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We show how one may obtain conical (Dirac) dispersions in photonic crystals, and in some cases, such conical dispersions can be
used to create a metamaterial with an effective zero refractive index. We show specifically that in two-dimensional photonic crystals
with C4v symmetry, we can adjust the system parameters to obtain accidental triple degeneracy at Γ point, whose band dispersion
comprises two linear bands that generate conical dispersion surfaces and an additional flat band crossing the Dirac-like point.
If this triply degenerate state is formed by monopole and dipole excitations, the system can be mapped to an effective medium
with permittivity and permeability equal to zero simultaneously, and this system can transport wave as if the refractive index is
effectively zero. However, not all the triply degenerate states can be described by monopole and dipole excitations and in those
cases, the conical dispersion may not be related to an effective zero refractive index. Using multiple scattering theory, we calculate
the Berry phase of the eigenmodes in the Dirac-like cone to be equal to zero for modes in the Dirac-like cone at the zone center, in
contrast with the Berry phase of π for Dirac cones at the zone boundary.

1. Introduction

The Dirac equation is the wave equation formulated to
describe relativistic spin 1/2 particles [1]. In the special case
where the effective mass of the spin 1/2 particle is zero,
and the solution to Dirac equation has a linear dispersion
in the sense that the energy E is linearly proportional to
the wave vector k. The electric band structure of graphene
near the Fermi level can be described by the massless Dirac
equation and hence exhibit the Dirac dispersion [2–15]. The
electronic band dispersion is linear near the six corners of
the two-dimensional (2D) hexagonal Brillouin zone at the K
and K ′ points, and the dispersion close to the Fermi energy
at each of these corner k-points can be visualized as two
cones meeting at the Fermi level at one point called the
Dirac point, and the conical dispersion near the Dirac point
is usually referred to as Dirac cones. This rather singular
electronic band structure of graphene near the Fermi level
gives rise to many unusual transport properties [2–15],
including quantum hall effect [4–6], Zitterbewegung [7–
11], and Klein paradox [12]. Dirac cone dispersions are not
limited to graphene but can also be found in classical wave
periodic systems such as photonic crystals [16–24]. In fact,
linear dispersions at the Brillouin zone boundary for 2D

triangular photonic crystals appeared in the photonic band
gap literature a long time ago [16] except that the attention
at that time was focused on the creation of band gaps [25–27]
and as Dirac points are by definition gapless, their existence
was largely ignored. The special properties of such conical
dispersions at the zone boundary of triangular photonic
crystals were not explicitly noted until much later [21, 22]. It
was noted that if an external magnetic field is used to break
time reversal symmetry, unidirectional and backscattering
immune electromagnetic wave propagation, analogous to
quantum hall edge states, can be realized, and such ideas were
indeed demonstrated subsequently using photonic crystals
constructed with gyromagnetic materials [21–24, 28–32].
In 2D, the acoustic wave equation has the same form as
the Maxwell equation for one polarization, and it follows
immediately that Dirac cone dispersions can also be realized
in acoustic wave crystals [33]. In fact, some intriguing
wave transport phenomena such as Zitterbewegung is the
consequence of the Dirac dispersion and hence can be
realized in 2D photonic [20] and phononic crystal [33],
and such effects were indeed numerically demonstrated [20]
and experimentally verified [33]. With much longer wave-
length compared to electrons, and without the complication
of electron-electron interaction, photonic, and phononic
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crystals have become an ideal platform to study various
interesting wave propagation properties related to Dirac
dispersion.

It turns out that the Dirac dispersion has interesting rela-
tionship with metamaterials, which are artificial composite
materials that have novel wave manipulation capabilities.
Since the theoretical proposal of materials with negative
refractive indices proposed by Veselago in 1968 [34] and
the first demonstration of a material with both effective
permittivity (εeff) and effective permeability (μeff) less than
zero in 2001 [35], metamaterials with all kinds of effective
permittivity (εeff) and effective permeability (μeff) not found
in nature have been designed and realized [35–48]. With the
help of these metamaterials, many interesting waveguiding
properties, some seemingly fictional, have been achieved
including negative refraction [35–39], superlens [40, 41],
cloaking [42–44], field concentrators [45], superscatterer
[46], field rotators [47], and illusion optics [48]. While
previous attention may have been focused on realizing meta-
materials with negative refractive indices, materials that have
zero refractive indices are equally interesting. As n2 = εμ,
a zero-refractive-index material can have either single zero
(εeff = 0 or μeff = 0) or double zero (εeff = μeff = 0)
[49–64]. There is no phase variance in the wave transport
process inside a zero-index material. This leads to many
peculiar properties such as the tunneling of electromagnetic
waves through subwavelength channels and bends [49–57],
the tailoring of the radiation phase pattern of arbitrary
sources [58–60], and the cloaking of objects inside a channel
with specific boundary conditions [61–64]. The tunneling
phenomenon has been demonstrated experimentally using
complementary split ring resonators at the microwave fre-
quency [55]. However, the impedance mismatch is typically
huge for single-zero materials, and the incident wave may
encounter reflection when the aperture of the waveguide
is larger than wavelength [60, 64]. This problem can be
mitigated if we use double-zero material (εeff = 0 and μeff = 0
at the same frequency).

