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DIRAC COHOMOLOGY, UNITARY REPRESENTATIONS
AND A PROOF OF A CONJECTURE OF VOGAN

JING-SONG HUANG AND PAVLE PANDŽIĆ

1. Introduction

The main result in this paper is a proof of Vogan’s conjecture on Dirac cohomol-
ogy. In the fall of 1997, David Vogan gave a series of talks on the Dirac operator and
unitary representations at the MIT Lie groups seminar. In these talks he explained
a conjecture which can be stated as follows. Let G be a connected semisimple
Lie group with finite center. Let K be the maximal compact subgroup of G cor-
responding to the Cartan involution θ. Suppose X is an irreducible unitarizable
(g,K)-module. The Dirac operator D acts on X ⊗ S, where S is a space of spinors
for p0. Here g0 = k0 ⊕ p0 is the Cartan decomposition for the Lie algebra g0 of
G. The Vogan conjecture says that if D has a non-zero kernel on X ⊗ S, then
the infinitesimal character of X can be described in terms of the highest weight
of a K̃-type in KerD. Here K̃ is a double cover of K corresponding to the group
Spin(p0) and hence it acts on X ⊗ S.

In the most general setting the Dirac operator is defined on a spinor bundle
over any smooth manifold with a non-degenerate metric. Its various versions on
homogeneous spaces play an important role in representation theory, geometry and
topology as well as mathematical physics. For instance, it is well known that the
discrete series representations of G can be constructed as kernels of Dirac opera-
tors for the corresponding associated twisted spinor bundles ([AS], [H], [P]). The
properties of the Dirac operators have been extensively studied and their appli-
cations are observed in many branches of mathematics and in theoretical physics.
The literature related to the Dirac operator is immense and it is impossible for
us to list appropriate references to all important contributions. We merely men-
tion two pieces of recent work known to us: one is Bertram Kostant’s work on
cubic Dirac operators on equal rank homogeneous spaces, which has applications
in physics and topological K-theory [K]; the other is David Vogan’s determination
of the smallest non-zero eigenvalue of the Laplacian on a locally symmetric space
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by using Parthasarathy’s Dirac inequality [V4], which is a fundamental problem
in differential geometry and theory of automorphic forms. This far-reaching result
was first obtained by Jian-Shu Li by using the dual pair correspondence [L].

We now describe more precisely the conjecture of Vogan which also allows X to
be non-unitary. In this case, the kernel of D is replaced by the Dirac cohomology,
KerD/(ImD∩KerD); if the Dirac cohomology is non-zero, then the same as before
can be concluded about the infinitesimal character of X . In case X is unitary, D
is self-adjoint and the Dirac cohomology is just KerD.

Conjecture (Vogan). Let X be an irreducible (g,K)-module, such that the Dirac
cohomology is non-zero. Let γ be a K̃-type contained in the Dirac cohomology,
where K̃ is the two-fold spin cover of K. Then the infinitesimal character of X is
given by γ + ρc. Here ρc is the half sum of the compact positive roots.

For an explanation of how γ + ρc defines an infinitesimal character, see the
discussion before Theorem 2.3. This conjecture was evidenced by W. Schmid’s
work in [S] in the case when X is the Harish-Chandra module of a discrete series
representation. Before that, it was observed for most discrete series representations
by Hotta and Parthasarathy in [HP].

Vogan also presented a purely algebraic conjecture that implies the one above.
Namely, let U(g) be the universal enveloping algebra of g and C(p) the Clifford
algebra of p. Then one can consider the following version of the Dirac operator:

D =
n∑
i=1

Zi ⊗ Zi ∈ U(g)⊗ C(p);

here Z1, . . . , Zn is an orthonormal basis of p with respect to the Killing form.
Furthermore, one can consider a diagonal embedding of k into U(g) ⊗ C(p), given
by the embedding k → g → U(g) and the map k → so(p) → C(p). We denote
the image of this diagonal embedding by k∆. The conjecture now says that every
element z ⊗ 1 of Z(g)⊗ 1 ⊂ U(g)⊗ C(p) can be written as

ζ(z) +Da+ bD(1.1)

where ζ(z) is in Z(k∆), and a, b ∈ U(g)⊗ C(p).
Our contribution is to introduce a differential d on the K-invariants in U(g) ⊗

C(p) related to D. It turns out that the conjecture follows once we determine the
cohomology of this differential. As a matter of fact, we obtain an even stronger
result than (1.1), i.e., we show that every element z ⊗ 1 of Z(g)⊗ 1 ⊂ U(g)⊗C(p)
can be written as

ζ(z) +Da+ aD(1.2)

where ζ is a homomorphism from Z(g) to Z(k∆), and a ∈ U(g)⊗ C(p).
Let us also note that besides implying the first conjecture, this conjecture is an

analogue for Dirac operators of the Casselman-Osborne theorem about the action of
Z(g) on n-cohomology; see [CO] or [V1], Theorem 3.1.5. It is also worth mentioning
that Vogan’s conjecture implies a refinement of the celebrated Parthasarathy’s Dirac
inequality, which is an extremely useful tool for the classification of irreducible
unitary representations of semisimple Lie groups.
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Proposition 1.1 (Parthasarathy’s Dirac Inequality [P], [VZ]). Let X be an irre-
ducible unitary (g,K)-module with infinitesimal character Λ. Fix a representation
of K occurring in X, of highest weight µ ∈ t∗, and a positive root system ∆+(g)
for t in g. Here t is a Cartan subalgebra of k. Write

ρc = ρ(∆+(k)), ρn = ρ(∆+(p)).

Fix an element w ∈WK such that w(µ− ρn) is dominant for ∆+(k). Then

〈w(µ − ρn) + ρc, w(µ − ρn) + ρc〉 ≥ 〈Λ,Λ〉.

Our main result implies the following theorem.

Theorem 1.2. The equality in Proposition 1.1 holds if and only if some W con-
jugate of Λ is equal to w(µ− ρn) + ρc (and therefore vanishes on pt).

The paper is organized as follows. In Section 2 we explain in detail the above
mentioned conjectures of Vogan, bearing in mind that the content of [V3] is un-
available to most readers. At the end of this section we include some remarks about
how to check if the Dirac cohomology is non-zero.

