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Abstract: Groping our way toward a theory of singular spaces with positive scalar curvatures we look at the Dirac operator

and a generalized Plateau problem in Riemannian manifolds with corners. Using these, we prove that the set of

C2-smooth Riemannian metrics g on a smooth manifold X , such that scalg(x) ≥ κ(x), is closed under C0-limits

of Riemannian metrics for all continuous functions κ on X . Apart from that our progress is limited but we for-

mulate many conjectures. All along, we emphasize geometry, rather than topology of manifolds with their scalar

curvatures bounded from below.
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1. Setting the stage

A closed subset P = Pn in a smooth n-manifold X is called a cornered or curve-faced polyhedral n-domain of depth
d = 0, 1, . . . , n if the boundary ∂P of P is decomposed into the union of a countable locally finite (e.g. finite) family of
(possibly disconnected) (n− 1)-faces Qi = Q

n−1
i with a distinguished set of adjacent pairs of faces (Qi,Qj), such that

● every face Qi is contained in a smooth hypersurface Yi = Y n−1
i ⊂ X , where Yi is transversal to Yj for all adjacent pairs

of (n− 1)-faces (Qi,Qj);
● the boundary ∂Qi of each Qi ⊂ Yi equals the union of the intersections Qi ∩Qj for all faces Qj that are adjacent to

a given Qi, where the corresponding decompositions ∂Qi = ⋃j Qi ∩ Qj give polyhedral (n− 1)-domain structures of
depth d − 1 to all Qi.

This defines the notion of a polyhedral domain structure by induction on d, where polyhedral domains of depth zero are
non-empty closed subsets P ⊂ X with empty boundaries, i.e. just smooth manifolds with no extra structures and domains
of depth one are those bounded by smooth hypersurfaces.

∗ E-mail: gromov@ihes.fr
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Dirac and Plateau billiards in domains with corners

A polyhedral domain P is called cosimplicial if the intersections of all k-tuples of mutually non-equal (n− 1)-faces
satisfy

dim(Qi1 ∩Qi2 ∩ ⋅ ⋅ ⋅ ∩Qik ) ≤ n − k + 1.

Polyhedra, edges, corners.

Our attention will be focused on the boundaries of cornered domains that are unions of faces, ⋃iQi. We call these
boundaries curve-faced polyhedra or polyhedral hypersurfaces and may occasionally denote them by P rather than ∂P.
The codimension two faces of P that are (n− 2)-dimensional intersections of faces Qi are called edges of P and the
higher codimension faces are called corners. Thus, corners appear starting from d = 3, such as the ordinary corners of
a cube in the 3-space.

A cornered n-manifold structure in P is defined by an extension of P to a smooth manifold X ⊃ P, where P makes a poly-
hedral domain. The tangent bundle T(P) equals, by definition, the tangent bundle of X restricted to P. A Riemannian

manifold with corners is a cornered n-manifold P with a Riemannian metric g = gP on T(P).
Cartesian products of cornered manifolds, P = P1×P2×⋯×Pm, come with natural (product) corner structures, where
dimP = dimP1 + dimP2 +⋯+ dimPm and depthP = depthP1 + depthP2 +⋯+ depthPm. If Pi are Riemannian, then the
product carries the natural Riemannian Cartesian product structure as well. The simplest instance of this is the unit
Euclidean n-cube, sometimes denoted ◻ or ◻n (instead of more logical ◻n/2) that is the Cartesian n-th power [0, 1]n of
the segment [0, 1].
A cornered Riemannian manifold P is called preconvex, if the dihedral angles, denoted ∠[Qi⋔Qj], that are continuous
functions on the edges of P (which are the (n− 2)-faces Qi ∩ Qj ), are < π for all pairs of adjacent (n− 1)-faces Qi

and Qj . Observe that preconvexity does not depend on the metric and that intersections of finitely many domains with
smooth mutually transversal boundaries in smooth manifolds X are preconvex.

1.1. Surgery at the corners

The simplest instance of surgery is the following operation of

Adding a 1-handle at the corners.

Let P ⊂ X = Xn be a polyhedral domain and let A1
⊂ X be a smooth curve, (future axis of the surgery) that joins two

vertices b1 and b2 (i.e. codimension n faces) in P and that does not meet P apart from these points. Suppose there exists
a face preserving diffeomorphism D between small neighbourhoods U1 and U2 of b1 and b2 in P. (If X is a Riemannian
manifold one thinks of these neighbourhoods as intersections of the Riemannian ε-balls Bb1

(ε) and Bb2
(ε) with P.)

Notice that such a diffeomorphism does exist if P is cosimple at these vertices. The boundaries ∂U1 and ∂U2, that are
identified by D, carry natural structure of cornered manifold of dimension n − 1, call it Qn−1. Then the curve A1 can
be thickened in X to A1

×Qn−1 and glued to P∖(U1 ∪U2) at its two (thickened) ends, where the resulting domain, call
it P′, carries a natural cornered structure. Notice that P′ has the same vertices as P, except that b1 and b2 are not
there anymore.

Example.

Doubling. Let P consist of two disjoint diffeomorphic polyhedral domains. Then upon performing the above surgery over
all pairs of corresponding vertices one obtains a new domain P′′ of depth n − 1, i.e. with no vertices at all.

Remark.

The above works as stated only if dimX ≥ 3, where one may assume the curves joining the vertices do not have to
intersect, but if n = 2 then P′ can be a priori immersed rather than imbedded into X ; that is, however, rather immaterial
for our purposes.

Now, in general let Bm−1
⊂ P be an (m− 1)-dimensional face in P that contains no lower dimensional faces. For

instance, this may be a closed 1-face in the above P′′. Let Am ⊂ X be an m-submanifold with ∂Am = Bm−1 that meets
P only at Bm−1

⊂ P. Let the normal corner structure of Bm−1
⊂ P be represented by a flat fibration U → Bm−1 with the
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fiber Cn−m+1, that is the cone over a cornered manifold Qn−m. (Such Cn−m automatically exists if Bm−1 is connected; if
Bm−1 is simply connected then, moreover, its small neighbourhood in P splits as Bm−1

×Cn−m+1.) Let W n
→ Am be an

extension of the flat fibration U from Bm−1 to Am ⊃ Bm−1. Then one can remove U from P and attach W instead.

Example.

Multi-doubling. Take two disjoint copies of the above doubled P′′ and join the unions of their curves of edges by a
(possibly disconnected) cylinder A2. Then the result of the corresponding surgery, say (P′′)′′, will have depth (n−2). If
we repeat this n times we arrive at a manifold P∗ of depth zero – that is a slowed manifold with no corners of any kind.

Face suppression. If one doubles P∗ along the boundary, one obtains a closed manifold with “pure edge singularities”
(as in subsection 2.3).

Remark.

The above kind of surgery applies to all spaces with normally conical singularities. Thus, for example, every pseudo-
manifold P can be turned into a manifold P∗ that is “kind of cobordant” to P.

1.2. Mean convexity and dihedral angles

Call a preconvex Riemannian manifold P with corners mean curvature convex, and write mn.curv(∂P) ≥ 0, if all (n− 1)-
faces Qi = Q

n−1
i have (non-strictly) positive mean curvatures, i.e. the variations of the (n− 1)-volumes of the faces Qi

are non-positive under infinitesimal inward deformations of Qi.

Remarks and Examples.

(a) The simplest instance of a mean convex domain in X is a full dimensional submanifold U ⊂ X with a smooth boundary
that has positive mean curvature. Such domains are abundant in X . For instance, every piecewise smooth subset Z ⊂ X

of codimension ≥ 2 in X admits an arbitrarily small smooth mean convex neighbourhood. Furthermore, if U is smooth
mean convex, then the union U ∪ Z admits a smooth mean convex neighbourhood in X .

(b) The intersection of finitely many domains Ui ⊂ X with mutually transversal smooth mean convex (e.g. convex)
boundaries ∂Ui is an m.c. convex polyhedral domain in X with the faces made of pieces of ∂Ui.

(c) If P is compact and the faces have strictly positive mean curvatures, then (it is obvious, see [22] for related results)
the boundary of an ε-neighbourhood of P, call it ∂P+ε, is C 1,1, smooth for small ε > 0 and has (discontinuous) positive
mean curvature.

It easily follows that a mean convex ∂P can be approximated by C 2-smooth hypersurfaces with mn.curv > 0, unless (some
connected component of) ∂P consists of a single face with zero mean curvature. But this is not especially relevant in
the present context: we are keen on keeping track of the combinatorial pattern of the corners of P and of the dihedral

angles between adjacent (n− 1)-faces at the corners.

The combinatorial type/scheme CT = CT(P) of a manifold P with corners refers to the intersection and the adjacency
patterns between its codimension one faces Qi. Observe, that the combinatorial type is stable under Cartesian products
of P by connected manifolds (without boundaries) with their tautological corner structures of depth zero.

Combinatorial equivalence.

We often call two domains combinatorially equivalent if they are of the same combinatorial type. Notice that such
domains do not even have to be of the same dimension.

Cubical domains P of depth d in the n-manifold X .

Such a d-cubical domain P has 2d faces Q of codimension one, where every face Q has a unique opposite face, call
it −Q, which does not intersect Q. Every cubical P admits a continuous map onto the unit d-cube, (P, ∂P) → (◻d, ∂◻d),
with the faces of P being the pullbacks of the faces of ◻d, where, such a map is uniquely, up to homotopy in the class
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Dirac and Plateau billiards in domains with corners

of faces-to-faces maps, determined by to which faces of the cube the faces of P go. An n-cubical P is called essential

if the map (P, ∂P) → (◻n, ∂◻n) has non-zero degree, where the degree is understood mod 2 if P is not oriented.

Combinatorial mean curvature convexity problem. When does a Riemannian manifold X , e.g. X = R
n, contain a mean

curvature convex polyhedron P = P≤αij of a given combinatorial type, where all its dihedral angles are bounded by

∠ij(P) ≤ αij for given constants αij?

This is unknown even for X = R
3, where the answer is available only for “normal” mean curvature convex domains P ⊂ R

3

that are combinatorially equivalent to prisms, where “normal” means that the dihedral angles at the top and the bottom
of these “prisms” are equal to π/2 and where a simple argument (see subsection 5.4) shows that the dihedral angles αi
between the side faces of these P satisfy

∑
i

(π − αi) ≤ 2π (∗)

with the equality only for convex prisms P ⊂ R
3 with flat faces. Inequality (∗) remains true for “prisms” P with Riemannian

metrics with non-negative scalar curvatures (see subsection 5.4) and it suggests a possibility of defining general spaces
X with non-negative scalar curvatures, at least in dimension 3, via this (∗). But it is unclear what kind of singularities
one may admit in such a definition.

The simplest case where we do not know the answer is that of continuous Riemannian metrics on smooth 3-manifolds X .
Here, the mean curvature convexity of hypersurfaces may be defined as in subsection 4.4 by the existence of “many”
localized inward deformations of faces that are area decreasing. (This defines, as stated, strictly positive mean curvature.)
Alternatively (that is not, in general, equivalent) one may requite all small localized outward deformations of the faces
to be area increasing. Or, one may require both: increase of area for all outward deformations and decrease for “many”

inward deformations.

Test question.

Suppose that all sufficiently small prisms P = Px ⊂ X that contain x ∈ X satisfy (∗) for all x ∈ X . Do then all P ⊂ X

satisfy (∗)? (This question is motivated by a similar localization property of the comparison inequalities for geodesic
triangles in Alexandrov’s spaces with positive curvatures.)

1.3. Mean convexity under surgery

Let P be a strictly mean curvature convex polyhedral domain in a Riemannian n-manifold X with all dihedral angles
of P bounded by ∠ij(P) < αij . Let P′ be obtained by a surgery along some union Bm−1

⊂ P of (m− 1)-faces that
themselves have no corners (see subsection 1.1). Observe, that in general when 2m ≥ n, such P′ is immersed rather
than embedded into X . If n − m ≥ 2, then P′, with its combinatorial structure coming along with the surgery, can be

arranged (i.e. immersed) in X with strictly positive mean curvature of all its faces and with all dihedral angles satisfying

∠ij(P′) < αij . This is immediate with (a simplified version of) the argument from [24] for a similar behavior of positive
scalar curvature under surgery.

Corollary.

The non-strict version of the above combinatorial mean curvature convexity problem, that is of the existence of P = P<αij ,
is invariant under the codimension ≥ 2-surgery.

Example.

Every mean curvature strictly convex P = P<αij can be transformed by multi-doubling to a P′′... without corners, i.e. of
depth 2, where

mean.curv(P) > 0, ∠ij(P) < αij Ô⇒ mean.curv(P′′...) > 0, ∠ij(P′′...) < αij .
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Question.

Does the reverse implication also hold true? Namely, does the existence of a position (i.e. of an immersed) P′′... in X with
strictly positive mean curvatures of the faces and all dihedral angles strictly bounded by given αij imply the existence
of such a position for P in X?

1.4. Mean curvature stability and semistability problems

Conjecturally, the existence of the above P<αij is stable under smooth perturbations of the Riemannian metric g in X ⊃ P

that are ε-small in the C 0-topology. More generally, let P ⊂ X be a compact strictly preconvex (i.e. all αij < π) polyhedral
domain in a smooth (meaning C∞) manifold X with a C 2-smooth Riemannian metric g. Let X ′

= Xε = (Xε, gε) be another
Riemannian manifold with C 2-smooth metric g′

= gε and let fε∶X ′
→ X be a continuous map.

An essential example is where dimX ′
= dimX and fε is an eε-bi-Lipschitz homeomorphism. Also we allow dimX ′

> dimX ,
where fε is ε-close in some sense to a Riemannian submersion. We seek conditions on X ′ and on fε that would guarantee
the existence of another map, say f ′ε∶X

′
→ X such that

●→0 f ′ε is close to fε, where close may mean distX(f ′ε(x′), fε(x′)) ≤ δ(ε) → 0 for ε → 0 and all x′ ∈ X ′ or that the
function x′ ↦ distX(f ′ε(x′), fε(x′)) is small in a weaker (e.g. some Lp) topology;

●reg the pullback P′
= P′

ε = (f ′ε)−1(P) ⊂ X ′
= Xε is a smooth polyhedral domain with the faces being the f ′ε-pullbacks

of those of P.

In order to formulate the stability and the semistability conditions, we agree that the mean curvature of a polyhedral
domain at an “edge point” x, i.e. at a point where exactly two faces meet signifies π minus the dihedral angle ∠ij

between these faces at x. Now the stability and the semistability conditions read:

●stbl ∣mn.curvx′(P′

ε) −mn.curvx(P)∣ ≤ κ(ε) → 0 for ε → 0, for all x′ at the faces and at the edges of P′

ε and x = f ′ε(x′);
●semistbl mn.curvx′(P′

ε)−mn.curvx(P) ≥ −κ(ε) → 0 for ε → 0, for all x′ at the faces and at the edges of P′

ε and x = f ′ε(x′).
A particular instance of the latter is where P is strictly mean curvature convex and the same is required of P′

ε .

On regularity at the corners.

The conditions ●stbl and ●semistbl depend on the faces of P′

ε being C 2-smooth away from the edges and C 1-smooth at
the edges but no regularity at the corners, i.e. at the codimension ≥ 2 faces is formally needed. This suggests modified
versions of the stability and semistability problems where instead of ●reg we require only Cα-Hölder smoothness of P′

ε

at the corners for some α > 0. This relaxed regularity condition is easier to satisfy when we construct P′
= P′

ε by means
of the geometric measure theory (as we do it in Sections 3 and 4).

For instance, let, say a cosimplicial, curve-faced polyhedron P′ be constructed “face by face”, where each (n′
− 1)-face

Q′

i of P′ for n′
= dimX ′ comes as a solution of a Plateau bubble problem (as defined below in Section 3) with free

boundary contained in the union Q′

î
of the remaining faces. (Technically, the solution Q′

i of this Plateau problem must
be kept away from the boundary of Q′

î
, with the resulting P′ obtained by chopping away a small neighbourhood of

∂Q′

î
⊂ Q′

î
.)

Then, probably (?), one cannot guarantee the C 2-smoothness of Q′

i at the edge points of the hypersurface Q̂i (although
it is likely such Q′

i are C 1 at all boundary points where their tangent cones are flat, and possibly, C 1,α-smooth, even
with α = 1) but Hölder can be sometimes obtained. For instance, a Reifenberg flatness argument delivers such Hölder
stability for fε being an eε-bi-Lipschitz homeomorphism with a sufficiently small, depending on X,g and P, positive ε
(see subsections 4.6–4.8).

Insufficient smoothness does not seem to excessively harm essential geometric applications of minimal hypersurfaces as
well as of higher codimensional subvarieties. Moreover, this apparently remains so for more general singular ambient
spaces, e.g. for Alexandrov’s spaces with curvatures bounded from below. For instance, it seems likely that Almgren’s
sharp isoperimetric inequality indicated in [20, p. 475] for smooth manifolds with non-negative sectional curvatures
extends to singular such spaces X (with the conical spaces X being extremal as pointed out in [20]).
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1.5. Dihedral extremality and Plateau-hedra

A mean curvature convex polyhedron P ⊂ X , e.g. a convex polyhedron in R
n, is called dihedrally extremal if no “de-

formation” P ↝ P′ of P can diminish its dihedral angles while keeping the faces mean curvature convex. (Compare
[19, § 5 4

9
].) That is, more precisely, if a mean curvature convex polyhedron P′

⊂ X of the same combinatorial type as P
has (non-strictly) smaller suprema of its dihedral angles along all (n− 2)-faces Q′

i ∩Q
′

j ⊂ P
′ than P,

sup
Q′

i
∩Q′

j

∠[Q′

i ⋔Q
′

j ] = α
′

ij ≤ αij = sup
Qi∩Qj

∠[Qi⋔Qj],

then, necessarily, α′

ij = αij .

PP-hedra.

A polyhedral domain P ⊂ X is called a (poly) Plateau-hedron, or PP-hedron if all its (n− 1)-faces have zero mean

curvatures and the dihedral angle functions ∠ij = ∠[Qi⋔Qj] are constant on the edges that are (n− 2)-faces Qij = Qi∩Qj

for the pairs of (n− 1)-faces Qi,Qj ⊂ P with dim(Qi ∩ Qj) = n − 2. Notice that we do not require preconvexity of P
(which is equivalent to mean curvature convexity in this case) but we will be dealing mainly with preconvex PP-hedra.

Basic instances of Plateau-hedra are ordinary polyhedral domains with flat (i.e. totally geodesic) faces in manifolds X
of constant curvature, e.g. in X = R

n. Also it is easy to see that dihedrally extremal mean curvature convex polyhedra

P in Riemannian manifolds are Plateau-hedra.

Singularities: cones and corners.

The above does not imply, however, that all combinatorial types of polyhedra contain dihedrally extremal representatives,
since the corresponding existence/regularity theorem is unavailable. On the other hand, one may attempt a construction
of Plateau-hedra in a Riemannian manifold X by a variational argument, where a face W = Wi of a desirable P is
obtained as a solution of a Plateau type problem with free boundary, i.e. the boundary of W must be contained in the
union W� = Wî of the remaining faces, see Sections 3 and 4. Yet, such W may have singularities, both in the interior
and at boundary points x in W .

For instance, if n − 1 = dimW ≥ 7, then W may have quasi conical singularities at some points x ∈ W where, by
definition, a tangent cone is non-flat. But if x ∈ int(W ), or if x ∈ ∂W ∩ reg(W�), i.e. if x lies away from the edges of W�

as well as from interior singularities of the faces of W� and if a tangent cone of W at w is flat, then W is smooth at
w, see [1, 26, 27, 29].1 But the behaviour of W at the singular points of W�, even at the regular corners, i.e. where ∂W
meets edges between non-singular faces in W�, may be more complicated, e.g. see [6, 46].2 In particular, one has the
following

Perturbation question.

Let P0 ⊂ R
n be a cosimpicial convex polyhedron. Does it admit an arbitrary small perturbation to a Plateau-hedron P′

with non-flat faces? A natural approach here would be via a solution of the linearized problem combined with the implicit
function theorem, but one cannot guarantee regularity at the corners.3

Inevitability of singularities suggests a more general definition of Plateau-hedra and of cornered domains in general
and such a concept is also needed in the (conjectural) context of the theory of singular spaces with scalar curvatures
bounded from below. But our understanding of singular polyhedra, in particular of singular Plateau-hedra, remains
unsatisfactory.

1 This was explained to me by Fang-Hua Lin. Also I had a useful communication with Frank Morgan and Brian White
concerning these problems.
2 I must admit I have not truly studied these papers.
3 The existence of singularities for linear boundary value problems in domains with edges and corners was pointed out
to me by Jeff Cheeger and the full extent of the difficulty of this problem was explained to me by Vladimir Mazia.
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Why at the corners?

The simplest instance of singularities at the corners is that of minimal surfaces in Y ⊂ R
3 contained in the intersection P

of two subspaces with free boundary ∂Y ⊂ ∂P. If the (dihedral) angle α between the half plane that make the boundary
of P is π/k for an integer k then Y extends by reflections to a minimal hypersurface, say 2kY , around the edge in P.
Consequently, Y is smooth, actually real analytic, in this case. Furthermore, because of the 2k-th order symmetry, 2kY ,
and hence Y as well, are flat of order k at the corner point y⌞ ∈ Y , i.e. where Y it meets the edge in P.

But if α is incommensurable with π, the same symmetry argument shows that if smooth, then Y must be flat of infinite

order at y⌞. In particular, Y cannot be real analytic unless it is flat and, probably (?), it cannot be even C 2. On the
other hand, if a curve-faced P has the dihedral angle π/k one expects a reasonable smoothness at the corner.

1.6. Euclidean dihedral extremality problem

[?] Convexity ⇐⇒ Dihedrally Extremality [?]

Namely,

[CONV⇒DEXT?] Which convex polyhedra P ⊂ R
n are dihedrally extremal?

[DEXT⇒CONV?] Are there non-convex dihedrally extremal P ⊂ R
n?