While Dirac cone dispersion and zero-index materials
may seem unrelated, there is a subtle relationship between
them. If we have a homogeneous material with isotropic
dispersive permittivity ε(ω) and permeability μ(ω) at a par-
ticular frequency ω0 and ε(ω0) = μ(ω0) = 0, the dispersion
near ω0 will have a linear dispersion, ω = ω0 +vgk, where k is
the wave vector and vg is the corresponding group velocity
[65]. This linear dispersion and the associated conical
dispersion are different from the Dirac dispersion found in
graphene [2–15] or hexagonal photonic/phononic crystals
[16–24, 31–33] as the Dirac point is not at the Brillouin zone
boundary but at the zone center. This relationship opened
a new window to the physics related to Dirac cones but the
question is whether we can construct a metamaterial with
ε(ωD) = μ(ωD) = 0 at a particular frequency ωD using a
conical dispersion at k = 0 close to this frequency. Another
important issue is that a homogenous ε(ω0) = μ(ω0) = 0
implies a Dirac cone dispersion but the converse may not
be true for the simple reason that an effective medium
description may or may not be applicable to the composite
material with a Dirac cone dispersion. We will show by

examples that there are indeed systems which have Dirac-
like cone at k = 0, and we will examine the conditions for
effective medium theory to be applicable [66].

We will show that if a 2D photonic crystal has C4v

symmetry, we can obtain accidental degeneracy of a twofold
degenerate state and a nondegenerate state at Γ point by
tuning the parameters of the structure, and that two of the
states of the triply degenerate state have linear dispersions
near Γ, and they can generate conical dispersions. We will
further demonstrate that if the triply degenerate state is
derived from monopole and dipole excitations, we can use
effective medium theory to map this photonic crystal to a
zero-index material with both permittivity and permeability
equal to zero simultaneously [66]. We will also give examples
that conical dispersions at the zone center can be obtained
for situations in which the bands are not derived from
monopole and dipole excitations, and in these cases, we will
demonstrate that these Dirac-like cone systems cannot be
related to an effective medium with a zero refractive index.
In this paper, we will also examine the Berry phase [67]
associated with the Dirac-like cone at k = 0 which is the
phase acquired by the eigenvector over a cyclic evolution
in k space about the Dirac point. It is known that the
Berry phase associated with the Dirac cone is π in electronic
graphene and has very subtle implications in wave function
transport properties [4–6]. We will show that the Berry
phase associated with the Dirac-like cone at Γ point is
different from that of graphene because of the existence of an
additional quasi-longitudinal mode. The paper is organized
as follows. In Section 2, we introduce the Dirac-like point
at Γ point and M point in 2D photonic crystal with C4v

symmetry and examine the possibility and consequences of
effective medium descriptions. In Section 3, we calculate the
Berry phase of the triply degenerate state formed by Dirac-
like point. We will then give a summary.

2. Dirac-Like Point at Γ Point and
M Point in C4v Symmetry

Let us first consider an example of a 2D photonic crystal
that exhibits a Dirac-like cone in the zone center and in
this specific structure, effective medium theory can be used
to relate the system to an effectively zero-refractive-index
system [66]. The photonic crystal is a square array of alumina
cylinders with relative permittivity ε = 8.8 in air and the
polarization is transverse-magnetic (TM) polarization, with
electric field parallel to the cylinder axis. The radii of the
cylinders are 0.221a, where a is the lattice constant. There
is a triply degenerate state at a frequency ωD at the Γ point.
We note that the triple degeneracy is not a consequence
of lattice symmetry in the sense that if we choose other
system parameters (e.g., a different cylinder radius), the
triple degenerate state will split into a doublet and a
singlet. The field patterns of these three states are shown in
Figures 1(d)–1(f). We see that electromagnetic field is mostly
confined inside the high refractive index rod and two of
the eigenmodes (panels (e) and (f)) have a strong dipolar
character, with the wave vector perpendicular/parallel to
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Figure 1: (a) The band structure of a two-dimensional photonic crystal composing of alumina cylinders arranged in a square lattice for the
TM polarization. The radii of the cylinders are 0.221a. The relative permittivity of the cylinders is 8.8. At the Γ point, a triply degenerate
state is formed, and the linear dispersion near the zone center is highlighted in (b). (c) The effective permittivity εeff (black solid line) and
permeability μeff (red dash line) of this alumina photonic crystal. Note that εeff = μeff = 0 at the Dirac-like point. (d)–(f) The field patterns
of the three eigenmodes near the Dirac-like point with a very small k along ΓX direction.

