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The kagome lattice based on 3d transition metals is a versatile platform for novel topological 

phases hosting symmetry-protected electronic excitations and exotic magnetic ground states.  

However, the paradigmatic states of the idealized two-dimensional (2D) kagome lattice –

Dirac fermions and topological flat bands – have not been simultaneously observed, partly 

owing to the complex stacking structure of the kagome compounds studied to date. Here, we 

take the approach of examining FeSn, an antiferromagnetic single-layer kagome metal with 

spatially-decoupled kagome planes. Using polarization- and termination-dependent angle-

resolved photoemission spectroscopy (ARPES), we detect the momentum-space signatures 

of coexisting flat bands and Dirac fermions in the vicinity of the Fermi energy. Intriguingly, 

when complemented with bulk-sensitive de Haas-van Alphen (dHvA) measurements, our 

data reveal an even richer electronic structure that exhibits robust surface Dirac fermions 

on specific crystalline terminations. Through band structure calculations and matrix 

element simulations, we demonstrate that the bulk Dirac bands arise from in-plane localized 

Fe-3d orbitals under kagome symmetry, while the surface state realizes a rare example of 

fully spin-polarized 2D Dirac fermions when combined with spin-layer locking in FeSn. 

These results highlight FeSn as a prototypical host for the emergent excitations of the 

kagome lattice.  The prospect to harness these excitations for novel topological phases and 

spintronic devices is a frontier of great promise at the confluence of topology, magnetism, 

and strongly-correlated electron physics.  



The kagome lattice is a two-dimensional network of corner-sharing triangles (Fig. 1a), 

which has originally gained the spotlight as a platform for frustration-driven exotic spin-liquid 

phases.1,2 Recent theoretical investigations have focused on the emergent electronic excitations 

engendered by the special geometry of the kagome network, whose unique combination of lattice 

symmetry, spin-orbit coupling, and unusual magnetism sets an ideal stage for novel topological 

phases.3–8 Viewed as an isolated layer, the kagome lattice hosts a flat band and a pair of Dirac 

bands, the latter protected by symmetry, in analogy to graphene (Fig. 1b).3,4 Compounded with 

spin-orbit coupling and a net magnetization, the two-dimensional kagome lattice realizes a 2D 

Chern insulator phase with quantized anomalous Hall conductance at 1/3 and 2/3 fillings.5 When 

these quantum anomalous Hall layers are stacked along the third dimension, the interlayer 

interaction drives the mass gap to be closed and reopened along the stacking axis, transforming 

the system into a three-dimensional Weyl semimetal phase with broken time-reversal symmetry.7,9 

At the same time, a flat band on the kagome lattice also carries a finite Chern number, and mimics 

the phenomenology of Landau levels, without an external magnetic field.8,10 As a result, the 

fractional quantum Hall state can be realized at a partial filling of these flat bands, further enriching 

the spectrum of topological phases that can be harnessed within the kagome lattice. 

These promising theoretical proposals have driven and guided recent experimental efforts 

toward the realization and study of topological kagome metals based on binary and ternary 

intermetallic compounds11–22. At variance with other widely studied s or p orbital-based 

topological systems that are close to the non-interacting limit, the kagome lattice in these 

intermetallic materials is populated by the low-energy 3d electrons of transition metals (Fig. 1a), 

and thus provide an ideal platform to study the interplay of electronic topology and strong 

correlations. Correspondingly, not only topological electronic structures but also rich intrinsic 

magnetism can be found in the 3d kagome metal series. The combination of these two aspects 

gives rise to intrinsic anomalous Hall conductivity via various mechanisms.11,13,15,19,20 

Despite the great potential and rich phenomenology of this family of materials, the 

experimental realization of the electronic structure of an idealized 2D kagome lattice, namely the 

Dirac fermions and topological flat bands (Fig. 1b), in bulk magnetic kagome crystals has 

remained an outstanding challenge. For instance, in the binary intermetallic TmXn kagome series 

(T = Mn, Fe, Co, X = Sn, Ge, m:n=3:1, 3:2, 1:1) with various stacking sequences of kagome and 

spacer X layers (Fig. 1c-e), the quasi-2D Dirac electronic structure has been detected only in 