My guess is that [DEXT⇒CONV] for all combinatorial types CT of P, i.e. all m.c. dihedrally extremal m.c. convex
polyhedral domains in R

n are convex, even if we allow the above mentioned singularities. On the contrary, dihedral
extremality seems too good to be true for all convex polyhedra P ⊂ R

n. In fact, even if P′
⊂ R

n is a convex (not just mean
curvature convex) polyhedron, combinatorially equivalent to P, it is unclear why the dihedral angles of P′ cannot be all
strictly smaller than the corresponding angles in P. This cannot happen for simplices P = ∆n

⊂ R
n by the Kirszbraun

theorem applied to the dual simplices (∆n)∗
Possibly, simplices and their Cartesian products are dihedrally extremal. Also we have the following

△× ◻ ×D×7×⋯ Conjecture. The Cartesian products P ⊂ R
2k+m of k convex polygons ⊂ R

2 and an m-cube ⊂ R
m are

m.c. dihedrally extremal: one cannot diminish the dihedral angles by “deforming” such P without developing negative

mean curvature in some of the faces.

Theorem-Example: △× ◻ ×7 Extremality. The simplest case, where we can settle this conjecture, is for Cartesian
products of m-cubes with Cartesian powers of regular triangles and regulate hexagons,

P = ◻
m1 × △

m2 ×7
n3

⊂ R
2m3+m.

In fact, (see “Gluing around edges” in Section 2) this △× ◻ ×7-extremality follows from the positive solution to the
Geroch conjecture on non-existence of metrics of positive scalar curvatures on tori Tn. Strangely enough, there is no
apparent direct elementary proof of this apparently intrinsically Euclidean inequality/extremality.

There are, recall, two approaches to the Geroch conjecture. The original one, due to Schoen and Yau, depends on
smoothness of minimal hypersurfaces Hn−1

⊂ T
n and applies only to n ≤ 7. Their argument easily extends to n = 8 by

non-stability of singularities of 7-dimensional minimal hypersurfaces [47], while a way around singularities for n ≥ 9,
found relatively recently by Lohkamp [35], is rather intricate. (Possibly, one can prove the full △m3 ×D

m5 ×7
m6⋯×◻

m/2-
conjecture utilizing Lohkamp’s techniques.) Another proof (see [23]), that depends on the index theorem for twisted Dirac
operators, indiscriminately applies to all n, but it needs the spin structure. (This causes no problem for Tn but becomes
a hurdle for non-spin manifolds X .) We shall interpret applications of these methods to corned domains P as “billiard
games” played by Dirac operators and minimal hypersurfaces in P (see subsection 2.3).
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Extremality, rigidity and scalar curvature.

The concepts of the dihedral extremality as well as the extremality of manifolds with positive scalar curvature that was
studied in [13, 19, 32, 41] are embraced by the following

Definition.

Let X = (X,g) be a Riemannian n-manifold X with corners, let f be a smooth map of non-zero degree of another
smooth n-manifold Y onto X and let us endow Y with a corner structure induced by f from X . (One may admit Y with
dimY ≥ dimX with a suitable concept of degree for maps f ∶Y → X .) Let Y be endowed with a Riemannian metric gY
such that

(a) f is distance decreasing (sometimes one only requires f to be area decreasing);

(b) f decreases the scalar curvature: scalX(f(y)) ≤ scalY (y) for all y ∈ Y ;

(c) f decreases the mean curvature of the (n− 1)-faces: mean.curv(f(y)) ≤ mean.curv(y) for all y in all (n− 1) faces
of Y ;

(d) f increases the dihedral angles at all edges: ∠f(y) ≥ ∠y at all y in all (n − 2)-faces of Y .

Then X is called extremal, if the increases/decreases in inequalities (a)–(d) cannot be strict, not even at a single point
y ∈ Y , while rigidity says, not quite precisely, that all Y satisfying (a)–(d) are obtained from “obvious modifications”.
Notice that (b)–(d) can be unified if scalX(x) is understood as the mean curvature at the points x in the (interiors of)
(n − 1)-faces of X as π −∠x at x in the (n− 2)-faces.

(A) Several extremality/rigidity results are available for closed (i.e. of depth 0) manifolds with positive scalar curvature,
in particular for most (all?) compact Riemannian symmetric spaces X , see [12, 13, 19, 32, 34, 41] which is proved with
Dirac operators. Can this be proved by means of minimal hypersurfaces or, rather, of φ-bubbles (see 3.1)?
The extremality/rigidity of the round spheres [34] implies that convex metric balls in simply connected spaces X of
constant curvatures (“convex” is relevant if curv(X) > 0, i.e. X = Sn) are extremal for n = dimX ≤ 8. This follows by
the warped product argument from [19, § 5 5

6
], where the case n = 8 relies on non-stability of (isolated) singularities

of φ-bubbles in 8-manifolds (as well as of minimal hypersurfaces [47]) and where, possibly, the extremality, but not, a
priori, rigidity may be obtained with [35]. This rigidity is reminiscent of the generalized positive mass theorem [41] and
suggests a possibility of proving this extremality/rigidity by the Dirac operator method.

(B) The simplest examples of extremal/rigid P are convex k-gons in surfaces of positive (not necessarily constant)
curvatures, where their extremality and rigidity follows from the Gauss–Bonnet theorem.

Are Cartesian products of extremal/rigid manifolds, in particularly of those in the above examples (A) and (B), ex-

tremal/rigid? We prove in this regard the rigidity of 3D-prisms (k-gons ⨉ [0, r] ⊂ R
3) in subsection 5.4. Probably, the

rigidity of Cartesian products of k-gons (at least in the spin case) follows by extending the methods of [12] to manifolds
with singularities along codimension two (divisor-like) subvarieties, where the relevant examples are Cartesian products
of surfaces with isolated conical singularities.

(C) Some (but not all) warped products of Riemannian manifolds may be extremal/rigid. For instance, let X = Y × [0, R],
where Y ⊂ R

n−1 is a convex polyhedral domain and where the warped product metric g(y, t) = a2(t)g(y) + dt2 on X

has constant negative curvature, namely, a(t) = et . Does extremality/rigidity of Y imply extremality/rigidity of X?

In fact, the rigidity of X is proved in [19] for Y being a flat torus of dimension n − 1 ≤ 6, where the extremality (but
not rigidity) for n − 1 = 7 extends with [47] and, probably, with [35] to all n. The φ-bubble argument from [19] can be
combined with gluing around the edges (see 2.1) thus proving the extremality/rigidity of these warped product X for
Euclidean reflection domains Y , at least for dimY ≤ 6. Can one prove the rigidity/extremality of these warped products

by a pure Dirac operator method in the spirit of [40]?

(D) Annuli X = Sn−1
× [0, r] between concentric spheres in manifolds of constant curvature are instances of warped

products which have geometric properties similar to but different from our extremality/rigidity. Such properties are
proved in [19] by means of φ-bubbles that limits the results to n ≤ 7 (extended to n ≤ 8 with [47] and, possibly, to all
n with [35]). Similar properties may be true for some (e.g. reflection, which is no big deal) domains P ⊂ Sn−1 but the
overall picture is far from clear.
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Observe, finally, that if a certain space X (without mean convex points at its boundary) of negative scalar curvature is
“extremal”, this extremality must be opposite to what we saw above: when one enlarges such X , its scalar curvature tends
to increase rather then decrease. In other words, the distance decreasing condition for maps f ∶Y → X is satisfactorily
restrictive if scal(X) ≥ 0, but it seems more logical to require f to be distance increasing (which needs to be properly
defined for non-injective maps) at the points where scal ≤ 0.

Ideally, one wants to prove extremity and rigidity relative to maps f ∶Y → X that decrease the integrals of the scalar
curvatures over some class of surfaces in the two manifolds, something like, ∫S scal(Y )ds ≤ ∫T scal(Y )dt for T ⊂ Y

and S = f(T) ⊂ X for the same kind of surfaces of S and T as in the semiintegral inequalities in subsection 5.4 and in
[17, 0.5.C].

1.7. On acute polyhedra

Besides products of k-gons, there is another class of “elementary” polyhedral domains where one may expect extremal-
ity/rigidity results. Call a Riemannian manifold P with corners (non-strictly) acute if all its dihedral angles are acute,
i.e. bounded by π/2,

∠[Qi⋔Qj] ≤ π

2
for all pairs of adjacent (n− 1)-faces Qi,Qj ⊂ P.

Acute spherical polyhedra.

If a convex spherical polyhedron P ⊂ Sn (i.e. an intersection of hemispheres) has acute dihedral angles then it is a

simplex, or, in the degenerate case, the spherical suspension over a simplex in Sn−i ⊂ Sn.

Indeed, the dual polyhedron, say P⊥

p ⊂ Sn, has all its edges longer than π/2. Consequently, the distance between every

two vertices in P⊥

p is ≥ π/2; hence, there are at most n + 1 vertices in P⊥

p . It follows, that acute Riemannian manifolds

P with corners are simple – there are exactly n − i faces Qn−1
i transversally meeting along every i-face p ∈ ∂(P). Also

observe that (non-strictly) acute spherical triangles △ ⊂ S2 have all their edges bounded in length by π/2. It follows
that all m-faces, m = 2, 3, . . . , n − 1, of acute spherical n-simplices are acute.

Acute Euclidean Polyhedra.

Cartesian products of acute simplices △
ni
⊂ R

ni ,

P = △
n1 × △

n2 ×⋯×△
nk

⊂ R
n1+n2+⋅⋅⋅+nk ,

are, obviously, acute. Conversely, every acute polyhedron P ⊂ R
n is a Cartesian product of simplices. This is easy and,

certainly, has been known for ages. But I could not find this on the web and wrote down a (few lines) proof in [21].

Questions.

● Are all acute polyhedra P ⊂ R
n dihedrally rigid or at least extremal?

● What are the possible combinatorial types of mean curvature convex Riemannian cornered manifolds P with scal(P) ≥ 0

and acute dihedral angles?

● Are there any constraints on the combinatorial types of mean curvature convex P ⊂ R
n and ∠[Qi⋔Qj] ≤ π/2 + α for

a given 0 < α < π/2?

I stated in [21] that there are only finitely many combinatorial types of convex polyhedra with ∠[Qi⋔Qj] ≤ π/2 + α ,
α < π/2, but Karim Adiprasito recently showed me counterexamples starting from dimension 3.

On the other hand, the scalar curvature can be made arbitrarily large by multiplying any (compact) Pn−2 by a small
2-sphere, where Pn

= Pn−2
×S2(ρ) has the same dihedral angles and mean curvatures of the faces as Pn−2, but these

have “rather degenerate” combinatorial types.
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One may expect that some (most?) manifolds P with corners (convex polyhedra?) support no metrics g with scal(g) ≥ 0,
with mn.curvg(Qi) ≥ 0 and with ∠g[Qi⋔Qj] ≤ π/2 + α for every α < π/6 and, less likely, for α ≥ π/6. Yet, finding a
single such P for any α > 0 remains problematic.

Also we cannot solve the following

Simplex Problem. Let P ⊂ R
n be a curve-faced polyhedral domain that is combinatorially equivalent to the n-simplex

and let αmax(P) denote the supremum of its dihedral angles at all edge points. Notice that if n ≥ 3 then, obviously,

αmax(P) > π/3. What is the infimum of αmax(P) over all mean curvature convex P?

Conjecturally, this inf αmax is assumed by (the dihedral angle between a pair of faces of) the regular n-simplex with flat

faces, but it is not even a priori clear if inf αmax is strictly greater than π/3 for n ≥ 3.

1.8. C 0-limits of metrics with scal ≥ κ

Our study of mean curvature convex polyhedral domains in Riemannian manifolds X , even for X = R
n, is intimately

related to the scalar curvature. For example we shall prove the extremality of the above P in the class of all spin

manifolds P′ with corners which have scal(X) ≥ 0 by utilizing minimal hypersurfaces along with Dirac operators.

We also achieve this for non-spin manifolds X with dimX ≤ 9, where the singularities of minimal hypersurfaces are at
most 1-dimensional (actually, we shall need this for “Plateau bubbles” in X , see 5.3) and, as we will show, they do not
“feel” spin obstructions that live in dimension 2. Probably, the analysis of singularities developed in [35] would allow a
direct (with no use of spinors) proof for all dimX .

Most current results on manifolds X with scal(X) ≥ 0 rely on global techniques and do not tell you much on the
geometry of small (but not infinitesimally small) and moderately large regions U ⊂ X . For example, the Dirac operator
can be directly used (almost) exclusively on complete manifolds X (an exception is the Min-Oo rigidity theorem for the
hemisphere [41]) while the Schoen–Yau approach depends on a presence of closed/complete (or “quite large” as in [25])
minimal hypersurfaces Y n−1

⊂ X = Xn, similarly to how the proof Synge’s theorem for manifolds X with sect.curv(X) > 0

uses closed geodesics in X .

Sometimes, one can derive semi-global results from global ones, either by extending a metric from a manifold X with a
boundary (or such a domain U ⊂ X ) to a complete X+ ⊃ X keeping scal(X+) ≥ 0 [11] or by exploiting Plateau “soap”

bubbles Y n−1
⊂ X [19] to which global techniques apply. Yet, all this falls short of Alexandrov’s approach to spaces with

sect.curv ≥ 0 (and more generally with sect.curv ≥ −κ2) via (comparison) inequalities for angles of geodesic triangles

that indiscriminately hold on all scales and provide non-trivial information on the geometry of all domains U ⊂ X , be
they big or small.

Hopefully, lower bounds on dihedral angles of extremal PP-hedra U ⊂ X may play a similar role for scal(X) ≥ 0.
This, in turn, points toward an Alexandrov type of theory of singular spaces X with scal(X) ≥ 0 and, possibly, with
scal(X) ≥ −κ2. Notice that there is an analytic approach to singular metrics with positive scalar curvature understood
in the distribution sense in [14] and somewhat similar in [31] but these do not seem to apply to our situation.

We do not know what the theory of objects (spaces?) with positive scalar curvatures understood in the distribution sense
should be, but we prove in subsection 4.9 the following

C 0-Limit Theorem (compare [19, § 5 5
6
]). Let a smooth Riemannian metric g on a Riemannian manifold X equal the

uniform limit of smooth metrics gi with scalgi(x) ≥ κ(x) for a continuous function κ on X . Then scalg(x) ≥ κ(x) as well.

Remarks, questions, speculations.

(a) The above is a local property of metrics and the general case trivially follows from that where κ is constant. The
C 0-limit property for κ = 0 is derived from the existence of particular (small) strictly mean convex cubical domains
with acute dihedral angles in manifolds with scal < 0 (see (◽) in 4.9) and the solution to the Geroch conjecture on
non-existence of metrics with scal > 0 on tori, while the cases κ > 0 and κ < 0 reduce to κ = 0 as follows.
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First, let κ = n(n−1) for n = dimX , where observe this κ equals the scalar curvature of the unit Euclidean n-sphere Sn.
Given a metric g on X , let X̌ = (X×R+, ǧ) be the standard Riemannian/Euclidean cone over (X,g), that is g(x, t) =

t2g(x) + dt2. Notice that if scalg(x) = n(n − 1) at a point x ∈ X , then scalǧ(x, t) = 0, and if scalg(x) < n(n − 1), then
scalǧ(x, t) < 0 for all t > 0. Thus, the C 0-limit theorem for metrics on X with κ = n(n − 1), hence, for all κ > 0, reduces
to that for κ = 0 on X×R+. If X is a compact manifold with scal > 0 then the double 2◇ X̌ of the cone X̌ = X ×R+

at the vertex corresponding to t = 0 admits a complex metric of positive curvature that is conical at both ends of this
double. This suggests that geometric properties of such X can be expressed and/or generalized in terms of asymptotic
geometries of complete manifolds, where Witten and Min-Oo style spinor arguments may be applicable. Can one, for
instance, derive Llarull’s sphere rigidity theorem along these lines?

Now let κ < 0 and proceed similarly albeit more artificially. Namely, let X̂ = (X × [−δ, δ], ĝ) for ĝ(x.t) = Cκt2g(x)+dt2,
where the constant Cκ > 0 is chosen such that scalg(x) = κ implies scalĝ(x, 0) = 0 for a given κ < 0. Then the inequality
scalg(x) < κ implies scalĝ(x, 0) < 0 and the C 0-approximation theorem on X with κ < 0 is thus reduced to that on X̂ with
κ = 0. (The natural cone metric in X ×R+, where κ(X) < 0, is a Lorentzian one to which our flat Riemannian argument
does not (?) apply; yet, [40] suggests an approach to this metric.)

Conclude by noticing that if one is willing to add two (or more) extra dimensions one can reduce the case of κ ≠ 0 to
that of κ = 0 by taking the Riemannian product X ×D2 for a disc D2 with scal(D2) = −scal(X). Thus, the relevant
information concerning X may be seen in the geometry of the torus T n+2 that is obtained by reflection development

(orbicovering, see 2.1) of a small cube in X ×D2 (see (◽) in subsection 4.9) where the sections of this cube by X ×d,
d ∈ D2, make an n-dimensional foliation. Can one abstractly define and study this kind of foliation with no reference to
any external D2?

(b) The C 0-limit theorem contrasts with Lohkamp’s h-principle: every Riemannian metric g on a smooth manifold X

can be C 0-approximated by metrics gi with scal(gi) < 0 and even with Ricci(gi) < 0.

(c) If n = dimX = 3, then the C 0-limit theorem for all κ, be it positive or negative, follows, from the Gauss–Bonnet

prism inequality in 5.4. and a version of (◽) from 4.9 (where it is used for the case κ = 0) adjusted to κ ≠ 0.

(d) The C 0-limit theorem for κ < 0 can be also proven in a more natural fashion intrinsically in X itself similarly to
the case κ = 0 with a version of (◽) for bands around (germs of) suitable convex hypersurfaces Y in (X,g) with induced
metrics having scalar curvatures zero (or, rather, close to zero) by reproducing the argument presented at the end of
[19, § 5 5

6
] with small cubical P ⊂ Y instead of (n− 1)-tori as in [19]. (These P are similar to hyperbolic n-dimensional

“prisms” that are suspended over reflection domains in Y n−1
horo discussed toward the end of subsection 5.4.)

(e) The C 0-limit theorem is reminiscent of Eliashberg’s C 0-closeness theorem for symplectic diffeomorphisms. Is there
something in common between the two theorems besides superficial similarity? Is there a scalar curvature counterpart
of Hofer’s metric between Hamiltonian diffeomorphisms and/or Lagrangian submanifolds? Is there anything interesting
(besides a specific K-area inequality from [19, § 5 4

5
]) in the geometry of quasi-Kählerian metrics with positive scalar

curvatures on symplectic manifolds? Also, the C 0-closeness of scal ≥ κ resembles Novikov’s theorem on the topological

invariance of Pontryagin classes, but it is equally unclear if there is something profound behind this similarity.

1.9. Rigidity problems around scal ≥ 0

Let a continuous Riemannian metric g on a closed manifold X admit a C 0-approximation by smooth metrics gi with
scal(gi) ≥ −εi → 0, i→ ∞.

●1 Does X admit a smooth metric g′ with scal(g′) ≥ 0?

●2 Suppose that X admits a continuous map to the n-torus, n = dimX , of non-zero degree. Is then the metric g itself

necessarily flat?

One asks similar questions concerning Dirac operators D = Dg, say on spin manifolds X : Is the spectrum of D2
= D2

g

semi-continuous for the C 0-topology in the space of smooth Riemannian metrics g? In particular, let gi
C0

Ð→ g, where gi
are smooth metrics with positive squared Dirac operators D2

gi . If g is smooth, is then D2
g also (non-strictly) positive?

What are the classes of continuous metric g on X where positivity of D2
g makes sense? (A particular class of interest
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is that of piece-wise smooth metrics on closed manifolds obtained by gluing Plateau-hedra along their faces, where the
approach from [14, 31, 37, 38] may be relevant.)

Also one may raise such questions for other geometric operators, e.g. for the coarse Laplacians in the bundles associated
to the tangent bundle, where “spectral C 0-semi-continuity” of such operators is related via the Feynman–Kac formula

to the following question.

C 0-semi-continuity of holonomy.

Let gi
C0

Ð→ g, where gi are smooth metrics on the n-dimensional manifold X with their holonomy groups contained
in a given closed subgroup H ⊂ O(n) in the linear group acting on the tangent space Tx0(X).Is the holonomy group

of g also contained in H? This is (probably) not hard to prove for “classical H”, e.g. for H = O(k)×O(n − k), where
the corresponding manifolds (X,gi) split, thus carry many flat geodesic subspaces. One may approach in a similar
fashion, holonomy groups of symmetric spaces and, possibly, of Kähler manifolds. Is there a metric characterization of

Kähler manifolds that is stable under C 0-limits of metrics similar to that in [18] but that, unlike [18], would apply to

non-necessarily closed manifolds, e.g. to (small) domains in projective algebraic manifolds?

1.10. Singular spaces with scal ≥ 0 and related problems

A potential pool of singular X with scal(X) ≥ 0 spreads immensely wider than that of the class of the Alexandrov spaces
with sect.curv ≥ 0. In particular, this “pool” must include:

● spaces partitioned into “PP-hedral cells” with essentially conical singularities where the local geometry is similar to
that for sect.curv ≥ 0;

● certain spaces with “fractal singularities”.

Here are two such examples.

(a) Let scal(X) ≥ 0 and U ⊂ X be a domain where the boundary ∂U of U , that is allowed to have singularities, has
non-negative mean curvature, e.g. where ∂U comes as a minimal hypersurface in X . Then the double of U along ∂U

must be regarded as a space with scal.curv ≥ 0. In fact, such X is often (always?) equal to a Hausdorff limit of smooth
manifolds with scal ≥ 0.

(b) Let X1 and X2 be n-manifolds and Yi ⊂ Xi, i = 1, 2, be submanifolds for which there exists a diffeomorphism Y1 ↔ Y2

that induces an isomorphism of their respective normal bundles. This delivers a diffeomorphism between the boundaries
of the normal neighbourhoods Unrm

i ⊃ Yi, call it χ ∶ ∂Unrm
1 ↔ ∂Unrm

2 , and let X = X1#χX2 be obtained by gluing X1 ∖U
nrm
1

with X2 ∖U
nrm
2 according to χ . If scal(Xi) > 0 and codimYi ≥ 3, then this X carries a canonical class of metrics with

scal > 0 that equal the original ones on Xi∖Unrm
i . This gluing operation can be repeated infinitely many times and the

resulting limit spaces should be regarded as having scal ≥ 0 with the simplest instance of this is as follows.