the dipole moment (transverse/longitudinal dipole mode),
and the other eigenmode has a monopole character. By
examining carefully the band diagram nearωD ((Figure 1(b))
corresponding to the solid blue region in Figure 1(a), we
found that the two linear bands generate a conical dispersion
with the upper and lower cones touching at a Dirac-like
point at ωD. The equifrequency contours are circular near
ωD and eigenmodes in the cones are linear combinations
of transverse dipole and monopole modes. There is an
extra flat band intersecting the Dirac-like cones at ωD. The
modes in this flat sheet of states are quasi-longitudinal such
that the magnetic field is mostly parallel to the k-vector.
It can be shown [68] that if the band dispersions in a 2D
photonic crystal can be described by monopole and dipole
interactions, an effective medium theory [68] can be applied
to extract effective constitutive parameters and when these
parameters of the photonic crystal are retrieved, we find
that εeff(ωD) = μeff(ωD) = 0 at the Dirac frequency ωD

(Figure 1(c)). The sheet of quasi-longitudinal modes cutting
through the Dirac-like point corresponds to the longitudinal
solution to the Maxwell equation when μx = μy = 0 for
TM polarization (or εx = εy = 0 for TE polarization).
For a homogenous isotropic medium with ε = μ = 0, this
longitudinal mode has exactly zero group velocity but in a
composite system, this mode has a quadratic dispersion far
away from the zone center because of spatial dispersion.

In order to demonstrate that the photonic crystal with
a band dispersion shown in Figure 1 does have εeff(ωD) =
μeff(ωD) = 0 at the Dirac frequency, numerical simulations,
and microwave experiments were carried out [66]. Both the
focusing effect through a concave lens and the waveguiding
and cloaking effect through a waveguide filled with εeff =
μeff = 0 photonic crystal were demonstrated. The εeff = μeff =
0 photonic crystal was demonstrated to have nearly the same
field distributions as a homogenous ε = μ = 0 medium
in wave transport simulations. For example, as there is no
phase change during the propagation through a zero-index
material, the zero-index material can serve as a wavefront
transformer [58–60]. Here, we numerically demonstrate
another wavefront transformer phenomenon, the transfor-
mation of a Gaussian beam to a plane wave. In Figure 2(a),
an 18a×18a block of a hypothetical homogeneous ε = μ = 0
medium is put inside a waveguide and is illuminated with
a tightly focused Gaussian beam whose waist is equal to 3a,
where a is the lattice constant of the photonic crystal shown
in Figure 1. As the only allowed propagation mode through
a homogeneous ε = μ = 0 medium is a plane wave with
zero parallel wavevector and as the exit surface is flat, the
wave leaving the exit surface should be a plane wave with
equal phase at the exit surface as demonstrated numerically
in Figure 2(a). The field inside the homogeneous ε =
μ = 0 medium is constant. In Figure 2(b), we replace the
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Figure 2: Numerical simulation that demonstrates the εeff = μeff = 0 property of the alumina photonic crystal with Dirac-like cone dispersion
at the Brillouin zone center. (a) An 18a× 18a block of a hypothetical homogeneous ε = μ = 0 medium is placed inside a waveguide with a
tightly focused (waist equal to 3a) Gaussian beam incident at the surface of the homogeneousε = μ = 0 medium. As the ε = μ = 0 medium
only allows plane wave with k‖ = 0 to propagate, we expect only plane wave can exit, which can be clearly seen. The Gaussian wave front is
transformed to a plane wave. (b) By replacing the homogeneous ε = μ = 0 medium with the εeff = μeff = 0 alumina photonic crystal, very
similar wavefront transformation can be observed. Here, a is the lattice constant of the photonic crystal.

homogeneous ε = μ = 0 medium with the photonic crystal
consisting of alumina cylinders, and we observe a similar
transformation of a Gaussian wave to a plane wave. The field
distributions inside the photonic crystal are slightly different
from the homogeneous ε = μ = 0 medium shown in
Figure 2(a) due to the excitation of the quasi-longitudinal
mode in the photonic crystal.