In Section 3 we introduce the differential d, formulate the main result (stating
more or less that the cohomology of d is Z(k∆)), and show how this implies the
conjecture.

In Section 4 we prove the main result. The idea is standard: we introduce a
filtration and pass to the graded object to calculate the cohomology in the graded
setting first. This is easy, and we can also easily come back to the filtered setting.

Section 5 is devoted to calculating the homomorphism ζ : Z(g)→ Z(k∆) explic-
itly. This is done using the fundamental series representations, for which we know
both the infinitesimal characters and the Dirac cohomology.

In Section 6 we give a classification of the unitary representations with non-zero
Dirac cohomology and strongly regular infinitesimal character. This is similar to
the classification of representations with non-zero (g,K)-cohomology given in [VZ].
The proof can be done by the same technique as in [VZ]. We give a much shorter
proof by using Salamanca-Riba’s result [SR]. We also give a criterion for a unitary
Aq(λ) to have non-zero Dirac cohomology.

Finally in Section 7 we briefly explain the setting of Kostant’s cubic Dirac op-
erator from [K], and indicate how our result generalizes to this setting and its
consequent topological significance. It was Kostant who pointed out to us the
possibility of this generalization. Kostant has announced a paper [K2] which will
contain, among other things, these results in more detail.

2. Vogan’s conjectures on Dirac cohomology

Let G be a connected real semisimple Lie group with finite center. Let g0 be
the Lie algebra of G. Let θ be a Cartan involution of g0, and let g0 = k0 ⊕ p0 be
the corresponding Cartan decomposition. Then k0 is the Lie algebra of a maximal
compact subgroup K of G. Denote by g, k and p the complexifications of g0, k0 and
p0; then g = k⊕ p.

One could also work with a reductive Lie group G with a maximal compact
subgroup K, but we prefer the above setting for simplicity.

The Killing form of g0 induces a K-invariant inner product on p0; let us fix an
orthonormal basis (Zi; i = 1, . . . , n) of p0. In particular, we get a map γ : K →
SO(p0), whose differential is still denoted by γ.
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Consider the algebra U(g)⊗C(p), where U(g) is the universal enveloping algebra
of g and C(p) is the Clifford algebra of p. The Dirac operator D is an element of
this algebra, defined by

D =
n∑
i=1

Zi ⊗ Zi.

It is easy to check that if we change the basis Zi by an orthogonal transformation,
the above expression for D will not change. Thus D does not depend on the choice
of the basis Zi, and moreover it is K-invariant, for the diagonal action of K given
by adjoint actions on both factors.

Let X be a (g,K)-module. Let S be a space of spinors for p0; it is a complex
simple module for C(p0), and hence also for C(p). In particular, it is a representa-
tion of the spin double cover K̃ of K. Namely, K̃ is constructed from the following
pullback diagram:

K̃ −−−−→ Spin(p0)y y
K

γ−−−−→ SO(p0)

Since Spin(p0) is constructed as a subgroup of the multiplicative group of invertible
elements in C(p0), S is a representation of Spin(p0) and hence also of K̃. It follows
that X ⊗ S is a K̃-module, where K̃ acts on both factors; on X through K and on
S as above.

Furthermore, X ⊗ S is a module for the algebra U(g) ⊗ C(p), with U(g) acting
on X and C(p) on S. The differential of the K̃-action is the action of a copy of k0

diagonally embedded into U(g)⊗C(p) as follows. Recall that there is a Lie algebra
map from so(p0) into C(p0), given by

Eij − Eji 7→ −
1
2
ZiZj ,

where Eij denotes the matrix with all entries equal to 0, except for the ij entry
which is equal to 1. Note that this map is K-equivariant. Composing with our
γ : k0 → so(p0), we get a K-equivariant map

α : k0 → C(p0).

Using this map we embed k0 diagonally into U(g)⊗ C(p), by

α̃ : X 7−→ X ⊗ 1 + 1⊗ α(X),

for X ∈ k0. Clearly, α̃ also defines an embedding of k into U(g)⊗C(p). We denote
by k∆ the image of k under the map α̃.

Note that α(k0) is contained in the Lie algebra of Spin(p0) ⊂ C(p0). This
immediately implies the following lemma:

Lemma 2.1. The complexified differential of the K̃-action on X ⊗ S corresponds
under α̃ to the restriction of the action of U(g)⊗ C(p) to the Lie subalgebra k∆.

Clearly, the action of U(g) ⊗ C(p) on X ⊗ S is K̃-equivariant. In other words,
X ⊗ S is a (U(g)⊗ C(p), K̃)-module.
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DIRAC COHOMOLOGY AND UNITARY REPRESENTATIONS 189

The Dirac operator D ∈ U(g)⊗C(p) acts on X ⊗S; since D is K-invariant, the
action of D commutes with the action of K̃ and hence also with the action of k∆.
We define the Dirac cohomology of X to be the K̃-module

KerD/(ImD ∩KerD).

Assume now that X is unitarizable, i.e., there is a positive definite hermitian
product 〈 , 〉 on X , such that every element of g acts as a skew hermitian operator
on X , and every element of K acts as a unitary operator on X . Let <,> be a
hermitian form on S such that every vector in p0 ⊂ C(p) acts on S by a skew
hermitian operator. The existence of such a hermitian form is shown e.g. in [W],
9.2.3. We define a hermitian form on X ⊗ S by

〈v ⊗ s, w ⊗ s′〉 = 〈v, w〉 < s, s′ > .

It is now clear that every Zi acts by a skew hermitian operator both on X and on
S, and hence we get

Lemma 2.2. If X is unitarizable, then D is self-adjoint with respect to the her-
mitian form on X ⊗ S defined above.

In particular, for unitarizable X , ImD ∩KerD = 0, and hence the Dirac coho-
mology is simply KerD.

Let T be a maximal torus in K, with Lie algebra t0. Let h be the centralizer
of t in g; it is a θ-stable Cartan subalgebra of g containing t. Since h = t ⊕ pt,
we get an embedding of t∗ into h∗. Therefore any element of t∗ determines a
character of the center Z(g) of U(g). Here we are using the standard identification
Z(g) ∼= S(h)W via the Harish-Chandra homomorphism (W is the Weyl group), by
which the characters of Z(g) correspond to the W -orbits in h∗.