Fe3Sn2
15 but not in Mn3Sn.13 Rather, Mn3Sn and ternary kagome compound Co3Sn2S2, three-

dimensional magnetic Weyl points have been identified as the potential origin for the chiral 

anomaly in transport13,19, as also confirmed by band structure calculations7,19–21. For what concerns 

the flat bands, a diverging density of states was found in Fe3Sn2 and Co3Sn2S2 using scanning 

tunneling spectroscopy, however, no signatures of these nondispersive excitations in momentum 

space have been reported so far, presumably due to the complex stacking structures (Fig. 1d).18,22 

Given the premises, the investigation of a material with a simpler stacking structure is desired to 

provide a prototypical realization of the electronic structure of the kagome lattice. 

 In this study, we report the electronic structure of single-layered kagome metal FeSn, 

unique among its TmXn sibling compounds in that it is based on isolated and spatially decoupled 

kagome planes (Fig. 1e, see Methods and Supplementary Fig. 1 for details on synthesis and 

characterizations). Compared to the previously-studied Mn3Sn and Fe3Sn2 structures (Fig. 1c,d), 

FeSn is the one closest to the 2D limit, setting an ideal stage to investigate the electronic structure 

of the 2D kagome network in a bulk crystal. FeSn is magnetically ordered, with Fe moments 

ferromagnetically aligned within each kagome plane but antiferromagnetically coupled along the 

c-axis.23 This magnetic state allows for a simple hopping model, free from the complications of a 

non-collinear magnetic texture as instead is found in Mn3Sn-type kagome antiferromagnets.11 As 

detailed below, our comprehensive study of the electronic structure of FeSn – combining ARPES, 

magneto-quantum oscillations, and density functional theory (DFT) calculations – reveals the rich 

phenomenology of the kagome lattice in its full variety, featuring the coexistence of bulk and 

surface Dirac fermions, as well as the long sought-after flat bands. 

 In Figure 2, we summarize our photoemission experiments on FeSn. We first note that 

FeSn can expose two possible surface terminations upon cleaving, namely the kagome and Sn 

terminations marked as A and X in Fig. 1e. We determined that the surface termination can be 

uniquely identified in situ using X-ray photoelectron spectroscopy (XPS) on Sn 4d core levels as 

shown in Fig. 2a,b (see Methods and Supplementary Fig. S2,3 for detailed analysis of XPS spectra 

and atomic force microscopy characterization of the surface terminations), and measured valence 

band structure on both terminations. Interestingly, our ARPES data uncover a strong dependence 

of the valence band structure on surface termination. In Fig. 2d,f, we first present the Fermi surface 

(d) and energy-momentum dispersion (f) from the kagome termination. The most prominent 

feature on the Fermi surface is a circular electron pocket (dashed circle in Fig. 2d) centered at the 



corner of the hexagonal Brillouin zone (K-point), which arises out of the Dirac bands expected 

from the kagome tight binding model (Fig. 1b) and previously observed in Fe3Sn2.15 The energy-

momentum dispersion across the K-point (Fig. 2f) confirms the presence of a clear Dirac cone 

structure (DC1) with linear crossing at ED1 = –0.43 ± 0.02 eV. To closely visualize the momentum-

space structure of the Dirac bands, we show a series of constant energy maps in Fig. 2g-j, measured 

at +0.4 eV, +0.2 eV, 0 eV, and –0.2 eV with respect to ED1. Far above ED1, the large electron 

pocket centered at the K-point (Fig. 2g) can be seen, which shrinks to a single Dirac point (Fig. 2i) 

and reopens (Fig. 2j) linearly as the energy crosses ED1. The velocity of Dirac fermions in FeSn is 

(1.7 ± 0.2)´105 m/s, an order of magnitude lower than that of graphene and in close range of that 

of Fe3Sn2
15 and Fe-based superconductors24–26, possibly reflecting the more correlated nature of 

Fe-3d electrons. Overall, our ARPES data directly establish the Dirac fermiology of kagome-

derived bands in FeSn.  

