compared with 5.1 (3.9 to

9.4) μg 12 hours after LPS administration in

Figure 3 Correlations between (a) the dipyridamole concentration at the moment of LPS administration and the (peak) adenosine

concentration, 2 hours after LPS administration; (b) the peak adenosine concentration and peak IL-10 levels; (c) peak IL-10

concentrations and the decline in TNF-a levels (t = 2 to t = 90 minutes after LPS administration); and (d) peak IL-10 concentrations

and the decline in IL-6 levels.
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dipyridamole- and placebo-treated subjects, respec-

tively. Cumulative GSTP1-1excretion was 6.4 (5.4 to

7.8) μg and 6.3 (4.5 to 8.0) μg, respectively. No differ-

ences were seen between the LPS-induced increase

between both groups (P = 0.07 and P = 0.44,

respectively).

Discussion
In the current study, we showed for the first time in

humans in vivo that oral treatment with the nucleoside

transport inhibitor dipyridamole augments the anti-

inflammatory response of the innate immune system

during experimental endotoxemia. Treatment with

Figure 4 Box-and-whiskers (whiskers, range) of the cytokine response after LPS administration in placebo-treated subjects (open

symbols) and dipyridamole-treated subjects (solid symbols), n = 10 subjects per group. The probability values refer to the statistical

difference between the placebo- and dipyridamole-treated groups in response to LPS administration, as analyzed with a two-way ANOVA. *P <

0.05 between groups, as analyzed with a Bonferroni posttest.

Table 2 Hemodynamic profile in response to endotoxemia

Placebo Dipyridamole Difference between groups

Baseline 4 to 6 hours after LPS Baseline 4 to 6 hours after LPS (P value)

HR (beats per minute) 65 ± 2 84 ± 2 67 ± 2 89 ± 1 0.59

SBP (mm Hg) 132 ± 1 121 ± 2 134 ± 2 114 ± 2 0.29

DBP (mm Hg) 76 ± 1 71 ± 2 74 ± 1 68 ± 1 0.6

MAP (mm Hg) 94 ± 1 87 ± 2 94 ± 1 83 ± 1 0.35

FBF ml/min/dl 2.7 ± 0.4 7.3 ± 0.8 4.3 ± 0.5 8.6 ± 1.2 0.87

Data expressed as mean ± SEM. DBP, diastolic blood pressure; FBF, forearm blood flow; HR, heart rate; MAP, mean arterial pressure; SBP, systolic blood pressure.

All LPS-induced changes were significant (P < 0.0001).
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Figure 5 Dose-response curve of intrabrachial infusion of (a) acetylcholine, (b) nitroprusside, and (c) norepinephrine on forearm blood

flow (FBF) before (open symbols, dotted line) and 4 hours after administration of 2 ng/kg Escherichia coli LPS (solid symbols). Data are

presented as percentages of baseline FBF of the intervention arm (mean ± SEM; n = 10 per group). Left panel shows placebo-treated subjects;

right panel, subjects treated with dipyridamole. The probability values refer to the statistical difference between the dose-response curves, as

analyzed with two-way ANOVA.
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dipyridamole effectively blocked nucleoside uptake and

resulted in a significant increase in the circulating endo-

genous adenosine concentration. In the dipyridamole-

treated subjects, the antiinflammatory IL-10 response to

LPS administration was highly augmented, and was

associated with an accelerated decline of the proinflam-

matory cytokines TNF-a and IL-6 after their initial

increase. We demonstrated that dipyridamole concentra-

tions correlated with adenosine concentrations, that

higher adenosine concentrations were associated with

higher IL-10 concentrations, and that higher IL-10 levels

were associated with a more pronounced decline of

TNF-a. These subsequent correlations suggest that the

immunomodulating effects of dipyridamole are mediated

through the adenosine pathway.

The purine nucleoside adenosine is a well-known

endogenous signaling molecule with potent antiinflam-

matory and tissue-protective properties [1,22,23]. During

systemic inflammation, the endogenous adenosine con-

centration rapidly increases [3,24], with circulating con-

centrations doubled during experimental human

endotoxemia [17] and increasing up to tenfold in septic

shock patients [3]. However, interpretation of these

measurements must be addressed with caution, because

adenosine measurement is notoriously troublesome [25].

Subsequent stimulation of membrane-bound adenosine

receptors may act as a negative-feedback mechanism to

control and curtail the inflammatory response and to

attenuate further organ damage. Indeed, animal studies

previously showed that adenosine plays a pivotal role in

the protection of tissue against damage from excessive

inflammation (for example, during sepsis [4,5]). In addi-

tion, the administration of adenosine-receptor agonists

potently limits inflammation in murine models of sys-

temic inflammation [5,6]. Human data on the role of

adenosine during systemic inflammation are scarce.