We fix a positive root system ∆+(k, t) for t in k; let ρc = ρ(∆+(k, t)) be the
corresponding half sum of the positive roots. For any finite-dimensional irreducible
representation (γ,Eγ) of k, we denote its highest weight in t∗ by γ again.

D. Vogan conjectured the following:

Theorem 2.3. Let X be an irreducible (g,K)-module, such that the Dirac coho-
mology is non-zero. Let γ be a K̃-type contained in the Dirac cohomology. Then
the infinitesimal character of X is given by γ + ρc.

In view of the above remarks, in case X is unitarizable, we get the following
consequence, which was also conjectured by Vogan:

Corollary 2.4. Let X be an irreducible unitarizable (g,K)-module, such that KerD
6= 0. Let γ be a K̃-type contained in KerD. Then the infinitesimal character of X
is given by γ + ρc.

Vogan further reduced the claim of Theorem 2.3 to an entirely algebraic state-
ment in the algebra U(g)⊗ C(p). Let us first note that the above described map

α̃ : k→ k∆ ⊂ U(g)⊗ C(p)

extends to an embedding

α̃ : U(k)→ U(g)⊗ C(p),
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with image equal to U(k∆). To see that this is really an embedding, it is enough to
note that if u ∈ U(k) is a PBW monomial, then α̃(u) is the sum of u⊗ 1 and terms
of the form w ⊗ a, with w having smaller degree than u.

For future use, we note that there is an isomorphism

β : U(k)⊗ 1→ U(k∆);

it is the composition of α̃ with the obvious isomorphism U(k)⊗ 1→ U(k).
We can now state Vogan’s algebraic conjecture that implies Theorem 2.3.

Theorem 2.5. Let z ∈ Z(g). Then there is a unique ζ(z) in the center Z(k∆) of
U(k∆), and there are K-invariant elements a, b ∈ U(g)⊗ C(p), such that

z = ζ(z) +Da+ bD.

To see that Theorem 2.5 implies Theorem 2.3, let x̃ ∈ (X ⊗ S)(γ) be non-zero,
such that Dx̃ = 0 and x̃ /∈ ImD. Note that both z⊗ 1 and ζ(z) act as scalars on x̃.
The first of these scalars is the infinitesimal character Λ of X applied to z, and the
second is the k-infinitesimal character of γ applied to ζ(z), that is, (γ + ρc)(ζ(z)).

On the other hand, since (z ⊗ 1 − ζ(z))x̃ = Dax̃, and x̃ /∈ ImD, it follows
that (z ⊗ 1 − ζ(z))x̃ = 0. Thus the above two scalars are the same, i.e., Λ(z) =
(γ + ρc)(ζ(z)).

In Section 5 we will show that under identifications Z(g) ∼= S(h)W ∼= P (h∗)W

and Z(k∆) ∼= Z(k) ∼= S(t)WK ∼= P (t∗)WK the homomorphism ζ corresponds to the
restriction of polynomials on h∗ to t∗. Here the already mentioned inclusion of
t∗ into h∗ is given by extending functionals from t to h, letting them act by 0 on
a = pt. This finishes the proof.

We finish this section with the following remark, which indicates how to check
if a unitarizable X has non-zero Dirac cohomology.

Proposition 2.6. Let X be an irreducible unitarizable (g,K)-module with infini-
tesimal character Λ. Assume that X⊗S contains a K̃-type γ, i.e., (X⊗S)(γ) 6= 0.
Assume further that ||Λ|| = ||γ + ρc||. Then the Dirac cohomology of X, KerD,
contains (X ⊗ S)(γ). In particular, the Dirac cohomology of X is non-zero.

Proof. This follows from a formula for the square of D, which is obtained by a
direct computation. This formula is stated in Lemma 3.1 in the next section. The
formula implies that D2 acts on (X ⊗ S)(γ) by the scalar

−(||Λ||2 − ||ρ||2) + (||γ + ρc||2 − ||ρc||2) + (||ρc||2 − ||ρ||2) = 0.

By Lemma 2.2, D is self-adjoint. Therefore we have D = 0 on (X ⊗ S)(γ).

Note that Corollary 2.4 implies the converse of Proposition 2.6: ifX is irreducible
unitarizable, with Dirac cohomology containing (X ⊗ S)(γ), then by Corollary 2.4
the infinitesimal character of X is Λ = γ + ρc. Hence ||Λ|| = ||γ + ρc||.

Furthermore, combining Proposition 2.6 with Corollary 2.4, we get the following
corollary:

Corollary 2.7. Let X be an irreducible unitarizable (g,K)-module with infinitesi-
mal character Λ, such that (X ⊗ S)(γ) 6= 0. Assume that ||Λ|| = ||γ + ρc||. Then
some W conjugate of Λ is equal to γ + ρc.
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3. The main result

Let us first note that the Clifford algebra C(p) has a natural Z2-gradation into
even and odd parts:

C(p) = C0(p)⊕ C1(p).

This gradation induces a Z2-gradation on U(g)⊗ C(p) in an obvious way.
We define a map d from U(g)⊗ C(p) into itself, as d = d0 ⊕ d1, where

d0 : U(g)⊗ C0(p)→ U(g)⊗ C1(p)

is given by

d0(a) = Da− aD,(3.1a)

and

d1 : U(g)⊗ C1(p)→ U(g)⊗ C0(p)

is given by

d1(a) = Da+ aD.(3.1b)

In other words, if εa denotes the sign of a, that is, 1 for even a and −1 for odd a,
then d(a) = Da− εaaD (for homogeneous a, i.e., those a which have sign).

We will use the following formula for D2, which can be proved by a straightfor-
ward calculation. An analogous formula in a specific representation was first proved
by Parthasarathy in [P], Proposition 3.2. See also [W], 9.3.3.