Intriguingly, the electronic structure measured on the Sn termination is even richer than the 

kagome termination, as shown in Fig. 2c,e. The Fermi surface (Fig. 2c) exhibits a triangular 

electron pocket centered at the K-point in addition to the circular pocket from DC1. The band 

dispersion shown in Fig. 2e reveals that the new pocket arises from a second Dirac cone (DC2) 

with crossing at ED2 = –0.31 ± 0.02 eV. The binding energy and dispersion of DC1 is unaltered on 

this termination. Further, DC1 and DC2 exhibit very different trigonal warping patterns away from 

the Dirac point (black dashed circle and triangle in Fig. 2c), despite their similar Dirac velocity. 

This aspect hints at the different origin of two Dirac bands, and rules out other scenarios, such as 

spin-splitting, layer-splitting, quantum-well states27 or bosonic shake-off replicas.28 Instead, the 

inequivalence of the electronic spectra from the two terminations provides a direct insight on the 

nature of DC1 and DC2: the former is a bulk Dirac band that manifests itself independently of the 

surface termination, while the latter represents a surface Dirac state that is observed only on the 

Sn termination. Photon energy-dependent ARPES measurements further reveal that the 

dispersions of DC1 and DC2 are unaltered along the out-of-plane direction (Supplementary Fig. 

S4), reflecting the 2D nature of Dirac fermions in FeSn. 

The surface vs. bulk origin of the two Dirac bands can be further pinned down using a bulk 

sensitive probe of the electronic structure: here we focus on the de Haas-van Alphen effect, which 

as a thermodynamic quantity exclusively measures the quantized Landau level formation of bulk 

Fermi surfaces. Using torque magnetometry at high magnetic fields and low temperatures 



(Methods), we resolve dHvA oscillations (see Supplementary Fig. S5) with frequencies 

summarized in Fig. 3a as circles. Multiple frequencies are observed which vary systematically as 

a function of field orientation with respect to the kagome plane normal (q, see inset of Fig. 3a). 

Magnetoresistance Shubnikov-de Haas (SdH) oscillations are also observed (see Supplementary 

Fig. S6) whose frequencies comprises a subset of the dHvA frequencies as marked as triangles in 

Fig. 3a. We index these branches as a1,2,3, b1,2, g1,2 and δ based on their qualitative evolution with 

q. Most importantly, the frequencies of the b , g and δ bands remain finite during a complete q 

rotation, while the a band frequency diverges as 1/cosq as the magnetic field is tilted toward the 

kagome plane. The former behavior is a characteristic of three-dimensional closed Fermi pockets, 

while the latter is indicative of quasi-2D Fermi sheets (for an ideal 2D Fermi surface, a f(q) = f0 / 

cosq dependence is expected where f0 is proportional to the area of Fermi surface AF). The values 

of f0 (AF) extracted from the fit (dashed lines in Fig. 3a) are 1310 T (0.125 Å-2), 3642 T (0.348 Å-

2), and 6755 T (0.656 Å-2) for a1, a2, and a3 respectively. To further characterize these Fermi 

surfaces, we show in Fig. 3b the damping of the quantum oscillation amplitudes with elevated 

temperature fitted with a Lifshitz-Kosevich formula (see Methods). The obtained effective masses 

m* of the a1, a2, and a3 bands are (5.4 ± 0.4) me, (3.1 ± 0.2) me, and, (4.3 ± 0.3) me respectively. 

 To validate the correspondence between the observations from ARPES and quantum 

oscillations, we compare the experimental parameters of DC1, DC2, a1, a2, and a3 in Table 1. In 

magneto-quantum oscillations, vF can be obtained from m* by assuming a Dirac dispersion17, i.e. 

𝑣" = $𝐸"/𝑚∗ . An excellent agreement in both AF and vF is obtained between DC1 and a2, 

suggesting that they represent the same band. This equivalence confirms the bulk origin of DC1, 

whose Landau orbit under high magnetic field appears as a2 in both dHvA and SdH experiments. 

In contrast, both AF and vF of DC2 markedly deviate from those of a1 and a3, by a factor of almost 

2. Instead, a close comparison with calculated dHvA spectrum (Supplementary Fig. S7) suggests 

that a1 and a3 originate from different quasi-2D Fermi surfaces centered at G. The absence of a 

bulk band corresponding to DC2 thus demonstrates its surface origin as inferred from the 

termination-dependent ARPES spectra above. In sum, by combining complementary 

photoemission and quantum oscillations experiments, we confirmed the quasi-2D Dirac 

fermiology of FeSn, and also revealed the unusual coexistence of surface and bulk Dirac fermions 

in the single compound. 