Let X0 = Xn
0 , n ≥ 3, be a compact manifold with scal(X0) > 0 and {y1, y2, y3} ⊂ X be a 3-point subset. Let us attach

to each of these points a copy of ζ ⋅X0, that is X0 with the metric scaled by ζ > 0, where the point in (ζ ⋅X0)i that
corresponds to y1 ∈ X0 is attached to yi ∈ X0, for each i = 1, 2, 3. The resulting manifold X1 (that is the connected sum
of X0 and three copies of ζ ⋅X0) has six “free” points corresponding to the unused counterparts of y2 and y3 in the three
ζ ⋅X0. Let X2 be obtained by attaching a copy of ζ2

⋅X0 to X1 at each of these points and then, similarly, we get X3, X4,
etc.

If ζ > 1, the Hausdorff limit, call it (1− ζ)−1
∗X , of the resulting sequence of spaces X0, X1, X2, . . . is a smooth complete

non-compact Riemannian manifold. If ζ < 1, this is a compact self-similar fractal space X which behaves in many respects
as nicely as Riemannian manifolds do (e.g. it may have essentially Euclidean filling inequalities see subsection 4.7)
and it definitely must be regarded as having scal(X) > 0. Also notice that if ζn < 1/2, n = dimX0, then the volume
of (1 − ζ)−1

∗X , that is ≈ ∑i 2
ivol(ζi ⋅X0) = vol(X0)∑i 2

iζni, is finite.

Remarks.

(a) The class of spaces with scal ≥ 0, unlike that with sect.curv ≥ 0, cannot be stable under Hausdorff limits, unless extra
strong “topological non-collapsing” conditions are imposed on the spaces involved. These conditions can be enforced in
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the above case where X equals the Hausdorff–Lipschitz projective limit of Xi for naturally defined uniformly Lipschitz
maps Xi+1 → Xi. (The classes of spaces considered in [5, 14, 31, 37, 38] do not seem to be stable under geometric limits.)

(b) On scal ≥ σ . A lower bound on the scalar curvature by a positive or negative constant σ ≠ 0 is not scale invariant
and geometric characteristics of the corresponding manifolds must include a bound on their “size” and/or a lower bound
on the mean curvatures of their boundaries (if there are any) including faces of spherical and hyperbolic polyhedra P,
if we want to prove their extremality.

(c) Besides scal > 0, there are other classes of Riemannian metrics that are stable under geometric connected sums of
manifolds. The most prominent among these are conformally flat metrics (where one may simultaneously keep positivity
of scal if one wishes) and metrics with positive isotropic curvature. This curvature is defined in terms of the complexified
tangent bundle of X and its positivity may be expressed in writing by KC(X) > 0, [39]. Probably, suitable limits of such
connected sums can be embraced by a general theory that would allow singular spaces.

Sample Question.

Is there a natural class of singular spaces X with KC(X) > 0 that would satisfy (a suitable version of) the Micallef–

Moore [39] and/or La Nave [30] bounds on indices and sizes of harmonic maps of surfaces into X?

More Questions.

What is the geometry of piecewise smooth Riemannian metrics? Manifolds with such metrics (which are not, in general,
Alexandrov as they may have minus infinite sectional curvatures at their (n− 1)-faces) seem to support full-fledged
Dirac operators and allow solutions of the Plateau problem.

Limit/Closure Question.

What are natural limits of such spaces retaining their essential “nice” properties? The spaces we expect to have among
such limits should include the doubles of domains P with boundaries in smooth manifolds, where the boundaries ∂P
may have certain singularities. For example, these ∂P may be (stable?) minimal hypersurfaces with singularities.

Approximation Question.

When does a Riemannian metric g on X admit an approximation by piece-wise smooth ones, where

(i) the interiors of all pieces are flat (or, more generally have a given constant curvature);

(ii) the exterior curvatures of all (n− 1)-faces (looked at from the interiors of the corresponding n-faces) satisfy some

convexity condition;

(iii) the sums of the dihedral angles between (n− 1)-faces around all (n− 2)-faces are bounded by 2π?

For example, let Sc(g) ≥ 0. Can one approximate it with (ii) signifying positive mean curvatures? This, possibly, can
be done (at least for Sc > 0) by starting with a fine triangulation of X into fat simplices with almost flat faces, and
then flattening the insides of these n-simplices and, at the same time, gaining the mean curvature convexity of their
(n− 1)-faces while keeping the total angles around the (n − 2) faces equal 2π. (If sect.curv ≥ 0, then one may ask for
convexity instead of mean convexity but this seems less realistic.)

2. Reflection domains

An n-manifold P with corners is called a Γ-reflection domain if it is represented as a fundamental domain of a discrete
reflection group Γ which acts on a topological space P̃ ⊃ P that is seen as an orbifold covering or reflection development
of P. This means that P ∈ P̃ is a domain, i.e. its topological boundary in P̃ equals the boundary ∂P, and Γ is generated
by reflections Ri in the (n− 1) faces Qi ⊂ P:

● every Ri∶ P̃ → P̃ is an involution, R2
i = id;

● Ri(P) ∩P = Qi;
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● Ri fixes Qi.

A Γ-reflection domain P ⊂ P̃ is called regular, if P̃ is a manifold which admits a smooth Riemannian Γ-invariant metric.

Let 2kij denote the number of Γ-transformed domains γ(P) ⊂ P̃, including P = id(P), that contain the (n− 2)-face
Qi ∩Qj ⊂ P and define Γ-angles of P ⊂ P̃ as

∠Γ[Qi ∩Qj] = π

kij
.

Notice, that our P and P̃ are not endowed with any metrics so far and the Γ-angles are purely topological/combinatorial
invariants. But if P̃ is a smooth Riemannian manifold and Γ acts by isometries, then the Γ-angles equal the dihedral
angles ∠[Qi⋔Qj].
Example (rectangular domains).

Let P be a co-simple polyhedral domain P, i.e. where the intersections of all k-tuples of (n− 1)-faces satisfy

dim(Q1 ∩Q2 ∩ ⋅ ⋅ ⋅ ∩Qk) ≤ n − k + 1.

Then P has a natural regular reflection structure with all dihedral angles π/2. If one glues P with its Ri-reflected
copy along the corresponding face Qi, then P′

= Ri(P) ∪ P carries again a rectangular reflection structure. Thus, by
consecutively applying such reflections with gluing, one constructs a manifold P̃ with the corresponding reflection group
Γ generated by Ri acting on P̃. For instance, if P is the n-cube then P̃ ⊂ R

n with the reflection group Γ being a finite
extension of Zn.

2.1. Gluing around edges and dihedral extremality theorem

Let a compact connected Riemannian mean curvature convex n-manifold P with corners be represented by a regular Γ-

reflection domain in P̃ ⊃ P such that the (geometric) dihedral angles of P are bounded by the corresponding (topological)

Γ-angles,

∠[Qi⋔Qj] ≤ ∠Γ[Qi ∩Qj] for all (n− 2)-faces Qi ∩Qj ⊂ P.

If scal(P) ≥ 0, then the manifold P̃ admits a smooth Riemannian Γ-invariant metric g̃reg with positive scalar curvature,

scal(g̃reg) > 0, unless

● all dihedral angles ∠[Qi⋔Qj] are constant and are equal to ∠Γ[Qi ∩Qj];
● the mean curvatures of all (n− 1)-faces Qi ⊂ P equal zero;

● the scalar curvature of P is everywhere zero.

Proof. Every Riemannian metric gP on P ⊂ P̃ obviously extends to a unique Γ-invariant path metric g̃ on P̃ but,
typically, this g̃ is singular on the boundary of P ⊂ P̃. However, the three inequalities:

∠Γ[Qi ∩Qj] −∠[Qi⋔Qj] ≥ 0, mn.curv(Qi) ≥ 0 and scal(gP) ≥ 0 [3≥0]
say, in effect, that scal(g̃) ≥ 0 in some generalized sense.

In fact, if there are no (n− 2)-faces at all and P̃ equals the double of P along a mean convex boundary, this g̃ can be
easily approximated by a smooth metric g̃reg with scal(g̃reg) > 0 as is explained in [23] and in [2] for scal(gP) > 0 (also
see “Gluing with positive scalar curvature” below) and where the non-vanishing of scal(gP) at a single point inside
P actually suffices because the positivity of scal can be “redistributed” over all of P from a single point by a simple
perturbation argument. (It is easier to make such metrics with scal > 0 not on P̃ itself but on P̃×T

N by the warping
argument from [25, Section 12].) This takes the care of rectangular domains, where an essential example is that of P
being cubical.
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In general, a close look at the “double-gluing/smoothing” argument also shows that it goes well along with ∠Γ[Qi∩Qj] ≥
∠[Qi⋔Qj] ≥ 0: if P is connected and at least one of the three inequalities [3≥0] is non-strict at some point, then the
metric g̃ on P̃ ⊃ P admits a smooth Γ-invariant approximation g̃reg with scal(g̃reg) > 0. This is obvious for n = 2 and the
general case is not difficult.

Corollary: Dihedral Extremality Theorem. Let P ⊂ R
n be a convex polyhedron where all dihedral angles are integer

fractions π/k of π, for some integers k . (An essential instance of this is the n-cube P with the dihedral angles equal

to π/2 at all (n− 2)-faces and where a simple instance of a reflection domain with different angles is the Cartesian

product of an (n− 2)-cube with a regular triangle where there are π/2 and π/3 angles.) Then P is dihedrally extremal:

there is no curve-faced domain P′
⊂ R

n combinatorially equivalent to P, such that the faces of P have strictly positive

mean curvatures and all dihedral angles are bounded by the values of the dihedral angles at the corresponding (n− 2)-
faces of P.

Proof. Since every Euclidean reflection group Γ contains Z
n of finite index, the mean curvature convex dihedrally

extremality of these P follows from the Geroch conjecture for the torus R
n/Zn. 2

Generalizations with scal ≥ 0.

The above does not require much of the Euclidean geometry of P, but rather applies to general cornered Riemannian
manifolds P with scal(P) ≥ 0. For instance, no essential n-cubical P with scal(P) ≥ 0 can have acute dihedral angles

and strictly mean curvature convex faces, provided P is spin or n = dimP ≤ 7. (The non-spin cases for n = 8, 9 are
settled in [35, Section 5.3] allows all n.)

On irregular reflection domains P.

An orbifold covering or “reflection development” P̃ of a cornered manifold P may have topological singularities issuing
from finite reflection (sub)groups acting at the corners of P. These singularities may be avoided if we replace P by
its multi-double P′′... without corners (see subsection 1.1). Since P′′... inherits from P the (strict) inequalities scal > 0,
mean.curv > 0 and ∠ij > αij , one can derive lower bounds on αij whenever the topology of P̃′′... allows no metric of
positive scalar curvature invariant under the reflection group acting on P̃′′.... Yet, this does not help unless αij = π/k .

Gluing with positive scalar curvature.

Let X1 and X2 be smooth Riemannian manifolds and let γ∶ ∂X1 ↔ ∂X1 be an isometry between their boundaries. The
manifold X 1∪2

= X1 ∪γ X2 obtained by gluing the two along the boundaries carries a natural continuous Riemannian
metric g1∪2. If the shape operators (corresponding to the second fundamental forms) A∗

1 and A∗

2 of the two boundaries
“match”, i.e. A∗

1 =γ A
∗

2 for ∂X1 cooriented outward and ∂X2 inward, then g1∪2 is C 1-smooth. It follows, that

(∗) if the scalar curvatures of X1 and X2 are strictly positive, then g1∪2 can be smoothed to a metric that also has

scal > 0.

Indeed, g ↦ scal(g) is a differential operator on Riemannian metrics g on X 1∪2 that is linear in the second derivatives
of g and so the smoothing with any standard smoothing kernel does the job.

The gluing construction from [23] delivers, in effect, a deformation of a metric g on a manifold X with scal(X) > 0 and
mn.curv(∂X) > 0 that keeps scal.curv > 0, that does not change the restriction of g to ∂X and that makes the second
fundamental form zero. Then the above gives one a metric with scal > 0 on the double of X .

More generally, let Y1 and Y2 be, say closed, Riemannian manifolds with metrics g1 and g2 that are also are “decorated”
by quadratic differential forms A1 and A2 and let us look at compact (complete?) smooth Riemannian manifolds X =

X12 = (X,g) such that

● the boundary of such X is decomposed into a disjoint union, ∂X = ∂1X ⊔ ∂2X , where ∂X1 is cooriented by an inward

vector field and ∂2X , by an outward field;

● there are isometries Ii∶Yi → ∂iX , i = 1, 2, that induce the metrics gi from g and send Ai to the second quadratic
(exterior curvature) forms of ∂iX ⊂ X where these forms are evaluated with given coorientations.
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For instance, Y1 and Y2 may be two concentric spheres in R
n with outward coorientations. If Y1 is contained in the

ball bounded by Y2, then these spheres serve as the boundary of the annulus X between them, where, according to our
convention, both (second quadratic) forms, A1 and A2 – on the concave interior Y1-boundary with the inward coorientation
and on the convex exterior Y2-one cooriented by an outward field – are positive definite. These X = X12 may be seen
(almost) as morphisms between “decorated” Riemannian manifolds Y : if we glue X23 to X12 along Y2 the resulting
metric is C 1-smooth and the true X13 is obtained by smoothing this metric. (One could avoid smoothing if working with
C 1,1-metrics.)

The metrics and quadratic forms serve for defining several more interesting smaller categories such as

(a) B
n
sc>0, n = dimX , the subcategory of the above category where the manifolds X have strictly positive scalar curvatures,

sc(X) > 0 (the category B
n
sc≥0 is equally interesting but slightly harder to handle);

(b) the subcategory B
n
sc>0 where manifolds X are cobordisms;

(c) the subcategory made by those X where the distance function x ↦ distX(x, ∂1X) is smooth with ∂2X being a constant
level set of this function.

(These three categories naturally extend to ∞-categories with d-morphisms being represented by d-cubical cornered
manifolds, that suggests a “topological field theory” for scal > 0. Also it is amusing to think of reflection groups as
“enhanced” ∞-categories.)

Let us focus our attention on an “infinitesimal ε-subcategory” of (c), where the distance between ∂1X and ∂2X equals
ε → 0 and where the C 2-distance between the metrics g1 = g↾∂1X

and g2 = g↾∂2X
is also ≤ ε when the two metrics are

brought to the same manifold, say to ∂1X via the normal projections ∂1X ↔ ∂2X , and answer the following question.
When can a quadratic form A2 on Y2 = ∂X be obtained by an equidistant ε-deformation of Y1 = ∂1X with a given

quadratic form A1 on Y1?

To effortlessly compute the curvatures, etc. of equidistant deformations Yt of hypersurfaces Y ⊂ X , recall that, in general,
the first derivative of a Riemannian metric g on X restricted to Yt ⊂ X under the normal equidistant deformation Yt

equals the second fundamental form At of Yt , where both forms gt = g↾Yt and At are brought to Y by the normal
projection Y ↔ Yt ,

d

dt
gt = At , [ d

dt
]

while the derivative of the corresponding shape operator A∗

t , that is defined by gt(A∗

t (τ), τ) = At(τ, τ), for the tangent
vector τ ∈ T(Yt), and then brought to Y by Y ↔ Yt , is expressed by the

Riemannian–Hermann–Weyl Tube Formula4:

d

dt
A
∗

t = −(A∗

t )2
+Bt , [ d2

dt2
]

where the operators Bt are defined via the sectional curvatures K of (X,g) on the 2-planes σ ⊂ Ty(X), y ∈ Yt , that are
normal to the tangent spaces Ty(Yt), as follows,

g(Bt(τ), τ) = −K(σ), [K ]
where τ is a unit vector in the line σ ∩ Ty(Yt). (We use here the notation from [16, p. 43].)

4 This is a most useful formula in Riemannian geometry that directly leads to geometrically significant results, e.g. to
basic comparison theorems (see [16]), unlike still persistent roundabout computations with curvature tensors and Jacobi
fields used for this purpose.
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Now, let Uε = Y × [0, ε] for Y = Y ×0, and let gε be the following metric on Uε defined from a given smooth metric g0

and two smooth quadratic forms A0 and A+ on Y , by

gε(y, t) = g0(y) + tA0(y) + t2

2ε
(A+(y) − A0(y)), 0 ≤ t ≤ ε. (++)

When ε → 0, then

●g the metrics (gε)↾Y×t converge to g0 in the C 2-topology;

●A the second quadratic forms of Y = Y ×ε ⊂ Uε similarly C 2-converge to A+;

●scale if trace(A+(y)) < trace(A0(y)) at all y ∈ Y , then scal(Uε) → +∞ at all x ∈ Uε.

In other words, an infinitesimal positive scalar curvature cobordism/morphism can transform a quadratic form A0 to a
given A+, whenever the mean curvature (trace) of the latter is strictly smaller than that of the former. (It is helpful to
visualize this by thinking of Yε = Y ×ε as the equidistant ε-deformation of an equatorial (n− 1)-subsphere Y0 in the
n-sphere of radius r, with Uε being the annulus pinched between these two spheres, where scal(Uε) = n(n − 1)/r2 and
the second fundamental form A0 of Y0 is zero. A relevant example here is where r → 0 and ε = const ⋅ r2 and where the
second fundamental form A+ of Yε is, negative, being, roughly, −const ⋅1.)

Proof. The claim ●g is obvious, ●A follows from [ d
dt
], while the asymptotic estimate scal(Uε) ∼ const ⋅ε−1(trace(A0) −

trace(A+)) is seen with [ d2

dt2
], [K] and Gauss’ theorema egregium. 2

Gluing Corollary. Let X1 and X2 be manifolds with strictly positive scalar curvatures and let γ∶ ∂X1 ↔ ∂X2 be an

isometry. If the mean curvatures of the two boundaries satisfy

mn.curv∂X1
(y1) + mn.curv∂X2

(y2) ≥ 0 for all y1 ∈ ∂X1, y2 = γ(y1) ∈ ∂X2,

then the metric g1∪2 on the manifold X 1∪2 obtained by gluing the two along their boundaries can be perturbed in a

neighbourhood of the glued boundaries to a metric of positive scalar curvature on X 1∪2.

Proof. If we apply (++) to g′

0(y) = g0(y) + δ(y) instead of g0(y) for δ(y) = g0(y) − gε(y, ε), we end up with
g′

ε(y, ε) = g0(y). Thus, an arbitrary small C 2-perturbation of g0 allows us to achieve gε(y, ε) = g0. Now we can modify
the metric on one of the two manifolds, say on X1, such that

● the modified metric equals the original one away from an arbitrary small neighbourhood (that is our Uε ⊃ Y = ∂X1) of
the boundary of X1;

● the restriction of the modified metric to the boundary remains equal to the original metric (corresponding to the
above g0);

● the modified metric has scal > 0;

● the second fundamental form of the boundary with respect to the modified metric has the second fundamental form
opposite to that of the boundary of X2.

Then, by the above (∗), the manifold X1 with the modified metric can be glued to X2 and the proof follows. 2

Gluing with scal > κ ≠ 0.

The above equally applies to manifolds with scalar curvatures bounded from below by any constant κ, not necessarily
κ = 0: If manifolds X1 and X2 with their scalar curvatures bounded from below by a constant κ are glued by an isometry

γ between their boundaries the mean curvatures of which satisfy the above positivity (≥ 0) of their sum inequality, then

the metric g1∪2 on the resulting manifold X 1∪2
= X1 ∪γ X2 can be approximated by smooth metrics gapp on X 1∪2 with

scal(gapp) > κ, where these metrics gapp can be chosen equal to g1∪2 away from an arbitrarily small neighborhood of

the glued boundaries ∂X1
γ
= ∂X2 ⊂ X

1∪2.
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Remarks.

(a) The above style local “gluing + smoothing” appears in different forms in [2, 23, 38] and non-local smoothing with
the Ricci flow is suggested in [37].

(b) Probably, ideas from [14, 31, 37, 38] may help to establish a version of this under the non-strict assumption
scal(Xi) ≥ κ, i = 1, 2, and with the corresponding non-strict conclusion scal(gapp) ≥ κ for most (all) manifolds X1 and X2.

(c) If two given smooth Riemannian metrics on Y1 and on Y2 = Y1 can be included in a continuous family of metrics
with positive scalar curvatures, then, by combining the above with [24], one sees that the existence of a non-infinitesimal

cobordism with given second quadratic forms A1 on Y1 and A2 on Y1 and Y2 does not need the assumption trace(A1) >
trace(A2). Let us spell it out in detail. Let A1 and A2 be smooth quadratic forms on a manifold Y an let g be a metric
on X = Y × [1, 2], such that

(+) the metrics g↾Y×t on Y × t = Y have strictly positive scalar curvatures for all t ∈ [1, 2].
Then there exists a homotopy gτ of the metric g = gτ=0 on X , such that

● the metrics gτ↾Y×t on Y = Y × t have positive scalar curvatures for all t ∈ [1, 2] and τ ∈ [0, 1];
● the result of this homotopy – the metric gτ=1 on X has strictly positive scalar curvature;

● the homotopy is constant on Y ×1 and Y ×2,

gτ↾Y×1 = g↾Y×1 and gτ↾Y×2 = g↾Y×2 for all τ ∈ [0, 1];

● the second quadratic forms of Y ×1 and Y ×2 in (X,gτ=1) equal A1 and A2 correspondingly.

● the submanifolds Y × t ⊂ X are equidistant to Y ×1 as well as to Y ×2 for all t ∈ [1, 2] (as in the above (3))?!?!?1 with
respect to gτ=1; moreover, if g has this equidistance property, then one can have all gτ with this property as well.

Question. When does a closed subset Z in a Riemannian manifold X equal the intersection of a decreasing sequence
of smooth domains Ui ⊂ X where the induced metrics gi on the boundaries Yi = ∂Ui have scal(gi) → +∞ for i → ∞? Is
there a sufficient condition representable by an inequality dim? Z < dimX −2 for some notion of dimension as is the case
for piecewise smooth polyhedral subsets Z ⊂ X of codimension > 2 by the argument from [24]. A related question (we
reiterate it in Section 3) is that of finding “nice” functions φi on X ∖Z that blow up at Z and such that the intersection
of certain φi-bubbles equals Z .

(d) There are global PDE constructions of metric with positive scalar curvatures on “glued manifolds” like the above
X 1∪2 under integral rather than point-wise assumptions on the mean curvatures (e.g. see [11] and references therein) but
the available results of this kind apply so far only to rather special metrics.

2.2. Dihedral rigidity conjecture

The above does not say what are dihedrally extremal mean curvature domains and, more generally, what are the above
cornered Riemannian n-manifolds P, where

∠[Qi⋔Qj] = ∠Γ[Qi ∩Qj], mn.curv(Qi) = 0 and scal(gP) = 0.