Lemma 3.1. Let Ωg be the Casimir operator for g (given by Ωg =
∑
Z2
i −

∑
W 2
j ,

where Wj is an orthonormal basis for k0 with respect to the inner product −B,
where B is the Killing form). Let Ωk∆ be the Casimir operator for k∆ (given by
Ωk∆ = α̃(−

∑
W 2
j )). Then D2 = −Ωg ⊗ 1 + Ωk∆ + C, where C is the constant

||ρc||2 − ||ρ||2.

Here ρc was defined before Theorem 2.3, and to define ρ, we choose a positive
root system ∆+(g, t) which contains ∆+(k, t). In other words, the positive roots for
(k, t) are precisely the positive compact roots for (g, t). Finally, the norms on t and
t∗ are induced by the Killing form of g restricted to t.

Using Lemma 3.1, we prove that our d induces a differential on the K-invariants
in U(g)⊗ C(p).

Lemma 3.2. Let d be the map defined in (3.1a) and (3.1b). Then
(i) d is K-equivariant, hence induces a map from (U(g)⊗ C(p))K into itself.
(ii) d2 = 0 on (U(g)⊗ C(p))K .

Proof. (i) is trivial, since D is K-invariant.
Let a ∈ (U(g)⊗ C(p))K be even or odd. Then

d2(a) = d(Da− εaaD) = D2a− εDaDaD − εa(DaD − εaDaD2) = D2a− aD2,

since obviously εaD = εDa = −εa. Using Lemma 3.1, we see that a will commute
with D2 if and only if it commutes with Ωk∆ . If a is K-invariant, then this clearly
holds, as a then commutes with all of U(k∆).

Thus we see that d is a differential on (U(g)⊗ C(p))K , of degree 1 with respect
to the above defined Z2-gradation. Note that we do not have a Z-gradation on
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(U(g) ⊗ C(p))K so that d is of degree 1, i.e., this is not a complex in the usual
sense.

We want to calculate the cohomology of d. Before we state the result, let us note
the following:

Proposition 3.3. Z(k∆) is in the kernel of d.

Proof. Since D is K-invariant, it commutes with k∆, and thus with U(k∆) and in
particular with Z(k∆). Since Z(k∆) ⊂ (U(g)⊗ C0(p))K , the claim follows.

We are ready to state the main result:

Theorem 3.4. Let d be the differential on (U(g)⊗C(p))K constructed above. Then
Kerd = Z(k∆)⊕ Im d. In particular, the cohomology of d is isomorphic to Z(k∆).

The proof uses the standard method of filtering the algebra (the filtration comes
from the usual filtration on U(g)), and then passing to the graded algebra. The
analogue of our theorem in the graded setting is easy; the complex we get is closely
related to the standard Koszul complex associated to the vector space p. One
can now go back to the original setting by an easy induction on the degree of the
filtration.

Before we go into the details of this proof, let us first note a consequence, which
immediately proves Vogan’s conjecture, Theorem 2.5; just put b = a in Theorem
2.5.

Corollary 3.5. Let z ∈ Z(g). Then there is a unique ζ(z) ∈ Z(k∆), and there is
an a ∈ (U(g)⊗ C1(p))K , such that

z ⊗ 1 = ζ(z) +Da+ aD.

Proof. This follows at once from Theorem 3.4, if we just notice that z⊗1 commutes
with D (indeed, it is in the center of U(g) ⊗ C(p)), and being even, it is thus in
Kerd. Hence, it is of the form ζ(z) + d(a) = ζ(z) +Da+ aD.

4. The proof of the main result

Let A be an algebra over C with a filtration

0 = F−1A ⊆ F0A ⊆ F1A ⊆ · · ·

such that FmAFnA ⊆ Fm+nA. We assume that
⋃
n FnA = A. We set GrnA =

FnA/Fn−1A for n ≥ 0 and let GrA =
⊕

n GrnA be the associated graded algebra.
We denote by a 7→ ā the projection from FnA to GrnA. For ā ∈ GrnA and
b̄ ∈ GrmA, we have āb̄ = ab ∈ Grm+nA.

The standard filtration on U(g) induces a filtration on

A = U(g)⊗ C(p),

by setting FnA = Fn(U(g)⊗ C(p)) = Fn(U(g)) ⊗ C(p).
Note that this filtration is K-invariant. It follows that it induces a filtration on

AK , by Fn(AK) = (FnA)K . Clearly, the Dirac operator D =
∑
i Zi ⊗ Zi ∈ F1A

K .
The Z2-gradation on the Clifford algebra C(p) induces a Z2-gradation on A. We

set A0 = U(g)⊗ C0(p) and A1 = U(g)⊗ C1(p) . Then A = A0 ⊕ A1. Clearly, this
Z2-gradation is compatible with the above defined filtration.
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If a ∈ FnU(g) ⊗ C0(p), then d0a = Da − aD ∈ Fn+1U(g) ⊗ C1(p). If a ∈
FnU(g)⊗ C1(p), then d1a = Da+ aD ∈ Fn+1U(g)⊗ C0(p). It follows that

d0 : FnA0 → Fn+1A
1, d1 : FnA1 → Fn+1A

0.

Thus d0 and d1 induce

d0 : GrnA0 → Grn+1A
1, d1 : GrnA1 → Grn+1A

0.

If a ∈ FnA0, then

d0(ā) = d0a = Da− aD = Da− aD = D̄ā− āD̄.

If a ∈ FnA
1, then d1(ā) = d1a = Da+ aD = Da + aD = D̄ā + āD̄. Here

D̄ =
∑

i Zi ⊗ Zi ∈ (Gr1A
1)K = (S1(g)⊗ C1(p))K .

Therefore d = d0 + d1 induces

d̄ = d0 + d1 : GrA→ GrA.