The realization of εeff = μeff = 0 using dielectric photonic
crystals may enable us to achieve various waveguiding
applications specific to zero-refractive-index medium in
the near future. There are multiple ways to realize a zero
refractive index. For example, εeff = 0 or μeff = 0 or εeff =
μeff = 0 metamaterial can be designed and fabricated using
metallic resonant structures [55]. However, metallic resonant
structure is always lossy, and the loss will become more
severe when at higher frequencies. On the other hand, as the
photonic crystals with Dirac-like cone at k = 0 are made with
dielectric, the system can function as εeff = μeff = 0 system
with small material loss all the way up to optical frequencies
and the fabrication of nanoscale dielectric pillar structure
is feasible with modern silicon nanofabrication technology
[69]. We also remark that the Dirac-like cone at k = 0 gives
us εeff = 0 and μeff = 0 simultaneously (“double zero”) which
has the advantage of a finite group velocity and favorable
impedance matching as compared to a “single zero” material
(εeff = 0 or μeff = 0 but not both) which has a zero group
velocity and poor impedance matching. The double-zero
condition is difficult to satisfy if we use metallic resonators
to obtain εeff = 0 and μeff = 0 at the same frequency.

As the necessary (but not sufficient) condition to get
an εeff = μeff = 0 photonic crystal is a Dirac-like cone
at k = 0 and the condition to get a Dirac-like cone at
the zone center is accidental degeneracy, we will discuss
here how to obtain accidental degeneracy, and we limit
our discussion here to square lattice systems. The point
group symmetry of a photonic crystal of square array of
cylinders belongs to the C4v group [70]. The irreducible
representations of C4v point group are A1, B1, A2, B2, and
E, where A1, B1, A2, B2 are nondegenerate representations,
and E is a doubly degenerate representation. The eigenstates
at k = 0 of a square lattice photonic crystal should have

symmetries related to these irreducible representations. At
a finite frequency, the dispersion of a nondegenerate band
at Brillouin zone center has to be parabolic as required by
time reversal symmetry [71–73]. However, we need linear
bands to generate Dirac-like cones. Linear dispersion at the
Brillouin zone center (Γ point) can emerge as a consequence
of accidental degeneracy of states which are not required by
lattice symmetry to be equal in frequency and such accidental
degeneracy can be obtained by tuning the dielectric constant
or the radii of the cylinders in 2D photonic crystals.

For a periodic structure with a permittivity distribution

ε(
⇀
r ), the Bloch eigenfunction ψk(

⇀
r ) should satisfy the

equation

∇×
⎡⎢⎣ 1

ε
(⇀
r
)∇× ψk

(⇀
r
)⎤⎥⎦ = ω2

k

c2
ψk

(⇀
r
)

, (1)

where ψk(
⇀
r ) is the eigenmode of the magnetic field and ωk is

the corresponding eigenvalue. The Bloch eigenfunction can
be chosen to a linear combination of the localized states (e.g.,
Wannier-type function) of A1, B1, A2, B2, E representations
of the C4v point group [72–75] centered on the cylinders. It
can be written as

ψk

(⇀
r
)
= 1

V

∑
l, m

ei
⇀
k·⇀r lm

∑
i

AiM
(i)
(⇀
r −⇀r lm

)
, (2)

where
⇀
r lm = lax̂ + maŷ, a is the lattice constant. V is

the volume of the unit cell. M(i)(
⇀
r ) are localized functions

of A1, B1, A2, B2, E representations, where i labels the
irreducible representation. These basis functions are chosen
to be orthogonal∫

V
d
⇀
r M(i)∗

(⇀
r
)
·M( j)

(⇀
r
)
= Vδij . (3)

The integral is over the whole unit cell V .
These basis functions have different symmetry proper-

ties. For instance, modes of the A1 representation invariant
for all symmetry operation and if a band is derived from the
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monopole excitations of the cylinders, it should be expanded

by MA1 (
⇀
r ). As modes of E representations have mirror

symmetry about the x- and y-axis, respectively, ME
1,2(�r) can

be used to expand bands that derived from dipole excitations
of the cylinders in the photonic crystals. We can obtain a
“double-zero” photonic crystal if we design the system to
have accidental degeneracy so that the monopole and dipole
derived bands become degenerate at the zone center. In
that case, the eigenmodes near the zone center should be

expressed as a linear combination of MA1 (
⇀
r ) and ME

1, 2(�r)
states. Generally speaking, if there is accidental degeneracy at
the zone center, the eigenmodes will be a combination of two
irreducible states, either a mix of three states (for the case of
E state degenerate with any nondegenerate state) or a mix of
two states (the degeneracy of two nondegenerate states). For
simplicity, we only consider the accidental degeneracy of E
state and A1 state. If we only consider the nearest neighbor

interaction, l,m = 0,±1, multiply M(i)∗(
⇀
r )on both side

of (1), integrate over the unit cell V , and use orthogonal
condition of (3), we can transfer (1) into a secular equation