Probably, they are all isometric to convex Euclidean polyhedra. In particular, bounded Euclidean polyhedral reflection

domains P ⊂ R
n are, conjecturally, dihedrally rigid. Namely, let a curve-faced P′

⊂ R
n have not necessarily strictly

positive mean curvatures of all its faces ≥ 0 and all dihedral angles bounded by the corresponding angles of P. Then,

conjecturally, all faces of P′ are flat; moreover, P′ is obtained from P by parallel translations of its faces followed by

an isometry.
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Five incomplete proofs.

1. The most transparent case of the problem is where P is a curve-faced cubical polyhedron in the Euclidean 3-space R
3.

If P is extremal, then all 2-faces of it are minimal surfaces meeting each other at the angles π/2. If such a face Q can be
slightly moved inside P with a strict decrease of its area, then it can be perturbed to strict mean convexity and if every
such a move strictly increase the area of Q, then one could make Q strictly mean curvature concave by such a move.

Thus, we may assume that Q is included in a continuous family Qt ⊂ P of minimal faces normal to the rest of the

boundary of P. Now, following Schoen–Yau [44], (compare [8]) we observe that the second variation integral for area(Q)
equals the integral of the Gauss curvature of Q plus the boundary term that is the integral over the curve ∂Q of the
difference between the mean curvatures of ∂Q in Q and of the surface of P normal to Q.

Thus, the (non-strict) positivity of the second variation implies that the integral of the Gauss curvature of Q plus the
integral of the curvatures of the four edges of its boundary is non-negative. On the other hand, the four vertices contribute
2π to the Gauss–Bonnet integral; hence, Q must be flat.

The only unsettled point in this proof is demonstating that nothing bad happens at the corners of P but this does not
seem to be difficult. In fact, the Gauss–Bonnet prism inequality (see 5.4) does work in this case and implies rigidity
of all, not necessarily (reflection) convex Euclidean prisms. If P is a curve-faced cubical polyhedron in R

n for n ≥ 4,
one may apply the Schoen–Yau dimension reduction argument [45] or rather the warped product version of it from [25],
where, one needs doing it only once, and where the dimension restriction n ≤ 6 is unnecessary since all we need after
all is a certain perturbation of a smooth face Q.

2. Let us turn now to general reflection domains and recall that if X is a compact manifold with a zero scalar curvature
metric g0, then, according to [28], g0 can be perturbed to g1 with scal(g1) > 0 unless g is Ricci flat. Probably, a similar
perturbation is possible for the above cornered Riemannian n-manifold P with

∠[Qi⋔Qj] = ∠Γ[Qi ∩Qj], mn.curv(Qi) = 0 and scal(gP) = 0.

This suggests the following

Question.

Let P ⊂ R
n be a preconvex Plateau-hedron where at least one face is non-flat. When does P admit a perturbation to

a strictly mean curvature convex polyhedron P′ with all dihedral angles ∠ij(P′) ≤ ∠ij(P)? (A general positive answer
would settle the rigidity problem.)

Example.

Let P ⊂ R
3 be bounded by a catenoid and a pair of hyperplanes normal to its axes. (This P has depth two as it has no

corners.) It seems easy to decide if P can be perturbed to a strictly mean convex polyhedron with a decrease of its two
(circular) dihedral angles.

3. Let P̃ be the above manifold, where reflection group Γ acts with P ⊂ P̃ being a Γ-reflection domain, and let g̃
on P̃ ⊃ P be the continuous metric coming from P. The above gluing argument says in this case that g̃ admits a smooth
Γ-invariant approximation by metrics g̃reg with scal(g̃reg) > −ε for arbitrarily small ε > 0. Then the positive solution to
the C 0-rigidity problem ●2 in 1.9 would show that the metric g̃ is flat.

4. Torus Conjecture. Let X̃ be the universal covering of the n-torus X with a smooth non-flat Riemannian metric. Then,

conjecturally, X̃ can be exhausted by cubical strictly mean curvature convex cornered domains P̃ ⊂ X̃ with all dihedral

angles bounded by π/2.

Half-proof. Such domains P̃k with singular faces are constructed as follows. Let X∼k = X/kZn for Zn = π1(X) and let
Y1 ⊂ X

∼k be a minimal hypersurface homologous to an (n− 1)-subtorus in X∼k . Let X∼k
1 be (possibly singular for n ≥ 8)

space obtained by cutting X∼k along Y1 where the boundary of X∼k
1 , denoted ∂X∼k = Y±1, consists of two copies of Y1.

Take an (n−1)-volume minimizing hypersurface Y2 ⊂ X
∼k
1 with ∂Y2 ⊂ ∂X

∼k
1 = Y±1 that represent the relative homology

class “suspending” the class of some “(n−2)-subtorus” in Y1.

Cut X∼k
1 along Y2 and let X∼k

2 be the resulting space. This X∼k
2 is a cornered 2-cubical space, where the boundary ∂X∼k

2

consists of two pairs of mutually orthogonal faces that are Y cut
±1 and Y±2. Cut X∼k

2 along a volume minimizing hypersurface
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Y3 in ∂X∼k
2 with boundary in ∂X∼k

2 and thus obtain a 3-cubical X∼k
3 with normal dihedral angles where these are defined.

Keep doing this unless you arrive at a singular mean curvature n-cubical cornered space X∼k
n with normal faces that

lifts to a singular cubical domain P̃k X̃ , where X̃ can be exhausted by such P̃k for k → ∞.

What remains is to smooth the singularities in these P̃k . Prior to smoothing one has to modify the construction by taking
ε-bubbles with small ε > 0 (defined below) instead of minimal hypersurfaces Yi ⊂ X

∼k
i−1 (corresponding to ε = 0). Such

bubbles do exist if X is non-flat (this seems obvious but a proof will not hurt) and then the resulting polyhedra P̃k ⊂ X̃
are strictly mean curvature positive. Probably – and this is what we do not prove – such polyhedral domains P̃ can be
always approximated by face-wise smooth strictly mean curvature convex domains with π/2 dihedral angles. 2

A construction of such strictly mean curvature convex cubical domains Q in manifolds X̃ with piecewise smooth metrics g̃
would imply dihedral rigidity of reflection domains, since one could construct a metric of positive scalar curvature on X
(or rather on some X ′ admitting a degree 1 map to the n-torus) by “gluing Q around the corners”.

5. Probably, one can make sense of the Dirac Dg̃ operator being (non-strictly) positive on (P̃), confront this with existence
of harmonic spinors twisted with flat bundles as in [23], and use a piecewise smooth version of the Bourguignon theorem
on parallel spinors.

Topological Mean Convex Exhaustion Problem.

Let P be a combinatorial class of (potential) cornered domains P with numbers αi attached to the edges of P ∈ P. Let
X̃ be a smooth manifold acted upon by a discrete cocompact group Γ. For instance, X̃ may be a universal covering of
a closed manifold X with π1(X) = Γ. If X̃ is endowed with a smooth Γ-invariant Riemannian metric g̃, we say that
X̃ = (X̃ , g̃) ∶Γ is exhaustively dominated by (P, αi) if X̃ can be exhausted by mean curvature convex domains P̃ ∈ P where
all dihedral angles in all P are bounded by αi. (The definition of combinatorial equivalence allows maps P̃ → P ∈ P of
“positive degrees” where, possibly, dim P̃ > dimP.)

Say that X̃ ∶Γ is topologically exhaustively dominated by (P, αi) if (X̃ , g̃) is exhaustively dominated by (P, αi) for all
smooth Γ-invariant Riemannian metrics g̃ on X̃ . For instance, the torus conjecture claims that the topological n-torus
T n

=Rn/Zn is so dominated by the (combinatorial class of the) cube (◻n, αi = π/2).
In general, given X̃ acted upon by Γ and a combinatorial class P with the edge set I = {i}, we denote by AP(X̃ ∶ Γ) ⊂ R

I

the set of vectors {αi} ∈ R
I for which (P, αi) topologically exhaustively dominates X̃ ∶Γ. This set AP is a topological

invariant of (X̃ ∶Γ) (or equivalently of the quotient manifold X̃/Γ for free actions) and the problem is to evaluate it in
particular cases.

Examples.

(i) Let P ⊂ R
m be a convex polyhedron with dihedral angles αi. Let X be a closed smooth n-manifold that admits a

continuous map X → T
m of “non-zero degree”, i.e. such that the fundamental cohomology class of the torus goes to a

non-zero class in Hm(X,Q) and let X̃ be the Galois Z
m-covering of X induced by the universal covering R

m
→ T

m. Is
X̃ ∶Γ topologically exhaustively dominated by (P, αi) for the combinatorial class P of this P ⊂ R

m?

(ii) Does this remain so, for Γ ≠ Z
m, if X̃ admits a smooth proper distance decreasing map X̃ → R

n of non-zero degree?
Here “non-zero degree” means that the pullback of a generic point is Q-non-homologous to zero in X̃ and “distance
decreasing” is understood relative to some Γ-invariant metric in X̃ .

(iii) Are the universal coverings X̃ of manifolds X with infinite K-area (defined in [19]) topologically exhaustively
dominated by these (P, αi)?
(iv) Let the hyperbolic n-space Hn of constant curvature −1 be exhausted by curve-faced polyhedral domains P of a
certain combinatorial type P with umbilical faces with positive mean curvatures and acute dihedral angles. Is then Hn

∶Γ

topologically exhaustively dominated by (P, αi = π/2)? Does a similar property hold true for exhaustions of Hn by
domains P1 ⊂ P2 ⊂ . . . ⊂ H

n of variable combinatorial types? What are combinatorial classes P, such that (P, αi = π/2)
topologically exhaustively dominates (the universal coverings of) Q-essential closed manifolds X with other “large”
fundamental groups Γ? (Recall that “Q-essential” means that the fundamental cohomology class [X]Q ∈ Hn(X ;Q),
n = dimX , comes from the cohomology of Γ.)
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Particular instances of interesting “large” groups are cocompact lattices in Lie Groups and Cartesian projects of world

hyperbolic groups. Probably, there are significantly more such P for hyperbolic groups than for products of these and
than for groups co-compactly acting on non-hyperbolic symmetric spaces.

Let us limit the Γ invariant metrics g̃ on X̃ to those where scal(G̃) ≥ −1. Then, besides bounds on the dihedral angles
of domains Pk exhausting X̃ by given numbers αi one may require lower bounds on the mean curvatures of the faces of
these domains. What are realizable (by some exhaustions) possibilities for such bounds if, for instance,

● X̃ is a symmetric space with non-positive curvature;

● X̃ is acted upon by an isometry group Γ (for a metric g̃ with scal(g̃) ≥ −1) and it admits a proper equivariant map of
non-zero degree onto a symmetric space that is isometrically and co-compactly acted upon by Γ.

(∗) What are extremal/rigid cornered domains in spaces of constant (positive or negative) curvatures with given bounds

on the dihedral angles and lower bounds on the mean curvatures of their faces?

For instance, let P ⊂ Sn ⊂ R
n+1 be a reflection domain, e.g. the spherical simplex ∆ with all dihedral angles equal π/2

and let P be a mean convex cornered manifold with all dihedral angles ≤ π/2 that admits a 1-Lipschitz combinatorial
equivalence f ∶P → ∆. Then, if P is spin, the above argument combined with Llarull’s theorem [34] shows that there is

a point p ∈ P, such that scalp(P) ≤ scalf(p)(Sn). But it is unclear if the equality scalp(P) = scalf(p)(Sn) at all p ∈ P

implies that f is an isometry.

2.3. Billiards, pure edges and ramified coverings

Most (if not all) of our understanding of mean curvature convex cornered manifolds P is derived from the geometry
of minimal varieties and/or the Dirac operator on orbifold coverings (reflection developments) P̃ of P. For example if
P ⊂ X = Xn is an n-cubical polyhedral domain, then the quotient P○ = P̃/Γ○, for a subgroup Γ○ = Z

n
⊂ Γ of finite index

in the corresponding reflection group, Γ acting on P̃, is a T
n-essential manifold, i.e. it comes with a map of positive

degree P○ → T
n. The relevant minimal subvarieties in P○ are those representing the (n− 1)-homology classes that come

as pullbacks from (n− 1) subtori in T
n. There are infinitely many of these classes, but only n of them, the ones that

correspond to the coordinate subtori, have a simple representation in P, namely, by (eventually minimal) hypersurfaces
separating pairs of opposite faces. The remaining ones are similar to multiply reflected periodic orbits of billiards in
polygonal domains.

Question.

Is there a counterpart of these multiply reflective minimal hypersurfaces for polyhedral domains P that are not reflection
domains? A similar issue arises for the Dirac operator. How can one descend Dirac operator D proofs of non-existence
of metrics with scl > 0 from P̃ to P?

One problem is the discontinuity of D for the natural (only continuous but not smooth) extension of the Riemannian
metric from P to P̃ ⊃ P. An even more serious difficulty stems from the fact that D itself is not used, but D twisted with
(almost flat) vector bundles V over P̃, where these V are by no means Γ-invariant.

An essential difference between ordinary billiards and what we have here is that the dynamics and geometry of billiards
are shaped by interactions of the orbits with the faces of P, while the geometries of minimal hypersurfaces and of Dirac
operators crucially depend on what happens at the edges of P. Below is an attempt to isolate the edge geometry.

Pure edges without faces.

Let X = Xn be a closed manifold and Z = Zn−2
⊂ X a closed submanifold of codimension 2, e.g. a knot in the 3-sphere.

Consider all metrics on X that are smooth with non-negative scalar curvatures away from Z and such that the geometry
near Z is corner singular with angle α , i.e. a neighbourhood of Z in X is isometric to (Z,gZ)×Cα where gZ is a smooth
Riemannian metric on Z and Cα is a surface with a rotationally symmetric Riemannian metric that is singular at a
single point c0 ∈ Cα where its tangent cone has total angle α . For example, if α = 2π then Cα is non-singular. Denote
by αmin(X,Z) the infimum of these angles of all above metrics. This is a topological invariant of the pair that can be
bounded from below by looking at the ramified coverings of X . Namely, if there is such a covering X̃ with ramification
of order ≤ k that admits no smooth metric with positive scalar curvature then, clearly, αmin(X,Z) ≥ 2π/k .
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Question.

Are there pairs (X,Z) where αmin(X,Z) is finite but yet not of the kind 2π/k for any integer k?

The simplest instance of where such bounds are available is where X = S2
×S1 and where Z equals a union of “coordinate

circles”, i.e. X = Z0×S
1 for a finite subset Z0 in the sphere S2 and where the geometries near these circles Zi = zi×S1

⊂

X = S2
×S1, zi ∈ Z0, are corner singular with (not necessarily mutually equal) angles αi. One can show, as we do in

subsection 5.4 that, albeit singular, X contains a minimal surface Y in the homology class of the 2-sphere S2
×z0 ⊂ X to

which the Gauss–Bonnet theorem applies and yields the (sharp!) inequality

∑
i

(2π − αi) ≤ 4π.

Remark.

Some geometry questions on general cornered manifolds P with scal(P) > 0 reduce to those about the above “pure
edged” spaces with the multi-doubling procedure from subsection 1.1.

Problem.

What are complete singular Riemannian spaces that are locally isometric to Cartesian products of flat manifolds and
2-dimensional Riemannian cones? Does, for instance, every stably parallelizable manifold admit such a singular Rie-
mannian metric?

3. µ-area and µ-bubbles

The variational approach indicated in subsection 1.4 for the construction of Plateau-hedra also applies to more general
curve-faced polyhedra with prescribed mean curvatures of the faces and given dihedral angles at the edges as follows.
An open or closed subset U ⊂ X is a domain if its boundary also serves as the topological boundary of the complement
to the closure of U , that is

∂U = ∂(int(U)) = ∂(clos(U)) = ∂(X ∖U) = ∂(X ∖ clos(U)) = ∂(X ∖ int(U)).
Each component Y of the boundary of a domain U admits two coorientations represented by arrows directed toward the

interior or exterior of U . Accordingly, we denote by [. . . in
↢ Y ] ⊂ X the germ of the intersection of U with an arbitrarily

small neigbourhood Wε of Y in X , where we agree that Y ⊂ [. . . in
↢ Y ] ⊂ X and we denote by [Y out

↢ . . . ] such a germ of
the exterior of Y that is the complement of the interior of U in Wε . Observe that this notation makes sense even if a
hypersurface Y does not bound anything in X , but only divides its small neighbourhood into two parts, one regarded as
interior and the other as exterior of Y .

A Borel measure µ on X defines a closed 1-cochain on cooriented hypersurfaces Y written as µ[. . . in
↢ Y ], where the

function Y ↦ µ[. . . in
↢ Y ] changes by an additive constant under a change of the representative of the germ [. . . min

↢ Y ] ⊂ X .
If X is also endowed with a Riemannian metric we define the µ-area of Y by

areaµ(Y ) = voln−1(Y ) − µ[. . . in
↢ Y ],

where voln−1 stands for the (n− 1)-dimensional Hausdorff measure. Call a hypersurface Y ⊂ X a µ-bubble if it locally

minimizes the function Y ↦ areaµ(Y ).
If µ is given by a continuous density function φ(x), x ∈ X , i.e. µ = φdx, then the mean curvature of a µ-bubble Y ⊂ X ,
obviously, satisfies mn.curv(y) = φ(y). These µ-bubbles are also called φ-bubbles. In particular, C-bubbles with
constant mean curvature equal C corresponds to µ being proportional to the Riemannian n-volume.
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Example.

If X = R
n, n ≥ 3, and φ(x) = (n − 1)∥x∥−1, then the R-spheres defined by ∥x∥ = R are (non-strictly) locally minimizing

φ-bubbles.

Questions.

Can a (stable?) minimal submanifold Z of codimension ≥ 2 in a Riemannian n-manifold ⊂ X be “surrounded” by C-bubbles
(with an arbitrarily large positive constant C ) that are small perturbations of the levels of the function (n−1)dist−2(x, Z)?
(This, possibly, can be done by arranging suitable traps for such bubbles, see subsection 4.2.) When, in general, does a
closed subset Z ⊂ X admit arbitrarily small neighbourhoods U ⊃ Z with (smooth?) boundaries ∂U of (almost?) constant
mean curvatures? For instance, when can a subset Z ⊂ X be surrounded by φ-bubbles that approximate levels of a
function φ ∼ (n − 1)dist−2(x, Z)? Is this possible for smooth non-minimal submanifolds and/or for singular minimal

subvarieties Z ⊂ X with codimZ ≥ 2? What happens in this regard to piecewise smooth subpolyhedra and to real
algebraic subsets Z? Is there anything of this kind for nice (?), possibly fractal, subsets Z ⊂ X , e.g. for singular loci
of minimal subvarieties in X? Do constructions of minimal and mean curvature convex hypersurfaces from [22] extend
to φ-bubbles in non-complete manifolds such as X ∖Z with suitable functions φ(x) that have “pole-like singularities”
on Z?

If X is a manifold with a smooth boundary ∂X and µ = µ∂ is given by a continuous density function on ∂X , say by ψ∂(x′),
x′ ∈ ∂X , then µ∂-bubbles Y ⊂ X with ∂Y ⊂ ∂X meet ∂X at the (dihedral) angle ∠ = ∠(Y ⋔∂X) that, obviously, satisfies
cos∠(y′) = ψ∂(y′) for all y′

∈ Y ∩ ∂X . Moreover, this equality remains true for the µ′∂-bubbles where µ′ = µ∂ + φ ⋅ voln

for φ = φ(x) being an arbitrary continuous function on X .

Question.

What is the minimal regularity of a measure µ needed for the existence of µ-bubbles and their regularity comparable to
that of minimal hypersurfaces? Does the condition µ ≤ const ⋅Haun−1 for the (n− 1)-Hausdorff measure Haun−1 suffice?

Remarks.

(a) If X has trivial (n− 1)-homology, Hn−1(X) = 0, then minimal ε-bubbles are associated to the supporting lines

a − εv = const of the (convex hull of the) isoperimetric profile of X in the positive quadrant of the (a, v)-plane, where
profileisop(X) ⊂ R

2
++ is defined as the image of the map from the space of compact domains P to the plane given by

P ↦ (a = voln−1(∂P), v = voln(P)),
where, observe, the boundary of profileisop(X) is contained in the critical set (curve) of this map. (If X is a Galois covering
of a compact manifold, one usually works with the Foelner–Vershik profile that is the convex hull of the logarithmic map
P ↦ (log voln−1(∂P), log voln(P)).)
(b) µ-Bubbles are well defined for closed hypersurfaces Y which bound (non-compact) domains with infinite µ-measures,
like Y ×0 ⊂ X = Y ×R, provided the µ-measures of the regions between Y and hypersurfaces Y ′ homologous to Y are
finite.

3.1. Poly-bubble-hedra

A Riemannian n-manifold P with corners, e.g. a polyhedral domain in an ambient Riemannian manifold X = Xn, is called
a PB-hedron if all its (n− 1)-faces Qi have constant (possibly mutually non-equal) mean curvatures mi and the dihedral
angles ∠ij = ∠[Qi⋔Qj] are constant on all (n− 2)-faces of P. For example, the domains P in spaces of constant
curvature which are bounded by (convex or concave) umbilical hypersurfaces (where all principal curvatures are constant
and mutually equal, e.g. as it is for spheres) are PB-hedra.

The combinatorially simplest PB-hedra are di-B-hedra with two (n− 1)-faces Q1 and Q2 meeting across a single
(n− 2)-face Q12 = Q1∩Q2. Probably, the space of di-B-hedra P ⊂ X with Q12 contained in a hypersurface H = Hn−1

⊂ X

is Fredholm, i.e. it locally has finite, positive or negative, “virtual dimension” d: if H is a generic N-dimensional family
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of hypersurfaces in X with large N, then the space P of di-B-hedra P ⊂ X which are close to a given P0 and have Q12

contained in some H ∈ H, satisfies dimP = N +d. (Possibly, this d may depend on whether a hypersurface H separates
Q1 and Q2 or not.)

The geometric type of P is, by definition, the totality of the numbers {Mi, αij} for Mi = mn.curv(Qi) and αij = ∠[Qi⋔Qj]
associated to the (n− 1)-faces and (n− 2)-faces of (the combinatorial scheme of) P.

PB-Problems.