If ā = u⊗ Zi1 · · ·Zik ∈ Gr(U(g)⊗ C(p)) = S(g)⊗ C(p), then

d̄(ā) =D̄ā− (−1)kāD̄

=
∑
i

(Zi ⊗ Zi)(u ⊗ Zi1 · · ·Zik)− (−1)k
∑
i

(u⊗ Zi1 · · ·Zik)(Zi ⊗ Zi)

=
∑
i

[Ziu⊗ ZiZi1 · · ·Zik − (−1)kuZi ⊗ Zi1 · · ·ZikZi]

=
∑

i6=ij ,∀j
[Ziu⊗ ZiZi1 · · ·Zik − (−1)kuZi ⊗ Zi1 · · ·ZikZi]

+
k∑
j=1

[Ziju⊗ ZijZi1 · · ·Zik − (−1)kuZij ⊗ Zi1 · · ·ZikZij ]

=
∑
i6=ij

[Ziu⊗ ZiZi1 · · ·Zik − Ziu⊗ ZiZi1 · · ·Zik ]

+
k∑
j=1

[(−1)j−1Ziju⊗ Zi1 · · ·Z2
ij · · ·Zik

− (−1)k(−1)k−juZij ⊗ Zi1 · · ·Z2
ij · · ·Zik ]

=− 2
k∑
j=1

(−1)j−1uZij ⊗ Zi1 · · · Ẑij · · ·Zik .

The last equality follows from Z2
ij

= −1.
It follows from g = k⊕ p that

S(g) = S(k)⊗ S(p).

Then we have

S(g)⊗ C(p) = S(k)⊗ S(p)⊗ C(p).

Hence, we have the following vector space isomorphism:

S(g)⊗ C(p) ∼= S(k)⊗ S(p)⊗ Λ·(p).

It follows that d̄ = (−2) id ⊗ dp, where dp is the Koszul differential for the vector
space p. In particular, d̄ is a differential on S(g) ⊗ C(p), i.e., (d̄)2 = 0. Note that
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dp is exact except at degree 0 and the zeroth cohomology is C, embedded as the
constants. It follows that the differential d̄ is exact except at degree 0 and the
zeroth cohomology is isomorphic to S(k)⊗1 embedded in the obvious way. In other
words, we see that

Ker d̄ = S(k)⊗ 1⊕ Im d̄.

Since d̄ is K-equivariant, the kernel of d̄ on the K-invariants is the same as
(Ker d̄)K which is by the above formula equal to the direct sum of S(k)K ⊗ 1 with
the image of d̄ on the K-invariants. In other words, we get the following lemma.

Lemma 4.1. The differential d̄ on (S(g) ⊗ C(p))K is exact except at degree 0
and the zeroth cohomology is isomorphic to S(k)K ⊗ 1. More precisely, Ker d̄ =
S(k)K ⊗ 1⊕ Im d̄.

Now we can prove the main result, Theorem 3.4, i.e.,

Kerd = Z(k∆)⊕ Im d.

We only need to show that a ∈ Ker d implies that a ∈ Z(k∆) + Im d; the other
inclusion follows from Lemma 3.2 and Proposition 3.3, and the fact that the sum
is direct is obvious since the sum is direct in Lemma 4.1.

This statement can be proved by induction on the degree of the filtration. Since
F−1(U(g) ⊗ C(p))K = 0, the statement is true for a ∈ F−1A

K . Assume that the
statement is true for all a ∈ Fn−1A

K . If a ∈ FnAK and da = 0, then d̄(ā) = d(a) =
0. It follows from Lemma 4.1 that

ā = z̄ ⊗ 1 + d̄ b̄

for some z̄ ∈ S(k)K and b̄ ∈ Grn−1A
K .

We denote by z̃ = σ(z̄) the symmetrization of z̄ in U(k)K = Z(k). The isomor-
phism

β : U(k)⊗ 1→ U(k∆)

introduced before Theorem 2.5 obviously maps Z(k)⊗1 isomorphically onto Z(k∆).
Let z = β(z̃ ⊗ 1) and b = σ(b̄) be the symmetrization of b̄ in Fn−1A

K . Then
a− z − db is in Fn−1A

K , since

a− z − db = ā− z̄ ⊗ 1− db = ā− z̄ ⊗ 1− d̄ b̄ = 0.

We also have

d(a− z − db) = da− dz − d2b = 0− 0− 0 = 0;

namely, da = 0 by hypothesis, dz = 0 by Proposition 3.3, and d2b = 0 by Lemma
3.2. By the induction hypothesis, a − z − db = z1 + dc for some z1 ∈ Z(k∆) and
c ∈ Fn−1A

K . It follows that a = z+ z1 + d(b+ c) is in Z(k∆) + Im d. Therefore the
statement holds for all a ∈ FnAK . This finishes the proof of Theorem 3.4.

5. The fundamental series and the homomorphism ζ

In order to make the action of z ∈ Z(g) in Section 2 entirely explicit, we compute
the map ζ : Z(g)→ Z(k∆) explicitly in this section. An outline of this section was
suggested to us by Vogan. We first prove that ζ is a homomorphism of algebras.

Lemma 5.1. The map ζ : Z(g)→ Z(k∆) defined in Section 2 is a homomorphism
of algebras.
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Proof. Let z1, z2 ∈ Z(g). By Corollary 3.5, there are a1, a2 ∈ (U(g) ⊗ C1(p))K ,
such that for i = 1, 2, zi ⊗ 1 = ζ(zi) + d(ai). Multiplying these two equations, we
get

z1z2 ⊗ 1 = ζ(z1)ζ(z2) + d(a1)ζ(z2) + ζ(z1)d(a2) + d(a1)d(a2).

By Lemma 5.2 below and Proposition 3.3, this is further equal to ζ(z1)ζ(z2) +
d(a1ζ(z2)+ζ(z1)a2 +a1d(a2)), and hence the lemma follows from Corollary 3.5.

Lemma 5.2. Let d be the differential on (U(g)⊗ C(p))K introduced in Section 3.
Then for any homogeneous elements x and y we have

d(xy) = d(x) y + εx xd(y).

Proof. This follows from a straightforward calculation.

To compute ζ explicitly, we need to find a collection of “test” representations
X with known infinitesimal characters, and Dirac cohomology containing K̃-types
γ that range over an algebraically dense set of t∗. The natural candidates are the
fundamental series representations with trivial A-parameter.