∣∣∣∣∣←→S − ω2
D

c2

←→
I

∣∣∣∣∣ = 0. (4)

←→
S is a 3 × 3 matrix with Si j =

∑
lm eia(lkx+mky)L

i j
lm, where

L
i j
lm ≡ (1/V)

∫
V d

⇀
r M(i)∗(

⇀
r ) · ∇ × [(1/ε(

⇀
r ))∇ ×M( j)(

⇀
r −

⇀
r lm)] is a transfer integral. ωD is the accidental degeneracy
frequency. M(i/ j) can be either MA1 or ME

1, 2. By solving (4)
close to the Γ point, with tiny kx and ky , the dispersion near
ωD can be found consisting of two linear bands with a finite
group velocity along with a quadratic band which is very
flat near the Γ point. The linear bands will generate conical
dispersion (Dirac cone) close to the degeneracy frequency
ωD near the Γ point. The degenerate frequency ωD is the
Dirac-like point frequency we are looking for. We note that
the emergence of linear bands as a consequence of accidental
degeneracy at k = 0 can also be obtained using multiple
scattering theory [66] or k · p perturbation [76, 77]. Conical
dispersions will also emerge from the accidental degeneracy
of E states and the other three nondegeneracy states B1, A2,
B2. The linear bands giving rise to conical dispersion will
always be accompanied by a quadratic band if the accidental
degeneracy is threefold.

We now have a recipe to create Dirac dispersion at a
finite frequency at k = 0 for the lattice with C4v point group
symmetry. However, we should emphasize that Dirac dis-
persion is a necessary but not sufficient condition to obtain
εeff = μeff = 0. As we are always dealing with composite
materials with at least two components, an effective medium
theory must be applied to extract the effective constitutive
parameters from the optical properties of the discrete system.
For photonic applications, we prefer to use “local” effective
parameters which depend only on the frequency but not
the wave vector. The Dirac cones that are discussed in the
literature are located at the Brillouin zone boundary [16–
24] and at such a large wave vector, no effective medium

theory can be applied reliably. Even at the Γ point, effective
medium theory can be applicable only if certain conditions
are satisfied. It can be shown that in 2D photonic crystals,
effective medium theory can be applied to extract εeff and
μeff if the bands are derived from the monopole and dipole
scattering of the building blocks [68], and this condition
is indeed satisfied by the photonic crystal system shown in
Figures 1 and 2. This condition can typically be satisfied in
photonic crystals comprising dielectric cylinders in air in
which the low-lying bands are formed by the scattering of
monopole and dipole excitations of the individual dielectric
cylinders, and the field distributions of the eigenmodes
tend to be confined in the cylinders. If the eigenmodes
have projections on higher multipoles, the effective medium
description will not be good. This can happen if the dielectric
constant of the cylinders is small so that Dirac-like cone
appears at high frequencies. Also, if we have an inverted
structure, such as photonic crystals with cylindrical holes
drilled in high dielectric background medium, the effective
medium will naturally fail as the eigenmodes in those
situations typically have large projections on high multipoles
centered on the holes.

From symmetry considerations, we know that as long
as there is an accidental degeneracy of a doubly degenerate
state with a nondegenerate state, the Dirac-like point can be
formed. And we have already shown in Figure 1 that Dirac-
like cones can be formed when there is accidental degeneracy
of monopole and dipole modes that are described by E and
A1 representations, and the photonic crystal behaves like
a zero-index material near the Dirac-like point. Here, we
give an example of a photonic crystal which has a Dirac-
like point that is formed by the accidental degeneracy of
eigenmodes of E and B1 representations. The system consists
of core-shell cylinders arranged in a square lattice and the
band structure for the TE polarization with the magnetic
field along the cylinder axis is shown in Figure 3(a). The
radii of the shell and core are Rshell = 0.4a and Rcore =
0.181a respectively. Here, a is the lattice constant. The relative
permittivity of the shell and core εshell = 11.75 and εcore = 1.
There is a Dirac-like point at the Γ point at the location
highlighted by the blue box, comprising of two linear bands
and a flat band cross intersecting at the same frequency
(Figure 3(a)). The enlarged band structure near the Dirac-
like point is shown in the inset. In order to understand the
underlying physics, we plot the eigenmodes of this triply
degenerate state in Figures 3(b) to 3(d). Figures 3(b) and
3(c) show that the eigenmode has strong dipole character,
and Figure 3(d) shows a quadrupole excitation. Symmetry
analysis shows that the dipole excitations belong to the E
representation, while the quadrupole excitation belongs to
the B1 representation. As effective medium theory [68] is not
expected to work when the bands have a strong quadrupole
character, we expect that the system should not behave like a
zero-index medium even though it has a conical dispersion.
To see the wave transport properties of this system near
the Dirac frequency, a Gaussian beam is illuminated to this
photonic crystal as shown in Figure 3(e), with the same
parameters as in Figure 2(b). There are phase changes inside
the photonic crystal, and the field distributions outside are