The space PB(X)GT of PB-hedra of a given geometric type GT (which includes the combinatorial type) in a given
Riemannian manifold X = Xn is similar in many respects to the space MIN(X) of closed minimal hypersurfaces in X ,
albeit the spaces PB(X)GT are infinite dimensional at certain P ∈ PB(X)GT and it may be hard to decide, for example,
if PB(X)GT is non-empty for given X and GT.

Also, the compactness properties of (subspaces in) PB(X)GT are less apparent than these in MIN(X), since sequences
of PB-hedra Pi ∈ PB(X)GT may Hausdorff converge to subsets Z ⊂ X with dimZ ≤ n − 1, where the picture is not fully
clear even for decreasing sequences P0 ⊃ P1 ⊃ Pi ⊃ . . . where the intersection Z = ⋂i Pi may be (?) rather complicated,
say for sequences of acute Plateau-hedra of the combinatorial type of the n-cube. For example, what are smooth
k-dimensional submanifolds Z ⊂ X with boundaries which can be represented as such intersections ⋂i Pi?

Another new feature of Plateau-hedra (and of more general PB-hedra) is their dependence on the underlying combinato-
rial scheme GT: the space PB(X) of all Plateau-hedra is stratified by various PB(X)GT according to their combinatorial
types (similarly to the space of convex Euclidean polyhedra), but the topology/geometry of this stratification is far from
transparent.

The concepts of dihedral extremality and rigidity we met earlier obviously extend (as in the problem (∗) stated at the
end of subssection 2.2) to PB-hedra P in general Riemannian manifolds X where they seem particularly interesting
in manifolds with constant curvature and where they (partly) generalize rigidity phenomena for hyperbolic warped
products [19].

3.2. Multi-bubble description and construction of PB-hedra

Let PCT be the space of polyhedral domains P in X with m faces meeting according to a given combinatorial pattern
(scheme/type) CT. Denote by vi = vi(P), P ∈ PCT , the (n− 1)-volume form (measure) on the face Qi of P, i = 1, . . . ,
regarded as the measure on X . Let −∞ < εi < ∞ and −1 < cij < 1 be given constants, let

µi = εi ⋅ voln +∑
j

cijvj ,

where voln is the Riemannian volume (measure) in P and where the sum is taken over the faces Qj adjacent to Qi. It
is clear that: if, for a given i, the face Qi is a local µi-bubble, i.e. if Yi locally minimizes the area−µi(Yi) then Qi has

constant mean curvature = εi and the dihedral angles between Qi and Qj equal arccos cij for all Qj adjacent to Qi, then

mn.curv(Qi) = εi and cos∠[Qi⋔Qj] = cij .

Minimal PB-hedra.

Let P○ be a Riemannian manifold with corners, e.g. a polyhedral domain in a manifold X = Xn, such that the mean
curvatures of the (n− 1)-faces Q○

i ⊂ P
○ and the dihedral angles between them satisfy

mn.curv(Q○

i ) ≥ εi and ∠(Q○

i ⋔Q
○

j ) ≤ αij for given εi ≥ 0, αij ≤ π/2,
and let

µi = εi ⋅ voln +∑
j

(cosαij)vj .
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Now, take some i1 and minimize the µi1 -area of the i1-th (n− 1)-face by varying Q○

i1
↝ Qi1 within P○ and with the

boundary ∂Qi1 contained in the union of the (n− 1)-faces adjacent to Q○

i1
while keeping all (n− 1)-faces Q○

i≠i1
unchanged.

In other words, consider all closed subsets P ⊂ P○ with m.c. convex boundaries ∂P that contain all faces of P○ which do
not intersect Q○

i , and then minimize the µi1 -area of the new part of ∂P, that is Qi1 = ∂P ∖ ∂P○. Thus we obtain some
subset, say P[i1] ⊂ P○, which we regard as m.c. polyhedron with a minimal i-th face Q[i1]i1 = Qmin

i and with new faces
Q

[i1]
i = P[i1] ∩Qj for i ≠ i1. This P[i] can be more singular than is allowed by our definition of “polyhedral domain”, but

we pretend it is such a domain and then apply the same minimization process to P[i1] with respect to some face Q[i1]
i2

for
i2 ≠ i1. By continuing this process with a given sequence i1, i2, . . . one arrives at a decreasing family of mean curvature
convex “polyhedra”

. . . ⊂ P
[i1,i2,i3]

⊂ P
[i1,i2]

⊂ P
[i1]

⊂ P
○

.

If this family stabilizes at some Pmin(k) = P[i1,i2,i3,...,ik ] and this Pmin(k) ⊂ X qualifies as a polyhedral domain, it serves
as a minimal PB-hedron inside P○.

4. Plateau traps, φ-convexity, quasiregularity and regularization

Let P be a cubical polyhedral domain (or a manifold with corners), let ±Q ⊂ P be a pair of opposite faces and
X = P ∖ (Q∪−Q) be the cornered manifold with the boundary ∂X = ∂P ∖ (Q∪−Q) that is the union of all (n− 1)-faces
except ±Q. If P has strictly acute dihedral angles and strictly mean (curvature) convex faces, then the minimum of the
(n− 1)-volumes of hypersurfaces Y ⊂ X with ∂Y ⊂ ∂X is assumed by some Ymin away from these faces inside P′. One
may say that the relative homology class [Y ] ∈ Hn−1(X, ∂X) is trapped between Q and −Q.

The trapping feature, if shared by all pairs of opposite faces in P, is equivalent to the [acute angles + mean convexity]
property of P. On the other hand, traps are quite robust. In particular, the definition of traps needs significantly less
regularity than that of mean curvature, be it the topology of P, its Riemannian metric or smoothness assumption on the
faces of P.

In what follows we review simple standard properties of traps; we limit ourselves for the most part of the exposition to
closed hypersurfaces representing absolute (n− 1)-homology classes in order not to overburden our notation.

4.1. Directed homology

Let X be an n-manifold, possibly with a boundary. A direction
↢

Cn−1 in X is, by definition, a (directing) homology class
which is representable by a closed cooriented hypersurface Y ⊂ X ∖ ∂X which divides X into two closed subsets denoted
Uin ⊂ X and Uout ⊂ X , where

∂Uin = ∂Uout = Y = Uin ∩Uout.

Remark.

If X is oriented, then
↢

Cn−1 is an ordinary homology class, but, in general, it is, strictly speaking, a 1-cohomology class.

We say “homology” to emphasize geometric representations of
↢

Cn−1 by hypersurfaces even for non-orientable X , e.g.
where X = Y ×R and Y is non-orientable.

Relative case.

Let ∂○X ⊂ ∂X be an open subset in the boundary of X , e.g. ∂○X = ∂X . Then there is an obvious generalization of the
above to hypersurfaces Y ⊂ X with ∂Y ⊂ ∂○X . The directing homology class is represented in the general relative case
by non-closed cooriented hypersurfaces Y that are still closed as subsets in X and that may have boundaries contained
in the ∂○X-region of the boundary of X . If all infinity of our Y is contained in ∂○X , everything can be reduced to the
absolute case by taking the double of X along ∂○X . On the other hand, such doubling does not (quite) apply to a more
general setting, e.g. where X has no boundary at all and where ∂○X is a “virtual subset at infinity” represented by a
descending family of open subsets in X , say U1 ⊃ U2 ⊃ . . . ⊃ Ui ⊃ . . . , such that the intersection of every compact subset
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K ⊂ X with Ui is empty for all i ≥ i(K). The relevant hypersurfaces Y ⊂ X here are those where the difference sets
Y ∖Ui are compact for all i.

Given a Riemannian metric on X and a Borel measure µ, define as earlier

areaµ(Y ) = voln−1(Y ) − µ[. . . in
↢ Y ] for n = dimX,

for all cooriented Y in the class
↢

Cn−1 as we did in the previous section.

4.2. Traps and walls

A domain U ⊂ X , is called a µ-trap (or well) for
↢

Cn−1 in X and its boundary is called a µ-wall if
↢

Cn−1 can be represented
by a smooth cooriented hypersurface in the interior int(U) and if every smooth cooriented hypersurface Y ⊂ U which

represents
↢

Cn−1, i.e. [Y ] = ↢

Cn−1, (such Y separates the two
↢

Cn−1-ends in X ) can be “moved” to Y ′
⊂ int(U), such that

area−µ(Y ′) ≤ area−µ(Y ),
where “moved” signifies that Y ′ is a smooth cooriented closed hypersurface homologous to Y , i.e. [Y ′] = [Y ] = ↢

Cn−1 and
this inequality is sharp unless Y ⊂ int(U) to start with. If µ = 0 these are called Plateau traps/walls or just traps and
walls; if µ = φdx we speak of φ-traps and φ-walls for functions φ on X .

Remarks.

(a) The topologically simplest situation, and this is the one we mostly deal with, is where X is compact with two boundary
components, e.g. a cylinder X = Y × [0, 1], and where our hypersurfaces in X separate these components.

(b) More general singular measures µ, e.g. those supported on the boundary ∂X are relevant for PB-hedra and the
corresponding traps for the relative homology Hn−1(X, ∂○X) for some subset ∂○X ⊂ ∂X .

Smooth mean convex traps.

If the boundary of a domain U has strictly positive mean curvature then U traps all classes
↢

Cn−1 that have representative
cycles in U . More generally (and equally obviously), if U is preconvex and the mean curvatures of the faces are strictly
bounded from below by a function φ(x) then U is a φ-trap.

Normal traps.

Let Y ⊂ X be a closed smooth cooriented hypersurface that represents a non-zero directed homology class in X and

φ(x) be a C 1-smooth function such that φ(y) = mn.curvy(Y ) for all y ∈ Y . If the inward normal derivative dφ(y)/dνin

on Y , (for νin being the inward looking unit normal vector along Y ) is sufficiently large , say

dφ(y)
dνin

y

> curv
2
y(Y ) + ∣RicciX(νin

y , ν
in
y )∣ for all y ∈ Y ,

where curv2 denotes the sum of squares of the principal curvatures of Y and where, observe, Ricci(νin, νin) =

Ricci(νout, νout), then the homology class
↢

Cn−1 = [Y ] in U0 is φ-trapped in all neighbourhoods U ⊂ X of Y .

Indeed, let d(x) be a smooth function in a neighborhood of Y without critical points that is negative inside Y , i.e. on

[. . . in
↢ Y ], and positive on [Y out

↢ . . . ]. If the mean curvatures of the levels of this function cooriented as Y strictly

minorize φ(x) strictly inside Y , i.e. for x ∈ [. . .↢Y ]∖Y and strictly majorize φ(x) strictly outside Y , then, obviously the
homology class of Y is trapped in the domain d−1[−ε, ε] ⊂ X for all (arbitrarily small) ε > 0.

If this applies to the signed distance function d(x) = ±(x)dist(x, Y ) negative inside Y and positive outside, then the
sufficiency of the above lower bound on dφ(y)/dνin

y follows from the second variation formula for voln−1(Y ).
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Locally trapped hypersurfaces with boundary.

Let Y be a smooth compact hypersurface with boundary ∂Y ⊂ ∂X , let φ○∶ ∂X → [−1 + β, 1 − β], β > 0, be a C 1-smooth

function and let µ = φ ⋅ voln + φ○voln−1 for voln−1 referring here to the Riemannian volume (measure) on the boundary

∂X . Let the (dihedral) angle ∠y = ∠y(Y ⋔∂X) satisfy

cos∠y = φ○(y) for all y ∈ ∂Y .

If the inward normal derivative dφ(y)/dνin is sufficiently large, where the lower bound depends, besides curv2(Y ) and

Ricci(X), on curv2(∂Y ), on (1− ∣φ○∣)−1
≤ β−1, and on the normal derivative of φ○ in ∂Y , then Y minimizes areaµ in every

small neighbourhood U0 ⊃ Y .

4.3. Smoothing and doubling

Let U be a compact domain in a smooth Riemannian n-manifold X ⊃ U that traps a directed homology class
↢

Cn−1.

Then there exists a subdomain U′
⊂ U with C 2-smooth boundary Y ′ that also φ(x)-traps

↢

Cn−1 and such that the mean

curvatures of Y ′ satisfy

mn.curvx(Y ′) > 0 for all x ⊂ Y
′

.

Proof. Since the class
↢

Cn−1 is trapped in U , it can be realized by, an a priori singular, cooriented hypersurface
Ymin ⊂ int(U). This Ymin may be non-unique; in this case we take the union of all these minimal Ymin, denoted YMIN = ⋃Ymin

that is a compact subset in the interior of U . Clearly, the class
↢

Cn−1 is trapped in all neighborhoods V ⊂ U of YMIN, and,

by continuity, the class
↢

Cn−1 is ε-trapped in V for all positive and negative ε = ε(V ) with sufficiently small absolute
values ∣ε∣ > 0. Therefore, YMIN is pinched between two ε-bubbles, ε > 0, i.e. it is contained in a domain V ′

ε ⊂ V bounded
by these bubbles. We conclude the proof by smoothing these bubbles keeping their mean curvatures positive (see [22])
and thus, approximate V ′ by the required smooth domain U′

ε. 2

Scalar Curvature Corollary. Let a domain U that traps a homology class
↢

Cn−1 admit a continuous map to the (n− 1)-
torus, say f ∶U → T

n−1, such that
↢

Cn−1 goes to a non-zero multiple of the fundamental class of the torus. If U is spin,

then the scalar curvature of X is strictly negative at some point x ∈ U .

Proof. As one knows (see [23]) that if scal(U′

ε) ≥ 0, then the double, say U′

ε
+′ of U′

ε, is a closed manifold that admits
a smooth metric with positive scalar curvature. Then the proof follows from the validity of the Geroch conjecture in the
spin case [23]. 2

Remarks.

(a) The above applies whenever the topology of (the closed manifold) U′

ε
+′ does not allow metrics on it with scal > 0

which is known in a variety of cases. In particular, the Schoen–Yau theorem allows one to suppress the spin condition
for n ≤ 7.

It was conjectured by Brian White (a private communication about 20–25 years ago) that singularities of minimal

hypersurfaces are unstable. This would allow an extension of the Schoen–Yau method to all n (with some problems
remaining in proving rigidity results). White’s conjecture was confirmed in [47] for n = 8, where, observe, singularities are
isolated. The case n ≥ 9 remains open, but we shall see in subsection 5.3 how to extend Schoen–Yau results to non-spin

manifolds of dimension n = 9, where the singularities Σ of minimal hypersurfaces are most 1-dimensional. Furthermore,
Lohkamp’s method of “going around singularities” applies to all n, but I have not studied it in depth and cannot apply
it to the problems at hand.

(b) Generically Ymin is unique and then the (smooth mean curvature convex) domain U′

ε ⊃ Ymin can be chosen arbitrarily
close to Ymin. The geometry of such U′

ε is similar to the warped product metric on Y ×R from [25]. Apparently, the
former converges in a suitable sense to the latter for ε → 0 as the neighborhood U′

ε, that converges to Ymin, becomes
“infinitesimally narrow”. In fact, the arguments using the warped product from [25] can be trivially adjusted to U′

ε and/or
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to its double U′

ε
+′. The advantage of this over the warped product is that it makes sense for singular Ymin but we have

only managed a limited use of it (such as handling dimensions n = 8, 9 for non-spin manifold). Also U′

ε is harder (but,
probably, possible) to use with bubbles Y in spaces with negative scalar curvature as we did in [19] with the help of
warped products.

Smoothing at the edges.

Let P be a singular polyhedral domain in a Riemannian manifold X , i.e. where the faces may have singularities of the
kind minimal hypersurfaces have. For instance, let P be bounded by a pair of hypersurfaces, say W0 and W1, where W0

is a minimal hypersurface and W1 is a φ-bubble with free boundary ∂W1 ⊂ W0 for a continuous function φ on X . The
dihedral angle between W0 and W1 equals π/2 at the points x at the edge ∂W1 =W0 ∩W1, where both W0 and W1 are
regular. But when it comes to singular points, it is not even clear if the concept of dihedral angle is symmetric, i.e. if
∠(W0,W1) = ∠(W1,W0).
Both W0 and W1 can be approximated by smooth hypersurfaces with a minor decrease of their mean curvatures [22]
(in fact, with an increase if Ricci(X) ≥ 0). Such a smoothing starts with a small equidistant inward deformation of W0

and W1. If W0 and W1 are smooth at the edge points, then the dihedral angle also changes little but the dihedral angle
may, a priori, uncontrollably increase near the singularities in the edge.

Question.

Is it possible to smooth the faces, with at most an ε-decrease of their mean curvatures and with at most an ε-increase
of the dihedral angle(s) for an arbitrarily small ε > 0?

4.4. ∆-stable mean convexity

We want to define a concept of mean curvature bounded from below, in particular, of (strictly and non-strictly) positive
mean curvature for non-smooth domains U ⊂ X and want this positivity to be stable under small continuous perturbations
of U as well as under C 0-perturbations of the Riemannian metric in X . Eventually, we want a concept adaptable to
singular spaces. There are several candidates for such a stable mean convexity. Below is an instance of such a definition
that depends on Almgren’s concept of

ε-Minimization.

Let H ⊂ X be a smooth cooriented hypersurface, let H0 ⊂ H a compact domain in H and H1 = H ∖H0. A (smooth)
ε-minimization of H supported in H0, denoted H ↝ H′, is a replacement of H by another smooth cooriented hypersurface
H′ such that H′

= H′

0 ∪H
′

1, where H′

1 = H1, where the union H0 ∪H
′

0 makes a closed hypersurface that bounds in X (and
so H′ is homologous to H) and such that

voln−1(H′

0) ≤ e−εvoln−1(H0),
where we assume, to avoid immaterial complications, that the boundary of H0 in H has Hausdorff dimension at most
n − 2.

Clearly, composition of ε-minimizations H ↝ H′
↝ H′′ is an ε-minimization H ↝ H′′ the support of which equals the

union of the supports of its factors.

Also observe that this minimization is stable under small perturbations of the Riemannian metric g on X : if

λ
−2
g < g1 < λ

2
g for λ

n−2
≤ e

ε
,

then H ↝ H′ is an ε1-minimization in (X,g1) for ε1 = ε − (n − 2) log λ.
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∆-stable mean convexity.

Let U be a closed domain in X with compact boundary Y = ∂U , let V1, V2 ⊂ U be closed subsets in U that contain Y
and such that V1 is contained in the interior of V2; let ∆ = V2 ∖V1. Say that Y is (multiplicatively) (ε,∆)-stably mean

convex if there exists a (small) neighbourhood W ⊂ V2 of Y ⊂ V2 such that every smooth cooriented hypersurface H ⊂ V2

that intersects V1 admits an ε-minimization H ↝ H′, such that

●1 H′ does not intersect W ;

●2 the support H0 ⊂ H of the ε-minimization H ↝ H′ is contained in V2;

●3 the hypersurfaces H and H′ coincide outside V2, i.e. the “new part” H′

0 ⊂ H
′ of H′ is contained in V2.

Remark.

What is most essential here is that the volume of H′

0 is smaller than that of H0 by a definite amount, (roughly by
ε ⋅ voln−1(H0)) that is independent of H: this makes mean convexity stable under small perturbation of the metric in X .
On the other hand, keeping H′ away from Y is a minor issue since boundaries of domains, as we define them, are large.
(Nothing like U = X ∖Z with codimZ ≥ 2 is allowed.) Yet, this is needed to make this convexity stable under small
perturbation of Y .

(∗) Mean convex ⇒ ∆-stable mean convex. Let U be a domain in a complete Riemannian manifold X , denote

by U−δ ⊂ U the subset of those u ∈ U where dist(u,Y ) ≥ δ and let Y−δ = ∂U−δ be the corresponding equidistant

hypersurfaces. Let Y have strictly positive mean curvature and observe that Y−δ = ∂U−δ also has positive mean curvature

for small δ < δ0 = δ0(Y ) > 0. There exists ε = ε(U, δ) > 0 for all positive δ < δ0 such that U is (ε,∆)-stably mean

convex for ∆ = U−δ1
∖ U−δ2

and all 0 < δ2 < δ1 ≤ δ.

Proof. One may assume (this is easy, compare [3, 15]) that H ∩V2 is ε-minimal that is no ε-minimization (for a suitably
small ε > 0) that satisfies the above ●2 and ●3 exists. This property provides a lower bound on the (n − 1)-volumes
of H intersected with ρ-balls Bh(ρ) ⊂ ∆, see [3]. It follows, that there exists δ′ in the interval δ2 < δ

′
< δ1 such that the

region H′

0 ⊂ Y−δ′ bounded in Y−δ′ by H ∩ Y−δ′ satisfies:

voln−2(H′

0) ≤ e−ε voln−2(H0) for H0 = H ∩ (U ∖U−δ′).

(∗∗) ∆-stable mean convexity ⇒ mean convexity. Let a closed domain U ⊂ X be (ε,∆)-stably mean convex for some

∆ = V2 ∖V1 ⊂ U and ε > 0. Then there exists a smooth mean curvature convex subdomain U1 in U such that V1 ⊂ U1 ⊂ V2;

thus, the (compact smooth mean curvature convex) boundary Y1 = ∂U1 is contained in ∆.

Proof. Let φ(x) be a non-negative continuous function that is very small on V1 and that grows fast in ∆ as x approaches
the complement U ∖V2. Then, the ∆-stable mean convexity of U implies the existence of a φ-bubble trapped inside ∆

and the required Y1 is obtained with a smooth approximation of this bubble, see [22].

Remark/Question.

This argument relies on the basic regularity theorems of the geometric measure theory. Is there an elementary proof of
the implication (∗∗)?

On relative ∆-stable mean convexity.

The definition of ∆-stable mean convexity obviously generalizes to the relative case where (possibly non-smooth) hy-
persurfaces Y have boundaries that must be contained in a given closed subset W ⊂ X . The so defined notion of “mean
convexity” is stable under small perturbations of Y and of the metric g on X , but not under C 0-perturbation of W .

For instance, if W is a smooth closed hypersurface in X that bounds a domain U ⊂ X and Wε is obtained by a smooth
diffeotopy that keeps Wε all along in a small ε-neighbourhood of W in X , then the local geometry of X near Wε is not

necessarily close in any sense to the local geometry of X near W . Because of this, even if Y ⊂ U is a locally isolated
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minimal submanifold with (free) boundary ∂Y ⊂W = ∂U , one cannot guarantee that the minimal Yε ⊂ Uε with ∂Yε ⊂Wε

will be, in general, geometrically close to Y . Of course, the bulk of Yε away from Wε and also for most of the boundary
of Yε will be close to Y but if the local relative filling profile of Uε near Wε becomes badly non-Euclidean, then Yε may
have develop “long narrow fingers” in the vicinity of Wε protruding somewhere at the boundary of Yε and spearing in
Uε along its boundary Wε .