Let H = TA be a fundamental Cartan subgroup in G. Let h0 = t0 + a0 be the
corresponding θ-stable Cartan subalgebra. Then t0 = h0∩k0 is a Cartan subalgebra
of k0. As usual we drop the subscript 0 for the complexified Lie algebras. LetX ∈ it0
be such that ad(X) is semisimple with real eigenvalues. Following [VZ], we define

(i) l to be the zero eigenspace of ad(X),
(ii) u to be the sum of positive eigenspaces of ad(X),
(iii) q to be the sum of non-negative eigenspaces of ad(X).
Then q is a parabolic subalgebra of g and q = l + u is a Levi decomposition.

Furthermore, l is the complexification of l0 = q∩ g0. We write L for the connected
subgroup of G with Lie algebra l0. Since θ(X) = X , l, u and q are all invariant
under θ, so

q = q ∩ k + q ∩ p.

In particular, q ∩ k is a parabolic subalgebra of k with Levi decomposition

q ∩ k = l ∩ k + u ∩ k.

We call such a q a θ-stable parabolic subalgebra.
Let f ⊂ q be any subspace stable under ad(t). Then there is a subset {α1, . . . , αr}

of t∗ and subspaces fαi of f such that if y ∈ t and v ∈ fαi , then

ad(y)v = αi(y)v.

We write

∆(f, t) = ∆(f) = {α1, . . . , αr},
the weights or roots of t in f. Here ∆(f) is a set with multiplicities, with αi having
multiplicity dim fαi . Then if

ρ(f) = ρ(∆(f)) =
1
2

∑
αi∈∆(fαi )

αi ∈ t
∗,

we have

ρ(f)(y) =
1
2

tr(ad(y)|t) (y ∈ t).
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Fix a system ∆+(l ∩ k) of positive roots in the root system ∆(l ∩ k, t). (Note that
we extend the meaning of root system to include the zero weights.) Then

∆+(k) = ∆+(l ∩ k) ∪∆(u ∩ k)

is a positive root system for t in k.
A one-dimensional representation λ : l→ C is called admissible if it satisfies the

following conditions:
(i) λ is the differential of a unitary character of L.
(ii) If α ∈ ∆(u), then 〈α, λ|t〉 ≥ 0.
Given q and an admissible λ, define

µ(q, λ) = representation of K of highest weight λ|t + 2ρ(u ∩ p).(5.1)

The following theorem is due to Vogan and Zuckerman.

Theorem 5.3 ([VZ], [V2]). Suppose q is a θ-stable parabolic subalgebra of g and
λ : l → C is admissible as defined above. Then there is a unique unitary (g,K)-
module Aq(λ) with the following properties:

(i) The restriction of Aq(λ) to k contains µ(q, λ) as defined in (5.1).
(ii) Aq(λ) has infinitesimal character λ+ ρ.
(iii) If the representation of k of the highest weight δ occurs in Aq(λ), then

δ = µ(q, λ) +
∑

β∈∆(u∩p)

nββ

with nβ non-negative integers. In particular, µ(q, λ) is the lowest K-type of Aq(λ).

We note that the unitarity of Aq(λ) in the above theorem was proved in [V2]. In
the context of the definition of θ-stable parabolic subalgebras, if we take X to be a
regular element, then we obtain a minimal θ-stable subalgebra b = h + n. We call
such a subalgebra b a θ-stable Borel subalgebra. We write Φ+ for the corresponding
system of positive roots. Even though it is not needed in this paper, we note that
the corresponding representation Ab(λ) in Theorem 5.3 is the (g,K)-module of a
tempered representation of G. If G has a compact Cartan subgroup, then Ab(λ)
is the (g,K)-module of a discrete series representation of G. Moreover, all (g,K)-
modules of discrete series representations of G are of this form. What we need in
this paper is that Ab(λ) have infinitesimal character λ + ρ and the lowest K-type
µ(b, λ) = λ+ 2ρn, where ρn = ρ(n ∩ p). These facts are contained in Theorem 5.3.

Proposition 5.4. Let X = Ab(λ) as in Theorem 5.3 with b a θ-stable Borel sub-
algebra. Assume that λ|a = 0. Then the Dirac cohomology of X contains a K̃-type
Eγ of highest weight γ = λ+ ρn.

Proof. The lowest K-type µ(b, λ) has highest weight λ+2ρn. Since −ρn is a weight
of S, Eγ occurs in µ(b, λ)⊗ S, hence in X ⊗ S. Since the infinitesimal character of
X is λ+ ρ = γ + ρc, it follows from Proposition 2.6 that Eγ is in the kernel of the
Dirac operator D, i.e., in the Dirac cohomology of X .

Now we can describe the homomorphism ζ explicitly.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DIRAC COHOMOLOGY AND UNITARY REPRESENTATIONS 197

Theorem 5.5. The homomorphism ζ satisfies the following commutative diagram:

Z(g)
ζ−−−−→ Z(k)y y

S(h)W Res−−−−→ S(t)WK

(5.2)

Here the vertical arrows are the Harish-Chandra homomorphisms, and the map Res
corresponds to the restriction of polynomials on h∗ to t∗ under the identifications
S(h)W = P (h∗)W and S(t)WK = P (t∗)WK . As before, we can view t∗ as a subspace
of h∗ by extending functionals from t to h, letting them act by 0 on a.

Proof. Let ζ̄ : P (h∗)W → P (t∗)WK be the homomorphism induced by ζ under the
identifications via Harish-Chandra homomorphisms. Furthermore, let ζ̃ : t∗/WK →
h∗/W be the morphism of algebraic varieties inducing the homomorphism ζ̄. We
have to show that ζ̄ is the restriction map, or alternatively that ζ̃ is given by the
inclusion map.

We know from Theorem 5.3 that the fundamental series representation Ab(λ)
has the lowest K-type

µ(b, λ) = λ+ 2ρn,

and infinitesimal character

Λ = λ+ ρ.

On the other hand, it follows from Proposition 5.4 that if λ|a = 0, then the Dirac
cohomology of Ab(λ) contains the K̃-type of highest weight γ = λ+ ρn.

When proving that Theorem 2.5 implies Theorem 2.3, we saw that Theorem 2.5
implies Λ(z) = (γ+ ρc)(ζ(z)), for all z ∈ Z(g). In our present situation we however
have

Λ = λ+ ρ = (λ+ ρn) + ρc = γ + ρc,

so it follows that Λ(ζ(z)) = Λ(z) for all z ∈ Z(g). This means that ζ̃(Λ) = Λ, for
all infinitesimal characters Λ of the above fundamental series representations.