6 Advances in OptoElectronics

0.8

0.6

0.4

0.2

0
X XM Γ

0.61

0.6

0.59

Fr
eq

u
en

cy
 (
ω
a/

2π
c)

(a) (b) (c) (d)

0.2

0.1

0

−0.1

−0.2

(e)

Figure 3: (a) The band structure of a core-shell photonic crystal arranged in square lattice for the TE polarization. The radii of the shell
and core to be Rshell = 0.4a and Rcore = 0.181a. The relative permittivity of the shell and core are εshell = 11.75 and εcore = 1. Near the Γ
point, there is a Dirac-like cone dispersion. The inset is the enlarged part near the Dirac-like point shown by blue solid region. (b)–(d) The
eigenmodes of the photonic crystal at the Γ point. (b) and (c) dipole excitations, (d) quadrupole excitation. (e) As effective medium theory
cannot be applied here, the crystal cannot be mapped to a εeff = μeff = 0 system and hence the field distributions for an incident Gaussian
beam deviate from what is expected for homogeneous ε = μ = 0 medium (Figure 2(a)).

not a plane wave front. The wave transport behavior deviates
from what is expected from an ε = μ = 0 medium.

For completeness, we also show the properties of pho-
tonic crystals consisting of low dielectric cylinders and we
examine whether such systems can be used to mimic a
εeff = μeff = 0 material. We use a low dielectric constant
material, PMMA with ε = 2.6 for the cylinders. We can adjust
the structural parameters to obtain accidental degeneracy
and Dirac-like cone dispersion can be achieved as shown
in Figure 4(a). A Dirac-like cone is obtained when the radii
of the cylinders are 0.3035a. The band structure is shown
for the TM polarization in Figure 4(a). When we repeat the
same simulation as in Figure 2(b) for this PMMA photonic
crystal, the wavefront transformation effect (Figure 4(b)) is
also different to what is expected from homogeneous ε =
μ = 0 medium. In this low dielectric contrast system, the
low-lying bands are better described by a plane wave basis
rather than the coupling of localized modes centered on a
cylinder. Alternatively, one may say that the Dirac-like cone
will be found at high frequencies if the dielectric cylinders
have a low refractive index and effective medium theory has
to fail at high frequencies. In fact, calculations show that

the effective medium description gets better and better if
the cylinders have progressively higher dielectric constants
with the corresponding Dirac-like cone moving to lower
frequencies.

Some remarks are in order here. We note that the band
dispersion is not just linear in one direction, but it is isotropic
and linear in all directions of k-vectors and as such, the
isotropic linear dispersion generates two cones that touch at
one point commonly referred to a Dirac point. The Dirac
cone dispersion in graphene is generated by two degrees
of freedom, frequently formulated as two components of a
pseudospin. These two degrees of freedom are actually the
amplitude of the pz wave functions on sites A and B of
the carbon atoms within the unit cell of graphene. In the Γ
point Dirac cone in photonic crystals, we actually have three
degrees of freedom, two from the dipolar excitations and
one from the monopolar excitation. These three freedoms
generate a conical dispersion plus a flat band. We also
remark that not all linear dispersions form Dirac cone/Dirac
point. For example, most classical wave systems have linear
dispersions in the limit of ω → 0, but this is not a Dirac cone
as the negative frequency solution has no physical meaning.
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Figure 4: (a) The band structure of PMMA photonic crystal arranged in a square lattice for the TM polarization. The radii of the cylinders
are 0.3035a. The relative permittivity of the PMMA is 2.6. Near the Γ point, there is also a Dirac-like cone dispersion. The inset is the enlarge
part near the Dirac-like point shown by blue solid region. (b) The field distributions for a Gaussian beam illumination. The Gaussion beam
parameters are the same as in Figure 2.

0.8

0.6

0.4

0.2

0
MΓ ΓX

Fr
eq

u
en

cy
 (
ω
a/

2π
c)

0.54

0.53

0.52

(a)

0.2

0.1

0

−0.1

−0.2

(b)

Figure 5: (a) The band structure of a alumina vein structure for the TE polarization, with the thickness of the vein equal to 0.176a. At the
M point, a conical dispersion intersects with an extra sheet. A closeup of the band diagram contour of the blue solid region is shown in
the inset. (b) The field distributions for a Gaussian beam incidence deviate from what is expected for homogeneous ε = μ = 0 medium
(Figure 2(a)).