However, we shall see presently that if the hypersurface Wε serves as a bubble for a C 0-small ε-perturbation gε of the
original Riemannian metric g in X , then the domain Uε ⊂ X bounded by Wε satisfies almost Euclidean filling inequalities

for relative (k − 1)-cycles C ⊂ Uε for all k = 2, 3, . . . ,dimX − 1.

This rules out “fingers” and guarantees the existence of a relative g-bubble Yε ⊂ Uε with ∂Yε ⊂ Wε = ∂Uε that
approximate a given submanifold Y ⊂ U with ∂Y ⊂ ∂U . Furthermore, if U′

ε ⊂ Uε equals a part of U′

ε bounded by Yε and
a “half” of the boundary of Uε , then one can, in some cases, construct bubbles Y ′

ε ⊂ U
′

ε with boundaries in ∂U′

ε, where,
observe the boundary ∂U′

ε has a corner along the set where Yε meets Wε = ∂Uε and this corner may necessitate the
presence of a singularity in Y ′

ε at this corner.

The construction of such bubbles Yε, Y ′

ε , Y
′′

ε , . . . will be used for proving that C 0-limits g of metrics gε with scal(gε) ≥ 0

also have scal(g) ≥ 0. We shall do it in Section 4 where we shall explain how to compensate for possible singularities
of the solutions of the Plateau problem with free boundary at the corners.

4.5. C 0-stability of the mean curvature and Reifenberg flatness

The above implications (∗) and (∗∗) show that strictly mean convex hypersurfaces are C 0-stable but, in fact, the following
more general property holds [21]. Let Y be a smooth closed cooriented hypersurface in a smooth Riemannian manifold
X = (X,g0). This Y can be seen as a φ-bubble for a smooth function φ(x) that extends the function y↦ mn.curvy(Y );
moreover, if φ has a sufficiently large normal derivative on Y , then, as we know, the homology class [Y ] is φ-trapped
near Y . Therefore, if a metric gε is sufficiently C 0 close to g0 then a small neighborhood of Y in X contains a φ-bubble,
say Yε ⊂ X , for the metric gε .

The g0-volume of this bubble is close to that of Y , since, clearly,

voln−1(Yε) → voln−1(Y ) for ε → 0;

moreover, the volumes of Yε within all R-balls in X = (X,g0) are also close to the volume of the balls in Y ,

∣voln−1(By(R) ∩ Yε) − voln−1(By(R) ∩ Y )∣ ≤ δ = δ(ε) → 0 for ε → 0,

for all y ∈ Yε and all R > 0. Since the metrics gε are close to a fixed continuous (smooth in our case) metric g0,
they satisfy almost Euclidean filling inequalities by Almgren’s theorem [4]. Consequently, small balls in the bubbles Yε
in (X,gε) have an almost Euclidean lower bound on the volume growth. On the other hand, small balls in Y have roughly
Euclidean volumes and since the metrics g0 and gε are mutually ε-close, the volumes of By(ρ) ∩ Yε are essentially the
same for these metrics and the corresponding metric balls By(ρ).
Then it follows by all of the above that the gε-volumes of Yε within small balls in X = (X,gε) are multiplicatively

bounded by the volumes of the Euclidean balls

voln−1(By(ρ) ∩ Yε) ≤ (1 + δ
′)voln−1(Bn−1

Eucl(ρ)), where δ
′

= δ
′(ε, ρ) → 0 for ε + ρ → 0.

By the Allard gap/regularity theorem, [1] this bound implies regularity of Yε for small ε > 0. Since this equally applies
to the metrics gt = (1 − t)g0 + tgε, 0 ≤ t ≤ 1, one can construct a diffeotopy of smooth (!) bubbles Yt ⊂ (X,gt) between
Y and Yε.

Warning.

The bubble Yt may be non-unique due to possible bifurcations at a certain t (as critical points of one parameter families
of smooth functions do) and one cannot guarantee smoothness of the family Yt at t.
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Remark.

Since Yε comes by a deformation process of smooth bubbles, the standard elliptic estimates suffice for the existence
of Yε and the use of the geometric measure theory can be avoided at this point.

Reifenberg’s Flatness. Besides being C 1-smooth, the family Yε→0 is Reifenberg flat: the Hausdorff tangent cones of

Yε→0 are isometric to R
n−1, where the (abstract) Hausdorff distance of λ ⋅Yε = (Yε, λ ⋅g0) to R

n−1 is uniformly small at

all points y in Yε and all ε ≤ ε0 > 0,

distHau(Yε ∩By(ρ), Bn−1
Eucl(ρ)) ≤ δ′′ρ, where δ

′′

= δ
′′(ε0, ρ) → 0 for ε0 + ρ → 0.

Proof. The Hausdorff limits of λ ⋅ (Yε ∩By(ρ)), λ→ ∞, ε → 0 are minimal hypersurfaces in R
n
= limHau(X, λgε), λ→ ∞.

By the above, these hypersurfaces satisfy the Euclidean bound on their volume growth; hence they are flat. 2

Remarks.

(a) The Reifenberg flatness of submanifolds Yε does not make them C 1-close to Y0 for small ε. In fact, the g0-normal
projections Yε → Y may be many-to-one for all ε > 0.

(b) Not all “gε-bubbles” close to Y0 have their mean curvatures close to those of Y0. For instance, there (obviously)
exists an arbitrarily small C 0-perturbation gε of g0 such that Y0 becomes a totally geodesic submanifold in (X,gε),
where moreover, a small neighborhood U of Y metrically splits (U,gε) = (Y ,gε↾Y )× [−δε, δε]. (Of course, the above
φ-bubbles Yε , albeit being close to Y0 will not, in general, lie in such neighbourhood.)

(c) The construction of the “bubble perturbation” Yε of Y0 partly generalizes to smooth k-dimensional closed submanifolds
Y0 ⊂ X for all k < n − 1. For instance, if Y0 is minimal and moreover if it is an isolated local minimum for the
function Y ↦ volk(Y ), then, clearly, a small neighbourhood of Y in X contains a gε-minimal subvariety that is non-
singular and is diffeotopic to Y0 as well as Reifenberg flat.

In general, if Y0 is not locally minimizing, one minimizes the function

Y ↦ volk(Y ) − C ∫
Y
distX(y,Y0),

where volk is taken with respect to gε and distX with g0. It is not hard to see that, if gε is C 0-close to g, then this
function has a local minimum realized by a subvariety Ymin ⊂ X that is contained in a small neighbourhood of Y0 where it
is homologous to Y0. Moreover, Almgren’s regularity result [4] seems to imply (as does happen for k = n− 1) that such a
minimal Ymin is necessarily C 1-smooth; hence, diffeotopic to Y0. (I am not certain about the mean curvature of this Ymin.)

(d) Reifenberg flatness of (families of subsets) Yε in smooth Riemannian manifolds X implies that these are topological
(actually Hölder) submanifolds by Reifenberg’s topological disk theorem [43] that was extended to abstract metric spaces
Y in [9]. An easy result in this respect that implies the homotopy version of the disk theorem for Reifenberg (sufficiently)
flat Yε ⊂ X is the existence of a smooth approximation d(x) to the distance function x ↦ dist(x, Y ) such that the function
d(x) vanishes on Y and has no critical points x ∈ X ∖Y close to Y [21].

On piecewise smooth C 0-mean stability.

What we need for the proof of the C 0-stability of the inequality scal(g) < 0 is a generalization of the above to piecewise

smooth Y ⊂ X that are boundaries of mean convex polyhedral domains U in X , where approximating Yε must be also
piecewise smooth and have the mean curvatures of their smooth pieces, that are (n− 1)-faces for Y = ∂P, being close
the mean curvatures of the corresponding pieces of Y while keeping the (dihedral) angles between these pieces of Yε
close to the corresponding angles in Y .

We construct such Yε by consecutively adding (hopefully) smooth faces one by one, solving at each step Plateau’s

free boundary problem where its solvability follows from a Reifenberg kind of flatness that implies rough filling bounds

needed for “cutting off” undesirable “long narrow fingers”, as we shall see in the next section. But the solutions to such
Plateau problem, say for Y ⊂ U with boundary ∂Y ⊂ ∂U , may have singularities at the corners in ∂U even if all tangent
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cones to Y at these points are smooth, where we prove this smoothness in our case by the means of sharp Euclidean

filling bounds. These singularities may be due to the failure of Allard’s type regularity, which seems unlikely, or, which
is more probable, they may come from the linearized Plateau. We shall manage to “go around singularities” in our
special case by a rather artificial argument in subsection 4.9 while the general problem of C 0-stability of mean curvature

and dihedral angles for piece-wise smooth hypersurfaces remains open.

4.6. Reifenberg flatness and filling profile

(δ, λ)-flatness.

A hypersurface W in Riemannian manifold X is called (δ, λ)-flat at a point w ∈ W on the scale ρ, for given positive
numbers δ > 0, λ ≥ 1 and ρ > 0, if there exists a “flattening” λ-bi-Lipschitz homeomorphism L from the ball B = Bw(ρ) ⊂ X
to the Euclidean space R

n, n = dimX , such that

● L(w) = 0 ∈ R
n;

● the image L(W ∩B) ⊂ R
n is contained in the δρ-neighbourhood of the hyperplane R

n−1
⊂ R

n;

● the ball Bn−1
0 (λ−1ρ) ⊂ R

n−1 is contained in the δρ-neighbourhood of the image L(W ∩B) ⊂ R
n.

Filling volume.

Let U ⊂ X be a domain with boundary W = ∂U and let C ⊂ U be a relative (k − 1)-cycle with ∂C ⊂ W . Denote by
Filvolk(C)↾U the infimum of the k-volumes of the chains D ⊂ U bounded by C , i.e. such that ∂D ∖Z = C ∖Z and write
Filvolk(C)↾U∩B for this infimum taken over the chains D that are contained in the intersection of U with a given ball
B = Bu(r) ⊂ X .

Remark.

A specific local geometry of these chains and cycles is rather irrelevant for our purpose. One may think at this stage of
these being realized by piecewise smooth subvarieties in X .

Let us show that if δ > 0 is sufficiently small depending on λ ≥ 1 and if the boundary W of U is (δ, λ)-flat on the scales
≤ δ0 for a given ρ0, then U satisfies the rough Euclidean filling inequality

Filvolk(C)↾U ≤ constk,λvolk−1(C)k/(k−1)
,

for all k-cycles C of diameters ≤ 0.1ρ0, and all k = 2, 3, . . . , n − 1. A precise formulation of this is as follows.

Rough filling inequality.

There exist a continuous function δn(λ) > 0 and a constant constk ≤ (10k)10k2

with the following properties. Let ρ0 > 0

be given and let U ⊂ X be a domain with boundary W and let C ⊂ U be a relative k-cycle that is contained in the

intersection of U with the Riemannian ball Bu0
(ρ0/10) ⊂ X , u0 ∈ U . Let W be (δ, λ)-flat for some δ ≤ δn ⋅ (10λ)−(10n)10n

on all scales ρ ≤ ρ0 at all points w ∈W within distance 10λρ0 from u0, where δn > 0 is a constant, that, in fact, may be

assumed ≥ (10n)−10n. Then

Filvolk(C)↾U∩B ≤ constk ⋅ λ
2k

volk−1(C)k/(k−1) (1)

for the ball B = Bu0
(10λρ0) ⊂ X . Moreover, if dist(c,W ) ≤ d for a given d ≥ 0 and all c ∈ C , then

Filvolk(C)↾U∩B ≤ const
′

k ⋅ λ
2k
⋅d ⋅ volk−1(C) (2)

for another universal constant const′k .
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Remarks.

(a) Filling inequalities for relative cycles C in U with ∂C ⊂ ∂U are equivalent to such inequalities for absolute cycles
in the double of U , where these cycles are symmetric under the obvious involution of the double.

(b) If W = ∂U is everywhere (δ, λ)-flat then W admits a collar in U that is a neighbourhood homeomorphic to W × [0, 1].
This is seen with the smoothed distance function u ↦ dist(u,W ) that has no critical points away from W . In general,
there is no Lipschitz collar. On the other hand, Reifenberg’s disc theorem says in the present context that W is a Hölder
(n− 1)-manifold. (Possibly, the gradient flow of the smoothed distance function u ↦ dist(u,Z = ∂U) may lead to a
simple proof of this.)

Proof of (1) and (2). We combine the filling argument by induction on k from [15, 49] with a Reifenberg-style multi-scale
iteration process where the latter amounts to proving the inequalities (1) and (2) on the scale ρ, i.e. for cycles contained
in ρ-balls, provided that such inequalities with slightly different constants are valid on the scale δρ for some moderately
small positive δ < 1.

The induction starts with k = 2. One may think of relative 1-cycles as arcs C ⊂ U with the ends in W = ∂U and
multi-scaling is especially simple. To see this let C ⊂ U ∩ B, where B is a ball of radius ρ ≤ ρ0/10, and let us “chop
away” the part of C that is d-far from W for d = 2δnλ ⋅ρ. This done with the “flattening” homeomorphism L∶B → R

n,
where we may assume that it sends B∩U to the half space R

n
+. Let Rn−1

−ε ⊂ R
n
+ be the hyperplane parallel to R

n−1
= ∂Rn

+

obtained by moving R
n−1 inside R

n
+ by ε. We cut C by the L-pullback H = L−1(Rn−1

−ε ) for ε = δnρ and let CoutH ⊂ be the
pullback,

CoutH = C ∩ L
−1((Rn

+)−ε)
for (Rn

+)−ε ⊂ R+ being the half-space bounded by R
n−1
−ε . Observe that the 0-chain H ∩ C bound a 1-chain C ′

⊂ U , such
that

● length(C ′) ≤ λlength(C);
● C ′ is contained in the d-neighbourhood of W for d ≤ λε;

● the sum CJ
= C ′

+ CoutH of C ′ is an absolute cycle that bounds a 2-chain DJ
⊂ U ∩ λ ⋅B with

area(DJ) ≤ 4λ
3
⋅ (lengthC)2

,

where λ ⋅B for a ball B of radius r denotes the concentric ball of radius λr.

Thus, the inequality (1) is reduced to (2) with a controlled “worsening” of the constants.

Now let us derive (2) on the ρ-scale from (1) on a significantly smaller scale 3d as follows. Let an arc C of length l

lie within distance d from W . Subdivide C into k ≤ (l + d)/d segments of length ≤ d and connect the ends of these
segments with nearest points in W by curves of length ≤ d. Thus, we decomposed the chain C into the sum of k chains
Ci, i = 1, 2, . . . , k , of length ≤ 3d and summing up inequalities (1) for Ci we obtain (2) for C . Then we iterate this process
with fillings of Ci reduced to those for even smaller Cij , etc. Since the bound (2) in the filling volume (area for k = 2) is
significantly stronger then (1) for small d, the infinite iteration of this process produces a finite total sum of filling areas
that satisfies inequality (1).

Remark.

Even for smooth arks C , the final chain D filling C may became “infinitely complicated” in the vicinity of W . But if W
is smooth, then piecewise smooth C will be filled by piecewise smooth surfaces D.

In order to apply a similar argument to higher dimensional cycles k > 2 we observe the following.

(I) Cutting away the part of C that is d-far from W is same for all k and causes no additional problem.

(II) Let C ⊂ U be an absolute (k − 2)-cycle, i.e. ∂C = ∅. If DiamC ≤ ρ0 and C lies within distance d from W = ∂U ,
then C bounds a relative (k − 1)-chain D such that

volk−1(D) ≤ 10λ
2k−1(d + δ ⋅DiamC)volk−2(C).

If k = 2, this corresponds to moving ends of arcs to W where the Reifenberg’s flatness of W is unneeded.
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(III) A compilation for k > 2 arises when we try to subdivide a chain C of diameter ρ that lies d-close to W for d≪ ρ

into pieces of diameters ≈ d and with (k − 1)-volumes ≈ dk−1. This may be impossible if C contains a significant
thin part, where the intersections of C with the balls Bc(d) ⊂ X , c ∈ C , have their volume much smaller than dk−1.

However, the inductive filling argument from [15] shows that the thin part can be filled in on the scale ≤ d. Thus one
may assume there is no thin part and C can be subdivided into pieces of diameters about d, with (k − 1)-volumes
about dk−1 and with (k − 2)-volumes of the boundaries of these pieces about dn−2. The latter together with (I) allows
a decomposition C = σiCi as for k = 2 and the validity of (1); hence of (2), is established for all k . 2

Remark.

The above argument makes only a rough outline of a proof. But the details are rather trivial if seen in the filling context
of [15]. In fact, the above argument works perfectly for general Banach spaces instead of Rn with (properly readjusted)
constants depending on k but not on n.

Corollary: C 0-stability of relative bubbles. Let X = (X,g0) be a smooth Riemannian manifold, U ⊂ X be a compact

domain with smooth boundary W = ∂U and let Y ⊂ U be a smooth hypersurface with boundary in W that is everywhere

normal to W . Let gε, ε > 0, be a family of smooth Riemannian metrics that C 0-converge to g0 for ε → 0. Then there exist

families of smooth domains Uε bounded by hypersurfaces Wε and of smooth hypersurfaces Yε ⊂ Uε with ∂Yε ⊂Wε = ∂Uε

that are everywhere normal to Wε and where Wε converge to W in the Hausdorff metric while Yε Hausdorff converge to Y

for ε → 0 and such that the mean curvatures of Wε and of Yε converge to the mean curvatures of W and Y respectively.

Moreover, if ε is sufficiently small, ε ≤ ε0 > 0, then the pair (Uε, Yε) can be joined with (U,Y ) by a diffeotopy in X that

is C 0-close to the identity diffeomorphism.

Half-proof. The existence of Wε follows from the C 0-stability proven for individual manifolds in the previous section
(where these were denoted Yε). Then the same variational argument delivers Yε with boundary in Wε , since Wε is
Reifenberg flat and satisfies the above filling inequality and this inequality does not allow escape of narrow fingers
near Wε. It is known [26, 29] that such Y has the same type of regularity at the boundary as at the interior points. In
particular, these Yε are smooth up to the boundary if n = dimX ≤ 7.

One cannot claim at this point that the manifolds Yε are diffeomorphic to Y for small ε as was done in the case of
manifolds Y without boundary, but the existence of such a diffeomorphism (and even of a diffeotopy) is ensured by the
sharp filling inequality that we prove in the next subsection.

4.7. Sharp filling under Reifenberg’s control

Let us generalize the definition of (δ, λ)-flatness by replacing R
n−1

⊂ R
n with a more general hypersurface in R

n. We
limit ourselves to the case where this hypersurface serves as the boundary of a compact convex domain A ⊂ R

n and define
below (δ, λ)-control of co-oriented hypersurfaces W ⊂ X by ∂A. Recall that coorientation means that we distinguished
what is “locally inside” and what is “outside” W and to simplify notation we assume that W bounds a domain U ⊂ X .

Definition of (δ, λ)-control. A hypersurface W = ∂U in Riemannian manifold X ⊃ U is called (δ, λ)-controlled by

∂A ⊂ R
n at a point w ∈ W on the scale ρ, if there exists a λ-bi-Lipschitz “control” homeomorphism L from the ball

B = Bw(ρ) ⊂ X to the Euclidean space R
n, n = dimX , such that

● L(U ∩B) ⊂ A;

● the image L(W ∩B) ⊂ R
n is contained in the δρ-neighbourhood of the boundary ∂A ⊂ A;

● the intersection of ∂A with the Euclidean ball BL(w)(λ−1ρ) ⊂ R
n is contained in the δρ-neighbourhood of the image

L(W ∩B) ⊂ A.

We want to show that if λ is close to 1 and δ is small, then the relative k-filling profile in (U,∂U) is almost the same
as in (A, ∂A), where such a profile, ReFillkA(v), v > 0, is defined as the infimum of the filling volumes of the relative
(k − 1)-cycles C in (A, ∂A) with volk−1(C) ≤ v . Namely, we have the following
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Sharp filling inequality. Let a hypersurface W = ∂U in Riemannian manifold X ⊃ U be (δ, λ)-controlled by ∂A ⊂ R
n at

all points w ∈W and on all scales ρ < ρ0. Then the k-filling profiles of U are bounded by those of A as follows:

ReFill
k
U(v) ≤ αA(λ, δ)ReFill

k
A(v) for all v ≤ constAλ

−k
ρ
k−1
0 ,

where αA(λ, δ) → 1 for λ→ 1 and δ → 0.

Proof. If a cycle C is d-close to W = ∂U for d≪ volk−1(C)1/(k−1), then the rough filling inequality (2) from the previous
subsection yields a much stronger filling bound than that by ReFillkA(v). On the other hand, the part Cfar ⊂ C that is
d-far from W can be filled in U as efficiently as in A. In fact, if λ is close to 1, one can actually think of this Cfar being
the relative cycle in the subdomain A−d ⊂ A (that consists of the points that are d-far from the boundary ∂A ⊂ A) with
∂Cfar contained in the boundary of A−d.

The only remaining problem is that the relative k-chain DJ
⊂ A−d that fills ∂Cfar modulo ∂A−d may have large (k − 1)-

volume of its intersection with ∂A−d that would make the (k − 1)-volume of the cycle CJ
= ∂DJ much greater than that

of C . However, the coarea inequality, applied to DJ intersected with the levels of the distance function a↦ dist(a, ∂A),
shows that some of these intersections for possibly larger but still controllably small d′

≥ d will have their volumes
not much larger than that of C unless all of DJ; hence, the whole C lies within distance ≪ volk−1(C)1/(k−1) from the
boundary ∂A. This yields the proof of the sharp inequality that completes the proof of the above C 0-stability of relative
bubbles. 2

Remarks.

(a) We formulated both, rough and sharp filling inequalities for a specific purpose of proving the C 0-stability of the mean
curvatures and dihedral angles of hypersurfaces. Probably, there is a more general formulation of such an inequality
and a more transparent proof that is not overburdened with trivial technicalities.

(b) If δ > 0 is sufficiently small δ ≤ δ0(A, λ) > 0, and W ⊂ X is (δ, λ)-controlled by ∂A ⊂ R
n, then, apparently, W is a

Hölder submanifold in X . This seems to follow by the argument from [43] and/or [9].