It is clear that when λ ranges over all admissible weights in h∗ such that λ|a = 0,
then Λ = λ+ ρ forms an algebraically dense subset of t∗. To see this, it is enough
to note that such λ span a lattice in t∗. Hence ζ̃ is indeed the inclusion map.

Remark 5.6. Both Vogan and Kostant pointed out to us that Theorem 5.5 can also
be proved by considering finite-dimensional representations with non-zero Dirac
cohomology. Kostant showed us a short proof which we sketch here.

Recall that t is a Cartan subalgebra of k, h = t⊕a is a Cartan subalgebra of g and
a and t are orthogonal. Let Vλ be an irreducible finite-dimensional representation
of g with highest weight λ ∈ h∗. Then if ξ ∈ t∗ is a highest weight for k, the Dirac
operator squared reduces to the scalar

||λ+ ρ||2 − ||ξ + ρr||2(5.3)

on the primary component (Vλ⊗S)(ξ). Then for the choice of positive roots arising
from a g-regular hyperbolic element of t, one has that ρ, ρc and ρn all lie in t∗. Now
there are an infinite number of choices of λ such that λ ∈ t∗ (we can simply replace
any λ by λ+ θ(λ), where θ is the Cartan involution). Choose ξ = λ + ρn. Clearly
(Vλ ⊗ S)(ξ) is non-zero. By Proposition 2.6 we see that the vanishing of (5.3)
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gives rise to Dirac cohomology. It follows that ζ is induced by the Harish-Chandra
homomorphism as in (5.2), by the same argument as in the last paragraph of the
proof of Theorem 5.5.

6. Unitary representations with non-zero Dirac cohomology

As an application of our main result, in this section we classify irreducible
unitary (g,K)-modules X with non-zero Dirac cohomology, provided that X has
strongly regular infinitesimal character. These are Aq(λ)-modules, as was proved by
S. Salamanca-Riba [SR]. Our classification is analogous to Vogan-Zuckerman’s clas-
sification of irreducible unitary representations with non-zero (g,K)-cohomology.
We note that a unitary representation with non-zero (g,K)-cohomology has non-
zero Dirac cohomology, but not vice versa. In other words, the Dirac cohomology
detects a larger class of irreducible unitary representations. We explain the relations
between (g,K)-cohomology and Dirac cohomology at the end of this section. To
classify the irreducible unitary representations which have Dirac cohomology but
do not have strongly regular infinitesimal characters is a much more complicated
and difficult task, which we hope to achieve later.

Theorem 6.1. Suppose that λ′ ∈ t∗ is dominant with respect to a positive root
system ∆+(k, t) ⊂ ∆+(g, t). Let γ = λ′+ ρn. Assume that the representation Eγ of
K̃ with the highest weight γ is contained in the Dirac cohomology of the irreducible
unitary (g,K)-module X. Then there exist a θ-stable parabolic subalgebra q = l + u

and an admissible character λ of L such that λ|t = λ′ and X ∼= Aq(λ).

This theorem can be proved by the same approach as Vogan-Zuckerman’s gener-
alization [VZ] of Kumaresan’s result [Ku]. It would take about two to three pages.
Here we give a much shorter proof which uses the main result of [SR].

Let h be a Cartan subalgebra of g. Given any weight Λ ∈ h∗, fix a choice of
positive roots ∆+(Λ, h) for Λ so that

∆+(Λ, h) ⊂ {α ∈ ∆(g, h) | Re〈Λ, α〉 ≥ 0}.
Set

ρ(Λ) =
1
2

∑
α∈∆+(Λ,h)

α.

Definition 6.2. A weight Λ ∈ h∗ is said to be real if

Λ ∈ t∗0 + ia∗0,

and to be strongly regular if

〈Λ− ρ(Λ), α〉 ≥ 0, ∀α ∈ ∆+(Λ, h).

Salamanca-Riba [SR] proved that if an irreducible unitary (g,K)-module X has
strongly regular infinitesimal character, then X ∼= Aq(λ) for some θ-stable parabolic
subalgebra q and admissible character λ of L. Moreover, she proved the following
stronger theorem which was conjectured by Vogan.

Theorem 6.3 (Salamanca-Riba). Suppose that X is an irreducible unitary (g,K)-
module with infinitesimal character Λ ∈ h∗ satisfying

Re〈Λ− ρ(Λ), α〉 ≥ 0, ∀α ∈ ∆+(Λ, h).

Then there exist a θ-stable parabolic subalgebra q = l+u and an admissible character
λ of L such that X is isomorphic to Aq(λ).
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Proof of Theorem 6.1. Our main result implies that X has infinitesimal character

Λ = γ + ρc = λ′ + ρn + ρc = λ′ + ρ.

Thus Λ is strongly regular, and therefore, by Theorem 6.3, there exist a θ-stable
parabolic subalgebra q = l + u and an admissible character λ of L such that X is
isomorphic to Aq(λ). The infinitesimal character of Aq(λ) is λ|t +ρ. It follows that
λ|t = λ′.

The following theorem gives a criterion for Aq(λ) to have non-zero Dirac co-
homology. Combined with Theorem 6.1, this criterion classifies irreducible uni-
tary (g,K)-modules with strongly regular infinitesimal character and with non-zero
Dirac cohomology.

Theorem 6.4. Let X = Aq(λ) as in Theorem 5.3. Then the following two condi-
tions are equivalent:

(i) X has non-zero Dirac cohomology.
(ii) λ|h + ρn is the highest weight of a K̃-module.
In particular, X having non-zero Dirac cohomology implies λ|h vanishes on the

orthogonal complement of t in h.