We also remark that linear bands cutting at one point can
be found in one-dimensional photonic crystals but it takes a
two-dimensional system to define a cone in k-space.

The square lattice has the special property that the group

of the M point (
⇀
kM = (π/a)x̂+(π/a) ŷ) is the same as that of Γ

point and they both are C4v. Triply degenerate state can again
be constructed by arranging for the accidental degeneracy of
the two fold degenerate state and one nondegenerate state
at the M point. Symmetry analysis shows that we can get a
conical dispersion close to the M point, whose dispersion

can be written as ω(
⇀
k) = ωM + vg|

⇀
k −⇀kM| to the first

order where ωM is the frequency of the triply degenerate

state, vg is the group velocity of the linear band. Along
with the conical dispersion, an extra band intersects the
conical dispersion at ωM . As we show in Figure 5(a), linear
dispersion can indeed be constructed at the M point if there
is accidental degeneracy while the dispersion is quadratic
if the degeneracy comes from lattice symmetry [71]. To
illustrate this point, the dispersion of photonic crystal with
an alumina vein structure for the TE polarization is shown
in Figure 5(a). As the Dirac-like cone appears at a zone
boundary point M, we should not expect effective medium
theory to be applicable, and the wave guiding property
(Figure 5(b)) is indeed different from what is expect from a
homogeneous ε = μ = 0 medium. In addition, we can also
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use vein-like structures to achieve Dirac-like cone dispersion
at Γ point, which corresponds to a large square hole drill
inside background medium. Again, the low-lying bands of
that type of structures cannot be described by monopole and
dipole excitations and the system cannot be mapped to a
homogeneous ε = μ = 0 medium even if there is conical
dispersion.

The above discussions show that Dirac-like cone dis-
persion at the Γ point is a necessary condition to obtain
ε = μ = 0 but it is not a sufficient condition. The εeff =
μeff = 0 property is a special property of some (but not
all) photonic crystals with conical dispersion. We note that
other intriguing wave transport properties such as pseudo-
diffusive transmission [17, 18] and Zitterbewegung [20, 33]
are properties of the conical dispersion and can be observed
as long as there is a cone, irrespective of whether effective
parameters are retrievable or not.

3. The Berry Phase of Dirac-Like Point with
Triply Degenerate State

In the above discussion, we considered the relationship
between Dirac-like point and zero-index material. The zero-
index property is related to a triply degenerate state, with a
flat band of a quasi-longitudinal mode crossing the Dirac-
like point formed by cones generated by two linear bands.
At a first glance, the longitudinal flat band with a zero group
velocity in homogeneous material has no role in the Dirac-
like point physics and in the literature, there are indeed
calculations that ignored the longitudinal mode at all [65].
Even though the longitudinal mode inside the zero-index
material cannot be excited by incident plane waves and hence
do not participate in the wave transport for some cases, its
existence does have some subtle effects. For example, if this
longitudinal mode is ignored, the modes near the Dirac-like
point can be described by a 2× 2 Hamiltonian which can be
mapped to the Hamiltonian of a spinor, and such systems
can potentially carry a nonzero Berry phase [78, 79]. On
the other hand, the triple degenerate state is similar to the
spin 1 system [78, 79] and the Berry phase should be zero.
Therefore, the existence of the longitudinal state changes the
Berry phase of the Dirac-like point which bears implication
when we consider effects such as coherent backscattering of

light [80] when disordered is introduced. Since our zero-
index materials correspond to the accidental degeneracy of
the monopole and dipole, it is convenient to use the multiple
scattering theory (MST) to calculate the Berry phase, as will
be sketched below.

The MST equation can be written as [66]

⎛⎜⎜⎜⎜⎜⎜⎜⎝

S0 − 1
D−1

−S1 S2

−S−1 S0 − 1
D0

−S1

S−2 −S−1 S0 − 1
D1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝
b−1

b0

b1

⎞⎟⎟⎠ = 0, (5)

where Dm and bm are the T-matrix and Mie scattering coef-
ficients of the angular momentum number m, respectively,
and Sm denotes the lattice sum in MST. The mathematical
details of the MST method can be found in [66]. We can do
a small k expansion for the eigenmodes near the Γ point. As
δk → 0, S0 − 1/D0, S0 − 1/D±1, S1 and S2 can be written as