4.8. Reifenberg and Hölder at the corners

Let us recall relative bubbles Yε ⊂ Uε with their boundaries ∂Yε ⊂Wε = ∂Uε in Riemannian manifolds X = (X,gε) with
smooth Riemannian metrics that C 0-approximate the original metric g0 on X . Let Uε1 ⊂ Uε be a cornered subdomain
bounded in Uε by Yε and let A⌜

⊂ R
n be the intersection of two half spaces bounded by mutually orthogonal hyperplanes,

i.e. A⌜
= R

2
+×R

n−2. Observe that the evaluation of the filling profile of A⌜ reduces to that for R
n
⊃ A⌜, since every

relative cycle C ⊂ A⌜ defines an absolute cycle in R
n, call it 4 ⌜ C , that is obtained by reflecting C four times around

the (n−1)-faces of A⌜. Thus, the extremal relative (n−2)-cycles C (we care for the sharp inequality only for k = n−1),
i.e. those maximizing

ReFillk(C)1/k

volk−1(C)1/(k−1)
,

are intersections of A⌜ with the round (n− 2)-spheres that meet the two (n− 1)-faces of A⌜ at 90○ angle.

The limit argument that was used in subsection 4.6 for deriving the Reifenberg flatness of Yε→0 implies the following.
There exist functions λ = λ(ρ, ε) > 1 and δ = δ(ρ, ε) > 0, such that λ(ρ, ε) → 1 and δ(ρ, ε) → 0 for ρ → 0 and ε → 0 and

such that the boundaries of the domains Uε1 are (λ, δ)-controlled by A⌜ at the scales ≤ ρ and at all points x ∈ ∂Uε1.

It follows that the domain A⌜ has almost the same filling profile on small scales ρ as A⌜. Therefore, one is in a position
to construct bubbles in Uε1, call them Yε1 ⊂ Uε1, with respect to the metric gε with boundaries in ∂Yε1 ⊂ ∂Uε1 with the
same efficiency and the same properties as we did earlier in Uε , except that we cannot guarantee the smoothness of Yε1

at the points where Yε1 meets the corner of Uε1.

However, all of the above seem to apply to general µ-bubble-hedra and yield the following solution of the Hölder-regular

mean curvature C 0-stability problem. Let P be a compact strictly preconvex cosimplicial polyhedral domain in a smooth
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Riemannian manifold X = (X,g). (Recall that “strictly preconvex” signifies the bound ∠ij < π for the dihedral angles
of P; one distinguishes the case ∠ij = π/2, where the “µ” in “µ-bubble” are measures given by continuous density
functions. Also notice that an arbitrary P becomes cosimplicial, as defined in Section 1 under a generic perturbation of
its faces and the general case can be probably reduced to the cosimplicial one.)

Let X ′ be another Riemannian manifold with a family of C 2-smooth metric g′

ε and let fε∶X
′
→ X be an eε-bi-Lipschitz

homeomorphism. Then there exist Cα-bi-Hölder homeomorphisms f ′ε∶X
′
→ X for some α > 0 with the following properties:

●→0 the maps f ′ε converge to fε in the C 0-topology for ε → 0;

●reg the maps f ′ε are C∞ diffeomorphisms away from the corners, i.e. (n− 3)-faces, n = dimX , of P′

ε = (f ′ε)−1(P) ⊂ X ′;

●stbl ∣mn.curvx′(P′

ε)−mn.curvx(P)∣ ≤ κ(ε) → 0 for ε → 0, for all x′ away from the corners of P′

ε . (Recall that the mean
curvature at the edges, i.e. (n− 2)-faces, n = dimX , is defined in terms of the dihedral angles as π −∠ij .)

We do not go into the detailed proof since this result is neither general enough to elucidate the geometric meaning
of scal ≥ 0 nor is the Hölder regularity sufficient for our applications to positive scalar curvature. On the other hand,
this insufficient regularity can be bypassed in the C 0-non-approximation application as we shall see below.

4.9. Proof of the C 0-limit theorem

We shall show in this section that smooth metrics g of negative scalar curvature cannot be C 0-approximated by metrics

gε with nonnegative scalar curvatures.

Proof. Let g be a smooth metric on an n-manifold X with negative scalar curvature at a point x0 ∈ X . Then

(◽) all sufficiently small neighbourhoods of x0 contain (tiny) mean curvature convex cubical polyhedral domains P ∋ x0

with strictly acute (i.e. < π/2) dihedral angles.

Proof of (◽). We assume by induction that such domains exist in submanifolds X ′
⊂ X that contain x0 that have zero

second fundamental form at x0. Clearly, there exists a codimension 1 submanifold in X ′
⊂ X that contains x0, such that

● the submanifold X ′ is totally geodesic at x0, i.e. its second fundamental form vanishes at x0;

● the induced metric in X ′ has strictly negative scalar curvature;

● the Ricci curvature of X at the normal vector ν0 to X ′ at x0 is strictly negative.

It is also clear that such X ′ admits an arbitrary small perturbation, call it X ′′
⊂ X , near x0 that still contains x0 and such

that its mean curvature becomes zero near x0 while keeping the second fundamental form II zero at x0. (Small non-zero
II will also do.)

We may assume by induction on dimX that X ′′ contains the required polyhedral domains, say P′′
⊂ X ′. Take such

P′′
∋ x0 in X ′′ of very small diameter δ and let P = P′′

× [−ε,+ε] be the union of the geodesic 2ε-segments normal
to P′′ and going by ε in both normal directions at all points in P′′

∋ x0.

If ε is sufficiently small, then the “horizontal” faces P′′
× ± ε ⊂ X have positive mean curvatures by the second variation

formula. It is also clear that the dihedral angles between these horizontal faces and the remaining “vertical” ones equal
π/2, while the angles between vertical angles are < π/2 for small ε. Also a simple computation shows that the mean
curvatures of the vertical faces are positive. Thus P satisfies all requirements except for having some dihedral angles
= π/2 but these can be made acute by an arbitrary small perturbation of the two “horizontal” faces.

If we could prove the C 0-stability of the mean convexity for this P with P′

ε = (f ′ε)−1(P) being C 2-smooth (rather than
mere Hölder as in the previous subsection) everywhere including the corners, then we would apply “gluing around the
edges” to P′

ε as in subsection 2.1 and arrive at a metric with positive scalar curvatures on the n-torus. But as we have
not proved this stability, we need to combine the mean curvature stability for individual hypersurfaces (i.e. polyhedral
domains of depth d = 1) with the gluing as follows. Let X = (X,g) be a smooth Riemannian manifold with compact
strictly mean curvature convex boundary Y = ∂X . If scal(g) > 0 then (see [2, 23]) the double 2 ◇Y X admits a family of
metrics, say 2◇gδ , δ > 0, where gδ are metrics on X such that:
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●≤δ the metrics gδ are δ-close to g in the C 0-topology;

●C2 the double metrics 2◇gδ , the restriction of which on both copies of X ⊂ 2 ◇Y X by definition equal gδ , are C 2-
smooth (notice, that the C 1-smoothness of 2◇gδ is equivalent to Y being totally geodesic with respect to gδ , and C 2-says
something about the curvature tensor of gδ on Y = ∂X );

●sc>0 the metrics gδ , and hence 2◇gδ , have positive scalar curvatures.

Let P be an n-dimensional rectangular reflection domain (see Section 2), e.g. a cubical one, and let g be a smooth
Riemannian metric on P with respect to which the faces of P have strictly positive mean curvatures and the dihedral
angles are all π/2. Let gε be a family of smooth Riemannian metrics on P such that

●≤ε the metric gε is ε-close to g, in the C 0-topology for all ε < 0;

●sc≥0 scal(gε) ≥ 0 all ε < 0.

Approximation/Reflection Lemma. There exist metrics gε,δ on P for all ε, δ > 0, and polyhedral subdomains P′
= P′

ε,δ ⊂ P

such that

●∼ the domains P′ are combinatorially equivalent to P, where such an equivalence is established by homeomorphisms

P → P′ that C 0-converge to the identity map for ε, δ → 0;

●ε+δ the metric gε,δ is δ-close to gε , thus, it is (ε + δ)-close to g, for all ε, δ > 0;

●sc≥0 scal(gε,δ) ≥ 0 for all ε, δ > 0;

●reg all dihedral angles of P′ with respect to gε,δ equal π/2 and all faces of P′ are totally geodesic; moreover, the

canonical extension of gε,δ to the metrics g̃ε,δ on the manifold P̃′
⊃ P′ where the corresponding reflection group Γ acts

are C 2-smooth for all ε, δ > 0.

Proof. Proceed by modifying the faces of P one by one and simultaneously changing the metric. Namely, assume
by induction that ●reg is satisfied by some faces, call them W ′

reg and dihedral angles between them for some metric
greg. Then “regularize” an extra face, say Wi by solving the corresponding Plateau µ-bubble problem (see the previous
subsection) where the boundary of the new face W ′

i , a solution of this Plateau problem, is contained in the union of the
faces Wreg and of all not yet regularized faces Wj except for Wi itself.

Observe that the regularity of the extremal W ′

i at the points in the union of Wreg follows from the interior regularity by

the standard and obvious reflection argument. Finally, replace greg by the above greg,δ that makes W ′

i regular as well;
thus, the inductive step is accomplished. An essential point here is that the condition ●≤δ implies that the metric greg,δ

may be assumed arbitrarily C 0 close to greg and so the relevant filling profiles essentially do not change as we pass
from greg to greg,δ ; thus, the process of consecutive “regularization” of faces and metrics goes unobstructed.

Warning.

The metrics gε,δ are C 0-close to g but, in general, this closeness, unlike that between greg and greg,δ , “does not respect”
the boundary Y = ⋃iWi of P: there is no Lipschitz control over the homeomorphism that moves P to P′.

Conclusion of the proof of the C 0-limit theorem.

The cubical domain from the above (◽) can be trivially made strictly mean convex with all dihedral angles π/2 and, by
the lemma, the solution of the Geroch conjecture for tori applies. This settles the case κ = 0 that extends to κ ≠ 0 by (a)
of 1.8.
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5. Conjectures and problems

5.1. On topography of Plateau wells

The existence/non-existence of positive scalar curvature on a manifold X is invariant under codimension 2-surgery of X ,
i.e. adding m-handles with m ≤ n − 2; accordingly, one wishes to have a counterpart of the C 0-non-approximation
property in the category of manifolds taken modulo such surgery whatever this means. This agrees with the observation
that attaching “thin m-handles” to X with m ≤ n− 2 does not significantly change the topography of Plateau traps in X
that can be seen as “wells” in the (n − 1)-volume landscape in the space of hypersurfaces in X .

A representative example of such “insignificant” change is as follows. Let Y ⊂ X be a locally voln−1-minimizing hypersur-
face which is trapped in a small neighbourhood U ⊃ Y . Let C be a smooth curve joining two points x1, x2 ∈ X ∖U which
are positioned “relatively far from” U and such that C itself as well as all “moderately large perturbations” C ′ of C
intersect Y . Take an ε-thin normal neighbourhood D ⊃ C and modify the original metric g of X on D by enlarging the
lengths of the geodesic segments in D normal to C by the factor ε−1−α , for a small α > 0, e.g. α = 0.1. If n = dimX ≥ 3,
then the resulting enlarged metric g′

≥ g on X is, “on average”, εβ-close to g for β > 0 and, in many cases, there is a
minimal Y ′

⊂ X ′ corresponding to Y , which, for n − 1 = dimY ≥ 2, is “on average” ≈ εγ-close to Y for some γ > 0. But
since such Y ′ must intersect C , it is obtained from (a slightly perturbed) Y by attaching several thin and ≈ ε−α-long

“fingers” corresponding to (sufficiently stable) intersection points of C with Y . Since lengthfing → ∞ for ε → 0 one cannot
avoid “on average”.

Similarly, one can compare traps in non-equidimensional manifolds. The simplest examples are Riemannian product
manifolds, where, e.g. X ′

= X ×R
k has essentially the same minimal subvarieties and Plateau wells as X . Besides

looking at what happens to X ′ in the “immediate neighbourhood” of X , we want to keep track of traps/wells in manifolds
X ′ that are only moderately close to X and where only relatively deep/wide Plateau wells in X have a chance of being
shadowed by wells in X ′.

5.2. Webs and honeycombs

A Plateau m-web M in a Riemannian n-manifold X is an m-tuple of foliations Mi, i = 1, 2, . . . ,m, by minimal subvarieties
of codimension 1 such that the subvarieties from different foliations are mutually transversal and make constant (dihedral)
angles, say ∠ij , i, j = 1, 2, . . . ,m.

Local Web Conjecture. If m > n then such a web is locally isometric to the flat one, i.e. to R
n with m families of parallel

hyperplanes. Furthermore, if m = n and the web is normal, i.e. ∠ij = π/2 for all j ≠ i = 1, 2, . . . , n, then it is also flat,

provided X has Sc ≥ 0.

Let us look closer at the normal webs. First, every transversal n-web locally equals a coordinate web: there are local
coordinates x1, . . . , xn in X , where M identifies with the n families of the coordinate hypersurfaces xi = const. The
normality condition signifies that the gij-terms of the Riemannian metric vanish for i ≠ j , while the minimality implies
that the products Gi = ∏j≠i gjj are invariant under the flows by the (coordinate) vector fields ∂i = ∂/∂xi. It follows, that
each Gi is, in fact, a (positive) function in n − 1 (rather than n) variables, namely, in xj for j ≠ i, and every n-tuple of
such functions defines a normal Plateau web, where gii are uniquely determined by the equations ∏j≠i gjj = Gi.

It seems not hard to show by a direct computation that the scalar curvature of such a metric ∑i giidx
2
i is strictly negative

unless the web is flat, but I did not check this. On the other hand, the inequality scal ≤ 0 follows, as we know, from the
Geroch conjecture for tori. Apparently, the above representation of metrics generalizes to non-normal Plateau n-webs
(with constant but not normal ∠ij ); this would imply the local conjecture for (m > n)-webs.

Let us generalize the concept of normal web as follows. A cubical polyhedron P0 is called a normal Plateau honeycomb

if a Riemannian n-manifold X is a collection P of cubical domain P ⊂ X such that P0 ∈ P and

● the faces of all P ∈ P are minimal (possibly singular?) hypersurfaces in X where all dihedral angles between the
faces equal π/2;
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● there exists a face preserving continuous map of every P ∈ P onto the n-cube [0, 1]n such that the pullbacks of all
(n−1)-subcubes in it parallel to the faces, [0, 1]× [0, 1]×⋯× t×⋯× [0, 1], t ∈ [0, 1], are minimal hypersurfaces, call
them Q ⊂ P normal to the boundary of P;

● the two parts into which such Q divides P are cubical domains that are elements of P.

Motivation.

Let P0 be a non strictly mean curvature convex cubical polyhedral domain, say P+ ⊂ P, with all dihedral angles ≤ π/2.
Then either P0 contains a strictly mean curvature convex cubical polyhedral domain with all dihedral angles ≤ π/2 or
P0 is a normal Plateau honeycomb.

Justification.

If there is a regular point in a face where the mean curvature is strictly positive, or if some angle ∠ij is somewhere
equal to π/2, then P′ can be obtained by smoothing of an arbitrary small perturbation of P which is achieved by an
elementary linear(ization) argument. Thus, we may assume that P is normal Plateau. If one of the faces, say Y of P, is
not locally minimizing, one can cut P by a minimizing face and thus one may assume that every pair of opposite faces
in P has at least one of them, say Y , being locally minimizing. If such Y ⊂ P, is not isolated, it serves as a leaf of a
Plateau foliation and if we assume the non-existence of a Plateau honeycomb, we conclude that at least one of these
faces, let it be Y , is isolated. Then, for a sufficiently small ε, there exists an ε-bubble Yε ⊂ P, and then the “band” P′

between this Yε and Y in P does the job (after a small perturbation and smoothing making all faces of P′ strictly mean
convex).

Remark.

A technical difficulty in this argument resides in the regularity of our bubbles, especially at the corners.

Questions.

Are all normal Plateau honeycombs isometric to Euclidean solids? Does it help to assume that scal(P) = 0? How much
does the presence of singularities in minimal hypersurfaces Q complicate the geometry of P?

5.3. Nested cubes and small diameter conjecture

Let P ⊂ X be a normal (i.e. with mutually normal faces) mean curvature convex cubical polyhedral domain of depth
d = n = dimX in a Riemannian manifold X . Does P contain a normal n-cubical subdomain P◽ ⊂ P of an arbitrary small
diamXP◽ ≤ δ for a given δ > 0?

Notice that according to (◽) from subsection 4.9, the presence of a point in P where scalar curvature < 0 implies the
existence of P◽ and the solution of the P◽-problem follows in some cases from the solution of the Geroch conjecture,
e.g. where the faces of P are smooth with strictly positive mean curvatures. But it is instructive to construct P◽ by a
direct argument keeping an eye on singular spaces, where the simplest case is that of a manifold X with a C 1-smooth
metric where curvature is defined only in the distribution sense. Moreover, one can formulate this problem even for
C 0-metrics in terms of ∆-stable mean convexity (see subsection 4.4) where no curvature exists even in a weak sense.
More specifically, say that a cubical subdomain P′

⊂ P is a sandwich in P if, combinatorially, P′ looks as a “rectangular
slice” of a cube, namely, as [a,b]× [0, 1]n−1

⊂ [0, 1]n for 0 ≤ a < b ≤ 1.

In other words, P′ is bounded in P by a pair of its mutually disjoint “new” faces that are hypersurfaces, say Q′

( and
Q′

) in P, both separating a pair of opposite faces, say ±Q( and ±Q) of P, where “separating” here also signifies “being
homologous to” in the obvious sense. Thus, the boundaries ∂Q′ and −∂Q′ are contained in the boundary ∂P where they
intersect all faces, but Q and −Q of P, unless one (or both) of these new faces equals the “old” Q or (and) −Q.

Consider decreasing sequences P = P0 ⊃ P1 ⊃ P2 ⊃ . . . ⊃ Pk . . . of normal cubical domains where Pk is a sandwich
in Pk−1 for all k = 1, 2, . . . Call a closed subset P∞ ⊂ P a normal micro-cube if it equals the intersection of all Pk in
such a sequence.
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Example.

If P equals the ordinary cube [0, 1]n then (connected) micro-cubes are exactly Cartesian products of n subintervals in
[0, 1], possibly, some reduced to points.

Question.

What are the geometries and topologies of these micro-cubes?

Conjecture.

Every normal cubical domain P of depth d = n = dimX contains a zero dimensional micro-cube in it.

If Y and, hence Yε are regular, then such a band can be regarded as an “infinitesimally thickened” (n− 1) dimensional
cubical polyhedron and, after n-steps, one arrives at a zero dimensional “cube” P◽ ⊂ P. But this dimension reduction
process does not a priori apply to quasiconical singularities where the dimension reduction is not apparent. (We
temporarily disregard singularities at the corners at this point.) Thus all we can claim is that some P◽ is no greater than
the singularity; thus, dimP◽ ≤ n− 8. Then, if dimX ≤ 9, some cubical domain Pk approximating P◽ is spin, since the the
2-dimensional Stiefel–Whitney class w2 ∈ H2(P;Z2) vanishes on P◽ that have dimension < 2, and the Dirac operator
method applies.

Corners do not matter.

Indeed,we can arrange Pk such that Pk+n is contained in the interior of Pk for all k . Thus, any nuisance at the boundary
will be eventually forgotten. Besides we can apply arbitrarily small C 0-perturbations to the Riemannian metrics gk
in Pk , that smooths the natural extensions g̃k of of gk to the orbicoverings (reflection developments) P̃k of Pk as in
Section 2.

Further remarks and questions.

(a) There is counterpart of the small diameter problem that appeals to “billiard minimal” hypersurfaces that do not
have to be “parallel” to the original faces of P and that can be formulated in terms of the T

n-essential manifold
X = P̃/Zn associated to P as follows. Take a minimal (n− 1)-cycle Y (1) ⊂ X(1) = X which may be different from those
corresponding to faces of P. Then take an infinitesimally narrow “bubble-band” X ′(1) ⊂ X(1) around Y (1) and that is
bounded by two smooth hypersurfaces with positive mean curvatures as we did in subsection 4.3. Let X(2) = 2X ′(1) be
the double of X ′(1). Continue similarly with some Y (2) ⊂ X(2) thus obtaining X(3), etc. Do the diameters of X(i) (as
well as of the Plateau-hedra obtained by “cutting these X(i) open”) converge to zero for i→ ∞ for suitable X(i)?
(b) Can one move several faces of P inward simultaneously, e.g. near a corner (vertex) of P by solving the corresponding
linearized equations and applying an implicit function theorem?

(c) Let X be an n dimensional Riemannian manifold and Z ⊂ X be a compact piecewise smooth submanifold of dimension ≤

n − 2, e.g. a curve in R
3. Suppose that Z admits a mean curvature convex normal cubical approximation, i.e. it equals

the intersection of a decreasing family of normal n-cubical m.c.c. polyhedra P(k) ⊂ X , k = 1, 2, . . . Is then Z necessarily
smooth away from its boundary? Is it, moreover, totally geodesic? We are especially concerned with the possibility of a
“bad” (but, potentially most interesting) approximation, where all faces W (k) =W n−1(k) of P(i) (there are 2n of these
faces) and, consequently, the (n− 2)-faces, are eventually dense in Z , i.e. distHau(Y (i), Z) → 0 for i→ ∞ and for every
sequence of (n− 1)-faces Y (i) of P(i).
Does Z which admits a “bad” approximation by normal cubical m.c.c. (or Plateau) P necessarily consist of a single
point? This seems easy for n ≤ 7 but a similar question for non-cubical P appears non-trivial even for mean curvature
convex P ⊂ R

3. (The worst scenario from the perspective of the scal > 0-problems is when not only the families of faces
W (i) of X(i) are eventually dense in Z , but every family of stable minimal “billiard subvarieties” Y ′(i) ⊂ X(i) is also
eventually dense in Z .