Proof. Our main result implies that ifX has non-zero Dirac cohomology, thenX has
infinitesimal character Λ = γ+ρc, where γ is the highest weight of a representation
of K̃. Therefore, (i) implies (ii). To show that (ii) implies (i) we note that the
lowest K-type µ of X can be expressed as

µ = λ|t + 2ρ(p ∩ u) = λ|t + ρ(∆+(p)) + ρ(∆+(p)′),

for some positive root systems ∆+(g) and ∆+(g)′ for t in g. This is possible because
for ∆+(p) = ∆+(l ∩ p) ∪∆+(u ∩ p) we can set

∆+(p)′ = (−∆+(l ∩ p)) ∪∆+(u ∩ p).

Write ρn for ρ(∆+(p)) and ρ′n for ρ(∆+(p)′). Let Eγ be the irreducible representa-
tion of K̃ with highest weight γ = λ|t + ρn. Then Eγ ⊂ µ⊗ Eρ′n ⊂ X ⊗ S and Eγ
is contained in the Dirac cohomology.

Finally, let us describe the relation between the Dirac cohomology and the (g,K)-
cohomology. We first summarize some of the results in Propositions 5.4, 5.7 & 5.16
and Theorems 5.5 & 5.6 of [VZ] about (g,K)-cohomology.

Proposition 6.5 ([VZ]). Suppose that X is an irreducible unitary (g,K)-module
and F is a finite-dimensional representation of G. Then H∗(g,K;X ⊗ F ) = 0
unless X and F have the same infinitesimal character. If H∗(g,K;X ⊗ F ) 6= 0,
then there exist a θ-stable parabolic subalgebra q = l + u of g, and positive root
systems ∆+(g) and ∆+(g)′ such that

(i) F/uF is a one-dimensional character of L; write −λ : l→ C for its differen-
tial;

(ii) X ∼= Aq(λ) with lowest K-type µ = λ|t + 2ρ(u ∩ p);
(iii) λ|h is zero on the orthogonal complement of t in h;
(vi) λ|h is a highest weight of F ∗ with respect to both ∆+(g) and ∆+(g)′;
(v) the lowest K-type µ of X can be written as µ = λ|t + ρ(∆+(p)) + ρ(∆+(p)′).
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Proposition 6.6. If X is a unitary (g,K)-module with non-zero (g,K)-cohomology,
i.e.,

Hi(g,K;X ⊗ F ) 6= 0

for some finite-dimensional representation F of G, then X has non-zero Dirac
cohomology.

Proof. It follows from Proposition 6.5 that X ∼= Aq(λ) with lowest K-type µ =
λ|t + ρ(∆+(g)) + ρ(∆+(g)′). It also follows from Proposition 6.5 that λ|t is the
differential of a character of T . Hence, γ = λ|t + ρ(∆+(p)) is the highest weight of
an irreducible representation of K̃. Therefore, Eγ is in the Dirac cohomology of X
(this follows as in the proof of Theorem 6.4).

Note that the converse of Proposition 6.6 is not true. An irreducible unitary
representation X of G with non-zero Dirac cohomology may have infinitesimal
character different from all finite-dimensional representations of G. Therefore X
may have zero (g,K)-cohomology.

7. A final remark: Kostant’s cubic Dirac operator

In this section we show that our proof of Theorem 3.4 can be extended to the
more general setting of Kostant’s cubic Dirac operator. Our proof of the theorem
works perfectly for this setting. This was first pointed out to us by Kostant.

Let G be a compact semisimple Lie group, and let R be a closed subgroup. Let g

and r be the complexifications of the corresponding Lie algebras. Let g = r⊕p be the
orthogonal decomposition with respect to the Killing form. Choose an orthonormal
basis Z1, . . . , Zn of p with respect to the Killing form 〈 , 〉. Kostant [K] defines his
cubic Dirac operator to be the element

D =
n∑
i=1

Zi ⊗ Zi + 1⊗ v ∈ U(g)⊗ C(p),

where v ∈ C(p) is the image of the fundamental 3-form ω ∈ Λ3(p∗),

ω(X,Y, Z) = − 1
12
〈X, [Y, Z]〉

under the Chevalley identification Λ∗(p∗)→ C(p). Kostant’s cubic Dirac operator
reduces to the ordinary Dirac operator when (g, r) is a symmetric pair, since ω = 0
for the symmetric pair. Kostant ([K], Theorem 2.16) shows that

D2 = Ωg ⊗ 1− Ωr∆ + C,(7.1)

where C is the constant ||ρ||2 − ||ρr||2. We note that the quadratic form on p used
by Kostant for his cubic Dirac operator is positive definite, while the form we used
to define the ordinary Dirac operator for the symmetric pair is negative definite.
This makes a sign change in (7.1) comparing with Lemma 3.1.

Now we can define the cohomology of the complex (U(g)⊗C(p))R using Kostant’s
cubic Dirac operator exactly as in Section 3. Let a ∈ U(g) ⊗ C(p). We define
d(a) = Da− εaaD in the same way as in (3.1); as before, d2 = 0 on (U(g)⊗C(p))R.
The cubic term involves only C(p) and not U(g), so it follows that the cohomology
is Z(r∆). Namely, by passing to the symbol the cubic term disappears, and the
proof in Section 4 works without change in the present case. We summarize this
generalization of Theorem 3.4 as the following theorem.
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Theorem 7.1. Let d be the differential on (U(g) ⊗ C(p))R defined by Kostant’s
cubic Dirac operator as above. Then Ker d = Im d ⊕ Z(r∆). In particular, the
cohomology of d is isomorphic to Z(r∆).

As a consequence we get an analogous homomorphism ζ : Z(g) → Z(r) for a
reductive subalgebra r in a semisimple Lie algebra g and a more general version of
Vogan’s conjecture. If we fix a Cartan subalgebra t of r and extend t to a Cartan
subalgebra h of g, then ζ is induced by the Harish-Chandra homomorphism exactly
as in (5.2) of Theorem 5.5. Moreover, this homomorphism ζ induces the structure
of a Z(g)-module on Z(r), which has topological significance. Namely, Kostant has
shown that from a well-known theorem of H. Cartan [C], which is by far the most
comprehensive result on the real (or complex) cohomology of a homogeneous space,
one has

Theorem 7.2. There exists an isomorphism

H∗(G/R,C) ∼= TorZ(g)
∗ (C, Z(r)).

These results will appear with all the details in a forthcoming paper by Kostant
[K2].
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