S0 − 1
D0

≈ i
(
A0(ω) + B(ω)δk2),

S0 − 1
D±1

≈ i
(
A1(ω) + B(ω)δk2),

S1 ≈ C1(ω)δkeiφk ,

S2 ≈ C2
(
ω,φk

)
δk2,

(6)

where A0(ω), A1(ω), B(ω), and C1(ω) are all real functions
of ω only, and C2(ω,φk) is a function of ω and φk · φk is

the angle of δ�k in the polar coordinate. If there is accidental
degeneracy, such that ωm = ωd = ω∗(here ωm and ωd are
the eigen frequencies of the monopole and dipole excitations,
resp.), we can do a small ω expansion near ω∗ and obtain
S0 − 1/D0 ≈ i(A′0(ω∗)(ω − ω∗) + B(ω)δk2), where A′0(ω) =
∂A0(ω)/∂ω, and S0−1/D±1 ≈ i(A′1(ω∗)(ω−ω∗) +B(ω)δk2),
where A′1(ω) = ∂A1(ω)/∂ω. By substituting them into (5), we
can obtain

⎛⎜⎜⎜⎜⎝
i
(
A′1(ω− ω∗) + Bδk2

) −C1δkeiφk C2δk2

C1δke−iφk i
(
A′0(ω − ω∗) + Bδk2

) −C1δkeiφk

−C∗2 δk2 C1δke−iφk i
(
A′1(ω − ω∗) + Bδk2

)
⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎝
b−1

b0

b1

⎞⎟⎟⎠ = 0. (7)

The secular equation of (7) is a cubic equation of δω:

− (A′1δω + Bδk2)2(
A′0δω + Bδk2)

+ 2
(
A′1δω + Bδk2)C1

2δk2 +
(
A′0δω + Bδk2)|C2|2δk4

− 2 Im
(
C∗2 e

2iφk
)
C2

1δk
4 = 0,

(8)

where δω = ω − ω∗. By solving this secular equation, we
find three solutions: one is ω1 − ω∗ = 0 + O(δk2), which
corresponds to a band of quadratic dispersion. The other
two solutions are ω2,3 − ω∗ = ±vgδk + O(δk2), where vg =√

2|C1|/
√
A′1A

′
0, which corresponds to two bands with linear

dispersions that generate a Dirac cone.
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Neglecting the δk2 term, and substitute δω = (
√

2|C1|/√
A′1A

′
0)δk = vgδk into (7) for the accidental degenerate

monopole and dipoles, (7) can be written as⎛⎜⎜⎜⎝
iA′1vgδk −C1δkeiφk 0

C1δke−iφk iA′0vgδk −C1δkeiφk

0 C1δke−iφk iA′1vgδk

⎞⎟⎟⎟⎠
⎛⎜⎜⎝
b−1

b0

b1

⎞⎟⎟⎠ = 0. (9)

Solving (9), we can obtain the relationships between b−1,
b1 with b0,

b−1 = −iC1eiφk

A′1vg
b0, b1 = i

C1e−iφk

A′1vg
b0. (10)

The eigenvector of (9) is:

|Φk〉 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−iC1eiφk

A′1vg
1

i
C1e−iφk

A′1vg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11)

Therefore, the Berry phase of the eigenstate |Φk〉 is

∮
i
〈
Φk | ∇�kΦk

〉
· d�k=

∮
i

(
i
C1e−iφk

A′1vg
1 −iC1eiφk

A′1vg

)
∇�k

⎛⎜⎜⎜⎜⎜⎝
−iC1eiφk

A′1vg
1

i
C1e−iφk

A′1vg

⎞⎟⎟⎟⎟⎟⎠·d�k

=
∮
i

(
i
C1e−iφk

iA′1vg
1 −iC1eiφk

A′1vg

)⎛⎜⎜⎜⎜⎜⎝
C1eiφk

A′1vg
0

C1e−iφk

A′1vg

⎞⎟⎟⎟⎟⎟⎠∇�kφk ·d�k=0.

(12)

From the above analysis, we can see that the Berry phase
is equal to zero, which is caused by the existence of the
longitudinal flat band. This result is consistent with the
discussion shown in [77].

4. Conclusion

In summary, we show that a Dirac-like point formed by
a triply degenerate state can exist at the k-points Γ and
M in photonic crystals with C4v symmetry. Such triply
degenerate states are consequences of accidental degeneracy,
which can be achieved by tuning system parameters. Such
systems have linear bands crossing the degeneracy point
and these linear bands generate Dirac-like cone dispersions.
These conical dispersions are generally accompanied by
additional parabolic bands that are very flat at the Dirac-
like point. For the special case in which the triply degenerate
state is derived from monopole and dipole excitations,
the system can be mapped to εeff = μeff = 0 material
through effective medium theory. For other cases in which
the bands near the Dirac-like point are not derived from
monopole and dipole excitations, effective medium theory
does not apply. Using the multiple scattering theory, we
calculate the Berry phase of eigenmodes in the Dirac-like
cone when there is accidental degeneracy and the phase
is found to be zero. Similarly, we can extend Dirac dis-
persion and effective medium theory to three dimensions
[81, 82].
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