(d) Possible quasi-conical singularities of minimal varieties is the apparent source of our problems, but, eventually,
singularities should serve in our favor: they significantly constrain the shape of minimal varieties. For example, let X
be a compact Riemannian manifold. Then, probably, every “small” cubical Plateau-hedron P ⊂ X with ∠ij ≤ π/2 and
with locally minimizing (n− 1)-faces has all these faces non-singular, say in the interior points, where “small” means
diamP ≤ constX .
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(e) Observe the following converse to the existence of mean convex neighbourhoods of isolated minimizing hypersurfaces.
Let a connected Riemannian n-manifold X be divided by be a compact connected subset Y into two connected domains
X+ and X− with common boundary ∂X+ = ∂X− = Y . Let Y0 equal the intersection of compact domains W ⊃ Y0 in X with
smooth mean curvature convex boundaries in X . If Y has finite (n− 1)-dimensional Hausdorff measure, voln−1(Y ) < ∞,

then Y is locally (in the space of Z-currents) voln−1-minimizing. In particular, Y is smooth of dimension n − 1 away

from a compact subset Σ ⊂ Y0 with dimHau Σ ≤ n − 8. (I am uncertain on what happens if voln−1(Y ) = ∞ that pertains to
the question of possible topologies of Hausdorff limits of stable minimal hypersurfaces with volumes → ∞ in X .)

(f ) Let Z = ⋂k P(k) for a sequence of m.c.c. polyhedra P(k) of same combinatorial types and with given bounds in
their dihedral angles, where one distinguishes the case where all P(k) are Plateau-hedra. Consider (“informative”)
sequences of points xi ⊂ X and sequences of numbers λi → ∞, and take the (sub)limits of λiP(i) ⊂ λi(X, xi). How much
of the geometry of Z , e.g. in the case of “bad approximation”, can be extracted from the resulting Euclidean picture(s)?

5.4. Gauss–Bonnet prism inequalities and the extremal model problem

Let P be a mean curvature convex 3-dimensional Riemannian manifold with corners that is combinatorially equivalent
to a prism, that is a product of a k-gon by a line segment. Let the dihedral angles at the top and at the bottom of P
be ≤ π/2, call such prisms normal, and let the dihedral angles between the remaining faces (sides) of P be bounded by
some numbers α1, . . . , αi, . . . , αk .

3D Gauss–Bonnet prism inequality. If P has non-negative scalar curvature, then the numbers αi are bounded from

below by
k

∑
i=1

(π − αi) ≤ 2π.

Proof. Let Ymin ⊂ P be an area minimizing surface separating the top of P from the bottom, that, observe, is normal

to ∂P. Temporally assume that Ymin is C 2-smooth including the corner points where Ymin meets the “vertical” edges of P
and recall that the second variation of area(Ymin) is

area
′′

= −∫
Ymin

RicciP(ν)dy − ∫
∂Ymin

curvν(∂P)ds

for s being the length parameter in ∂Ymin. Observe following [44] (also compare [8]) that

RicciP(ν) =
1

2
(scal(P) + λ2

1 + λ
2
2) −K(Ymin)

for λi denoting the principal curvatures of Ymin and K being the sectional curvature of Ymin, while

curvν(∂P) = mn.curv(∂P) − curv(∂Ymin).
Thus, we conclude as Schoen and Yau do in [44] that

0 ≤ area
′′

≤ ∫
Ymin

K(Ymin)dy + ∫
∂Ymin

curv(∂Ymin)ds,

where

∫
Ymin

K(Y )dy + ∫
∂Ymin

curv(∂Ymin)ds +∑
i

(π − αi) = 2πχ(Ymin)
by the Gauss–Bonnet formula. Hence, ∑i(π − αi) ≤ 2πχ(Ymin) ≤ 2π. 2
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On regularity at the corners.

The above C 2-smoothness assumption may be violated at the corners of Ymin but it is easy to see by looking at how
Ymin is approximated at the vertices by the necessarily unique tangent cones, that Ymin admits tangent planes (or rather
cones) at the corners.

Also one sees in this limit cone picture that the length(∂Ymin) < ∞; hence ∫∂Ymin
∣curv(∂Ymin)∣ds < ∞ and since by

minimality of Ymin the curvature K(V ) is bounded from above, ∫Ymin
∣K(Ymin)∣dy < ∞. This is sufficient to justify the

above computation.

Extremality and rigidity.

The above argument shows that convex Euclidean prisms are extremal for the prism inequality, moreover, they are
dihedrally rigid: If a normal mean curvature convex prism P with scal(P) ≥ 0 satisfies ∑i(π − αi) = 2π then it is

isometric to a convex Euclidean prism.

Non-zero bounds on scalar curvature.

If scal(P) ≥ 2κ then the inequality

0 ≤ area
′′

≤ ∫
Ymin

K(Ymin)dy + ∫
∂Ymin

curv(∂Ymin)ds,

becomes

0 ≤ area
′′

≤ ∫
Ymin

K(Ymin)dy + ∫
∂Ymin

curv(∂Ymin)ds − κ ⋅ area(Ymin)
and

∑
i

(π − αi) + κ ⋅ area(Ymin) ≤ 2πχ(Ymin).
Notice that this is sharp (i.e. turns into an equality) for P being the product of a k-gonal surface Q2

κ of constant curvature
κ by a line segment.

Also observe that the area of Ymin is bounded from below by some A, (that is of use for κ > 0) if P admits a 1-Lipschitz
map f onto a disk D of area A, such that f sends the side-boundary of P on ∂D with the top and the bottom of P being
sent to D with degree 1. On the other hand, area(Ymin) ≤ A (that may be used for κ < 0) if the distance d between the
top and bottom in P is related to the volume of P by vol(P)/d ≤ A.

Semi-integral inequality.

If κ > 0, then the inequality scal(P) ≥ κ can be significantly relaxed by requiring that the integral ∫Y scal(P)dy is
bounded from below by 2κ ⋅ area(Q2

κ) for the above k-gon Q2
κ and all surfaces Y ⊂ P separating the top from the bottom.

The resulting inequality (compare [42]) is most informative if scal(P) ≥ 0 and it can be also meaningfully used if
scal(P) ≥ κ− for some κ− < 0 if one also has an upper bound on area(Ymin). For example, this shows the following.
Given a Riemannian metric on P, it cannot be modified with an uncontrolled enlargement of its scalar curvature along

N line segments joining the top to the bottom of P, e.g. by inserting N tubes of fixed thickness, say δ independent

of N, with scalar curvatures ≥ ε = 100/Nδ2 and large N without generating a proportional amount of negative scalar

curvature.

On non-zero bounds on the mean curvatures of the faces of P.

Besides allowing κ ≠ 0 one may similarly allow non-zero lower bounds on the mean curvature by some numbers of the
side faces of P by some mi, i = 1, 2, . . . , k . If mi > 0, this may be used together with a lower bound on the “widths” of
these faces, but it is less clear what kind of upper bound on the size of these faces (and/or on all of P) may serve along
with some mi < 0.
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K -area and semi-integral inequalities for closed and for cornered n-manifolds.

Let X be a closed oriented n-dimensional Riemannian manifold, where the fundamental cohomology class [X]n ∈

Hn(X ;Z) equals the ⌣-product of 2-dimensional classes and a class hk ∈ Hk(X ;Z) coming from Hk(Γ;Z) under the
classifying map X → K(Γ; 1). An instance of such X is a Cartesian product of complex projective spaces, e.g. of 2-spheres,
and of a closed k-manifold Z of non-positive sectional curvature, e.g. Z = T

k .

Denote by sc.ar(X) the infimum of the numbers A, such that the N-th multiples of all non-zero integer 2-dimensional
homology classes in X are representable by surfaces Y in X (possibly, with self intersections), such that

∫
Y

scal(X)dy ≤ N ⋅A for all N = 1, 2, 3, . . .

Notice that this definition makes sense only if scal(X) ≥ 0; otherwise, sc.ar(X) = −∞.

Let the universal covering X̃ of the manifold X be spin, e.g. homeomorphic to a product of 2-spheres, or more generally,

of complex projective spaces CPl for odd l, and of Rk . Also assume that the class hk has infinite K-area in the sense

of [19], e.g. this class comes from (a cohomology class of) a complete manifold Z ′ of non-positive curvature by a map

X → Z ′. Then sc.ar(X) ≤ consttop where consttop < ∞ depends on the topology of X .

Proof. By the Whitney–Hahn–Banach (duality) theorem, the fundamental class of X is representable by a product of
smooth closed 2-forms ωi with their sup-norms bounded by

∥ωi∥sup ≤ κ + ε for κ = (sc.ar(X))−1 and all ε > 0.

Since all ωi are representable as curvature forms of complex line bundles over X , [19, Theorem 5 1
4
] applies and the proof

follows.

Remark/Question.

The Riemannian products of 2-spheres by the torus are probably extremal for this inequality, i.e. sc.ar(X) = const⊺ for
these X . This seems to follow from (a suitable form of) the area extremality of the product of 2-spheres with arbitrary
metrics of positive curvatures with the flat torus T

k , see [13, 32, 33, 41], but I did not check it carefully. More general
products of complex projective spaces with Kähler metrics, (⨉iCPli)×Tk are also extremal [12] and this probably extends
to singular metrics with curvatures concentrated along divisors.

Potential Corollary.

Let P be an n-dimensional mean curvature convex cornered spin manifold that is combinatorially equivalent to a Cartesian
product P0 of reflection domains in the spheres S2

i and in R
k . Observe that such P serves as a reflection domain in a

closed manifold X̂ that admits a map with degree one onto a product of 2-spheres S2
i and the torus T

k . Let scal(P) = 0,
e.g. P is isometric to a cornered domain in R

n. Then the above implies a certain lower bound on the dihedral angles αj
of P as follows.

Assume, to simplify the notation, that the above reflection (Cartesian product) domain P0 has all its dihedral angles
equal to π/2. Thus all spherical reflection domains Pi ⊂ S2

i in this case are spherical triangles with 90○ angles. Let us
endow the above closed manifold X̂ ⊃ P (obtained by reflecting P) with the singular Riemannian metric ĝ that extends
that on P and observe that the essential contribution to (non-negative!) scalar curvature of this metric comes from the
edges, i.e. codimension 2 faces of P. Namely, the contribution of such an edge with the dihedral angle αj to a surface
Y transversely intersecting the “descendant” of this edge in X equals 2π − 4αj . Thus, assuming the truth of the above
extremality statement for products of ×S2

i ×T
k , the sums Σ3 of all triples of dihedral angles in P corresponding to the

triples of vertices of the reflection triangles in the spheres S2
i are bounded from below by Σ3 ≥ π.

Notice that we do not have to take N-multiples of our 2-dimensional homology classes in this case. Also observe that
if n = 3, then the above reduces to a special case of the Gauss–Bonnet prism inequality, namely, for “triangular” prisms
P3

= △× [0, 1].
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Remarks on pure edge singularities.

The K-area inequalities and the related extremality/rigidity results for closed Riemannian manifolds (X,g) can be
expressed in terms of the size/shape of this X with the metric scal(g) ⋅g, where, observe, this metric is invariant under
scaling of g. (Compare [13, 32, 33, 41].) Namely, the suitable (for the present purpose) area extremality of X says that if
another manifold, say (X ′, g′), admits a map f ∶X → X ′ of positive degree than this f cannot be strictly area decreasing
with respect to the metrics scal(g) ⋅g and scal(g′) ⋅g′.

The case that is relevant in the present context is that of singular metrics g with the singularity, say Σ ⊂ X , being of
codimension 2 and with the main contribution to the scalar curvature being supported on Σ transversally to Σ. One may
think of this Σ ⊂ X as a “divisor” in X (divisors in complex manifolds X provide a pool of interesting examples) and
the K-area formulas apply to the Dirac operator twisted with the line bundle associated to this “divisor” or to Whitney
sums of such bundles. This is what we have actually done for the above “prisms” and it would be interesting to look
more systematically on more general such (X,Σ).
Question.

Can the K-area be used for bounding from below some “combinatorial sizes/shapes” of mean curvature convex polyhedra
P in R

n, say for n = 3, with all their dihedral angles bounded by π − ε for a given ε > 0?

Hyperbolic prism inequality.

The 3D Gauss–Bonnet prism inequality was “modeled” on the prisms in the product spaces V 2
κ ×R for surfaces V 2

κ of
constant curvature κ. Now let us look at prisms Phoro in the hyperbolic space H3 of curvature −1, where the top and
the bottom are contained in two parallel horospheres. Observe that the side faces of Phoro are totally geodesic, and the
mean curvatures of the top and the bottom equal +1 and −1, respectively.

Now, let P be a normal prism with scal(P) ≥ −6 = scal(H3) where the side faces are mean curvature convex while the
mean curvatures of the top and of the bottom are bounded from below by +1 and −1. The above argument, applied to
constant mean curvature bubbles Ybbl ⊂ P (compare [19, § 5 5

6
]), implies that

k

∑
i=1

(π − αi) ≤ 2π,

where the equality holds if and only if P is isometric to some Phoro in the hyperbolic space H3.

On spherical prisms.

Let us indicate a similar extremality/rigidity property of spherical rather than horospherical prisms that applies to
3-manifolds V 3

κ of constant curvature κ for all −∞ < κ < +∞. Let Psph ⊂ V 3
κ be a normal prism where the top and the

bottom lie in two concentric spheres in V 3
κ (or two concentric umbilical surfaces if κ < 0) and where the side faces of Psph

are totally geodesic. Denote by Ysph(d) ⊂ Psph the d-level of the distance function to the (concave) bottom of Psph and let
m(d) denote the mean curvature of Ysph(d). Observe that the scalar curvature of Ysph(d) equals scal(V 3

κ ) + 3m(d)2/4,
compare [19, § 5 5

6
], and, thus, the number

S = area(Ysph)(d) ⋅(scal(V 3
κ ) + 3

4
m

2(d))
is independent of d and where, clearly, S ≥ 0 for all κ.

Let ai, i = 1, . . . , k , denote the dihedral angles between the side faces of Psph. Let P be a normal Riemannian prism
combinatorially equivalent to Psph (with not necessarily scal(P) ≥ scal(V 3

κ )), where the side faces of P are mean
curvature convex while the mean curvatures of the top and the bottom are bounded from below by those of Psph. Thus
top of P is mean convex while the bottom may be concave. Let δ = δ(p) denote the distance from p to the bottom of P.
Let the distance between the top and bottom in P is (non-strictly) greater than that in Psph and let

∫
Y
(scal(P) + 3

4
m(δ)2)dy ≥ S
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for all surfaces Y ∈ P that separate the top from the bottom. Then the upper bounds αi on the dihedral angles between

the side faces of P satisfy

∑
i

αi ≥ ∑
i

ai.

The above spherical prism inequality can be applied to particular small domains P in 3-manifolds X delivered by an
argument similar to the argument for proving (◽) from 4.9, where it shows that if a C 2-metric g on a 3-manifold equals

a C 0-limit of C 2-metrics gi with scal(gi) ≥ κ for a given −∞ < κ < +∞, then scal(g) ≥ κ. In fact, one needs for this
purpose only polyhedral domains of depth 2, i.e. without corners, namely, those combinatorially equivalent to round
3-cylinders, where the relevant bubbles, that separate the top from the bottom, are C 2-smooth at the boundary.

Question.

Can one prove all of the above “prism inequalities” by a purely Dirac-type argument (e.g. elaborating on that in [40]
and/or in [10] and where [36] may be relevant) with no localization to minimal hypersurfaces?

More on pure edges.

The study of the above P can be reduced by (multi)-doubling to the “pure edge” picture (see 1.1, 2.3). Then one observes
that the semi-integral inequalities are stable under smoothing of the edges since these smoothings do not significantly
change the integrals of the scalar curvatures over the relevant surfaces; thus, one can fully avoid the “singularities at
the corners” problem.

It seems that the geometry of manifolds X of all dimensions with scal ≥ 0 (and, possibly, with scal ≥ κ) is governed by
integrals of scal(X) over surfaces in X , or, rather by infima of such integrals over surfaces A with (small?) boundaries
B and with A being “not-too-far” from B = ∂A. However, this is insufficient, for instance, for extending the (dual)
Kirszbraun theorem to mean curvature convex simplices P = ∆3

curv with scal(P) ≥ 0 that is needed for proving the
dihedral extremality of the ordinary simplices ∆3

⊂ R
3 (see subsection 1.6). But, possibly, this may be achieved with

µ-bubbles Y ⊂ P, ∂Y ⊂ ∂P, that are obtained by inward deformations of the surface Y0 ⊂ ∂P = ∂∆3
curv , for Y0 being ∂∆3

curv

minus four small discs around four vertices of ∆3
curv , and where µ are suitable measures supported on ∂∆3

curv . Such Y do
not have to be normal to the edges that may increase the integral of the scalar curvatures of (regularized metrics on)
∆3 over Y .

More on n-dimensional “prisms”, etc.

Application of minimal hypersurfaces (see [25, 45]) depends on their regularity. This limits one to n ≤ 7, where the case
n = 8 follows from the removal of isolated singularities [47] with the general case, probably, amenable to Lohkamp’s
“around singularities” method. (Removal and/or “going around” singularities is good for proving extremality of cornered
domains but it is poorly adjusted for rigidity.) But even disregarding the singularity problems, (including at the corners)
one needs to adjust the warping from [25] to the above Gauss–Bonnet argument. On the other hand, as we saw above,
the Dirac operator/K-area method applies in some cases. Furthermore, let for example, Y n−1

horo be a Euclidean reflection
domain in a horosphere in the hyperbolic n-space. Then the study of the corresponding prisms reduces to that of
manifolds homeomorphic to T

n−1
×R, where the corresponding result is proven in [19] for n ≤ 7. This sharpens/quantifies

Min-Oo’s rigidity theorem [40, 41] for hyperbolic n-spaces in the case n ≤ 7 (with [47] one gets extremality but not
rigidity for n = 8) but leaves n ≥ 9 open. (Possibly, Lohkamp’s method applies here.)

What are, in general, extremal polyhedral objects in symmetric spaces X of non-constant curvatures? If X is a Cartesian
product of constant curvature spaces, then natural candidates are Cartesian products of poly-bubble-hedra but it is
unclear what happens in general. On the other hand, there are several rigidity (and non-rigidity) results for compact
and complete manifolds without boundary [7, 32, 34, 40, 41].

Model Problem.

Is there a single theory of manifolds X with scal(X) ≥ κ or could there be several theories associated with different
(homogeneous? symmetric?) model spaces that serve as extrema for geometric/topological inequalities in spaces with
scal ≥ κ?

1153



Dirac and Plateau billiards in domains with corners

Rigidity and stability.

All (?) geometric/topological inequalities, in particular, those concerning (smooth as well as cornered) manifolds X with
scal(X) ≥ κ, whenever these are sharp, are accompanied by rigidity problems where one asks for a description of X
where such inequalities become equalities. But even when such rigidity of X is known, e.g. for X = T

n with flat metric,
it is not quite clear in what sense such X is stable. For example, one can (almost) unrestrictedly blow huge “bubbles”
with positive scalar curvature “grounded” in codimension k subsets in a Riemannian manifold X for k ≥ 3. But the above
semi-integral inequalities indicate that this is impossible with k ≥ 2.

This, probably, can be interpreted as follows: there is a particular “Sobolev type weak metric” distwea in the space
of n-manifolds X , such that, for example, tori X with scal(X) ≥ −ε, when properly normalized, (sub)converge to flat tori,
distwea(X,Tnflat) → 0 for ε → 0, but these X may, in general, diverge in stronger metrics. (A preliminary step toward the
construction of such a metric can be seen in [48].)

5.5. Spaces or objects?

The Dirac operator D and minimal hypersurfaces seem to belong to different worlds but they unexpectedly meet in
spaces with lower bounds on their scalar curvatures. Is there a deeper link between “Dirac” and “minimal”?

It should be noted that the constraints on the geometry of manifolds X with scal ≥ 0 (and scal(X) ≥ κ, in general), and the
issuing constraints on the topology of X obtained with the Dirac operator are significantly different from those obtained
with minimal hypersurfaces, even for spin manifolds of dimension ≤ 7 where both methods apply. An essential drawback
of a direct application of Dirac operators is the requirement of completeness of X , while the use of minimal surfaces in
dimensions n ≥ 4 delivers upper distance bounds rather than area bounds as the Dirac operators do. (Particularly fine
results can be obtained for dimX = 4 with a use of the Seiberg–Witten equation but this is fully beyond the scope of
the present paper.)

Can one unify the two methods and, thus, obtain more precise results? The key to the application of Dirac operators
to scalar curvature is the Lichnerowicz formula D2

= ∇
2
+ scal/4, where ∇

2 is more positive than an ordinary Laplace
operator, while the application of minimal (hyper)surfaces depends on the second variation formula in the Schoen–Yau
form that makes it similar to the Lichnerowicz formula. Are there further formulas of this kind mediating between these

two?

The next step in approaching the problem is to change our perspective on manifolds in the spirit of ideas of Fedia
Bogomolov and Maxim Kontsevich. Fedia suggested looking at stable vector bundles with zero c1 on an algebraic
variety X as “coherent families” of flat bundles over the curves C ⊂ X , while Maxim’s idea was to regard Riemannian
manifolds as (special cases of) functors from the “category of graphs” to the category of measure spaces: the value of
such a functor F on a graph G with given edge lengths is the space of maps G → X with the Wiener measure on it.

If we want to see the Dirac operator in Maxim’s picture, we have to consider graphs G along with flat O(n)-bundles
V , n = dimX , over them and with an embedding of the “tangent spaces” of the graphs at all points g ∈ G into Vg (that
is most informative at the vertices g ∈ G of high valency). Then one needs to define appropriate structures, including
measures, on the spaces of maps (G,V ) → (X,T(X)) for the tangent bundle T(X).
The flat structures in V encode the parallel transport in X that allows one to speak of “Dirac” as well as of other
geometric differential operators. On the other hand, a measure on the space of maps G → X allows an integration of
the numbers of intersections of these graphs with hypersurfaces Y ∈ X , thus keeping track of the volumes of these X .

Besides all this, one can associate with every cycle in G the range of values of the areas of surfaces A filling this cycle
in X along with the integrals ∫A scal(X)da, where, possibly, the values of the genera and Euler characteristics of A
may be also relevant. Possibly, the spirit of semi-integral inequalities suggests that we may actually forfeit graphs and
think of X as a contravariant functor from a suitable category of surfaces to some set category.

Final Questions.

Can one make a mathematical theory along these lines with manifolds being replaced by objects of a more abstract and
more flexible category of functors from a category of “extended objects” to sets? Can one, thus, extend basic results on
positive scalar curvature to singular and/or infinite dimensional spaces?
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