Continuous intravenous administration of adenosine

attenuated the IL-6 response during human endotoxe-

mia [26]. However, therapeutic administration of adeno-

sine is cumbersome, because of the extremely short

half-life of adenosine, the hemodynamic effects during

systemic administration, and because the endothelium

acts as a strong metabolic barrier for adenosine, pre-

venting adenosine from entering the interstitial com-

partment [27]. As such, the plasma concentration of

adenosine does not represent tissue interstitial concen-

trations of adenosine. This is relevant, because resident

tissue macrophages appear to be the major source of

circulating cytokines. By preventing cellular uptake of

adenosine, dipyridamole increases the endogenous extra-

cellular adenosine concentration mainly in those tissues

where extracellular adenosine formation is increased

(that is, at the site of inflammation). Therefore, we

hypothesized that dipyridamole controls inflammation

more effectively than does exogenous adenosine, with

fewer hemodynamic side effects.

Our results are in accordance with previous in vitro

and animal experiments on the immunomodulating

effect of nucleoside transport inhibition. Dipyridamole

enhances the LPS-induced IL-10 production [28] and

attenuates the production of TNF-a [29] and other

proinflammatory cytokines in human cultured mono-

nuclear cells. Furthermore, dipyridamole therapy in

patients undergoing coronary artery bypass grafting

inhibited postoperative ex vivo polymorphonuclear cell

adhesion to endothelial cells [30]. Also in animal stu-

dies, administration of ENT inhibitors limited the

inflammatory response and reduced tissue injury in

situations of severe inflammation [9-11]. Of importance,

these effects were abolished by concomitant administra-

tion of adenosine A2a receptor antagonists [31].

The immune-modulating effects of dipyridamole are

sparsely studied in humans in vivo. We have previously

shown that dipyridamole reduces ischemia-reperfusion

injury in healthy volunteers [13]. To our knowledge,

apart from a small study in patients with rheumatoid

arthritis [32], dipyridamole has never been tested in

situations of generalized inflammation. In this latter

study, dipyridamole was not found to reduce inflamma-

tion [32], but a clear conclusion is not possible, as it

appears likely that this study was underpowered.

In our study, treatment with dipyridamole profoundly

enhanced the antiinflammatory IL-10 response during

endotoxemia. IL-10 is produced by cells of the innate

immune system and is able to inhibit the synthesis of

Figure 6 Box-and-whiskers (whiskers, range) of the

endotoxemia-induced changes in FRAP. FRAP increases during

endotoxemia, in both dipyridamole- and placebo-treated subjects (P

= 0.08 and 0.02, respectively). No differences between groups were

found, as analyzed with two-way ANOVA (P = 036).
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various proinflammatory cytokines, including TNF-a, in

an autoregulatory fashion [33]. In accordance, adminis-

tration of IL-10 protects mice from lethal endotoxemia

[34], and IL-10 knockout mice have a more-pronounced

hemodynamic response to LPS administration [35].

Given the strong association between the plasma adeno-

sine and IL-10 concentration, we propose that dipyrida-

mole augments the IL-10 response by increasing the

endogenous adenosine concentration. Indeed, animal

studies have shown that adenosine-receptor agonists

augment the IL-10 response to LPS [6]. In accordance

with the antiinflammatory role of IL-10, we observed a

more-rapid decrease in plasma TNF-a and IL-6 after

the peak concentrations of these proinflammatory cyto-

kines. In contrast, peak plasma levels of TNF-a and IL-

6 were not affected by dipyridamole. It appears plausible

that this initial proinflammatory response is needed as a

stimulus for increased adenosine formation at the site of

inflammation. Dipyridamole may therefore enhance the

antiinflammatory properties of adenosine only directly

after the initial proinflammatory insult. In our study,

dipyridamole increased the baseline plasma adenosine

concentration, but did not augment the LPS-induced

increase in adenosine. This may be explained by the fact

that adenosine can be highly compartmentalized, as

described earlier.

Despite the observation that treatment with dipyrida-

mole modulates the plasma cytokine response during

endotoxemia toward a more antiinflammatory profile,

this treatment did not prevent LPS-induced vascular

dysfunction and renal injury, nor did it influence the

LPS-induced increase in FRAP. Our observation that

endotoxemia increases FRAP concentrations is in accor-

dance with a previously described FRAP increase

observed in sepsis patients [36]. We postulate that this

lack of an effect on organ injury is due to the relatively

mild and short-lasting inflammatory insult induced dur-

ing experimental endotoxemia, and it may not rule out

the possibility that the antiinflammatory effects of dipyr-

idamole prevent organ dysfunction in the setting of a

more severe or more persistent proinflammatory insult,

such as during sepsis or autoimmune diseases.

Given the fact that dipyridamole treatment has limited

side effects and modulates the innate immune response

to a relevant extent, further studies are warranted to

explore the immunomodulating potential in patients

with systemic inflammation.

Conclusions
Seven-day oral treatment with dipyridamole is associated

with increased circulating levels of adenosine and an

augmented antiinflammatory response during human

experimental endotoxemia that may curtail the release

of proinflammatory cytokines.

Key messages
◆ Seven-day treatment with dipyridamole increases

the endogenous adenosine concentration and aug-

ments the antiinflammatory response during human

experimental endotoxemia.

◆ A strong correlation exists between the dipyrida-

mole concentration and the endogenous adenosine

concentration, which in turn correlates with the IL-

10 response.

◆ The more-pronounced increase in IL-10 is asso-

ciated with an accelerated decline of proinflamma-

tory cytokines.

◆ Immunomodulating properties of dipyridamole

may be of therapeutic benefit in patients with severe

or persisting systemic inflammation.
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