 To understand the origin of surface and bulk Dirac fermions, we extended the tight binding 

calculations of the ideal two-dimensional kagome lattice (Fig. 1b) to incorporate the d-orbital 

degrees of freedom. Further, we performed DFT calculations of FeSn in both bulk and slab 

geometries. In the single-layer kagome tight binding model with a d-orbital basis, five separate 

Dirac points emerge at the K-point from the five 3d orbitals (Supplementary Fig. S8). 

Complementary bulk DFT calculations (Supplementary Fig. S9) reveal that the Dirac points with 

different orbital character respond very differently to the interlayer coupling: the Dirac points with 

in-plane orbital character (dxy and dx2-y2) retain their 2D nature and are unaffected when embedded 

in the bulk Brillouin zone, while those with out-of-plane orbital character (dxz, dyz, and d3z2-r2) 

acquire a pronounced kz dispersion and lose their characteristic 2D kagome features in the bulk 

model. Accordingly, near the Fermi level our bulk DFT predicts a single 2D Dirac band with dxy 

+ dx2-y2 characters at E » – 0.4 eV (Fig. 4a and Supplementary Fig. S9), which is in close agreement 

with the experimentally-observed bulk Dirac cone (DC1). The robustness of the 2D Dirac 

dispersion in the bulk kagome lattice is in stark contrast to the case of graphene, where the Dirac 

cone with pz orbital character is strongly susceptible to interlayer interactions and loses its 

characteristic linear dispersion or 2D nature in multilayer or bulk form.29,30 These findings suggest 

that the careful engineering of localized 3d-orbital character is a key to realize the desired kagome 

electronic bands in bulk magnetic kagome crystals. 

The surface Dirac band (DC2) is also reproduced in DFT calculations based on a slab 

geometry. Figure 3c,d display the band structure of FeSn slabs composed of eight kagome layers 

terminated with kagome layer on one side and Sn layer on the other side. (schematically shown in 

the insets of Fig. 3c,d). In this model, the six inner kagome layers mimic the bulk local environment 

(marked as ‘bulk’, orange circles), while the outer kagome layers are subject to the surface 

potential of each termination (marked as ‘surf’, red and blue circles). For simplicity, in Fig. 3c,d 

we only weight second outermost kagome layers as a ‘bulk’ state, since all six inner kagome layers 

are essentially degenerate in terms of Dirac bands (see Supplementary Fig. S10). First, one finds 

a termination-independent Dirac cone (orange) arising from the ‘bulk’ kagome layers at E » –0.4 

eV, which corresponds to DC1 in bulk DFT and ARPES. At the same time, an additional Dirac 

band (red) localized within the surface kagome layer emerges at E » –0.3 eV in the Sn-terminated 

slab, which closely reproduces the DC2 band observed by ARPES (see Fig. 2e). The orbital 

analysis presented in Supplementary Fig. S10 reveals that the surface Dirac state (DC2) possesses 



an identical orbital character (dxy + dx2-y2) to the bulk Dirac state (DC1), indicating that DC2 is a 

surface resonant state emerging from DC1 under the surface potential. Intriguingly, the surface 

state is strongly localized on the topmost kagome layer, wherein the spins are ferromagnetically 

aligned under the intrinsic ‘A-type’ antiferromagnetism of FeSn. Therefore, the surface state (DC2) 

of FeSn realizes a rare example of fully spin-polarized 2D Dirac fermions (Fig. 3c), which far 

surpasses, for example, the partial (» 25 %) spin-polarization in the graphene/ferromagnet 

heterostructures,31 and is highly desirable for realizing fast-switching/low-power spintronic 

devices, spin-superconductors,32 and high-temperature quantum anomalous Hall effect. 

The simple single-layer structure of FeSn also enables a detailed analysis of the 

photoemission intensity pattern of the kagome-derived Dirac cone, which conveys the phase 

information of the initial state wavefunction. Such analysis has been previously utilized to uncover 

helical spin textures and chirality of Dirac fermions in three-dimensional topological insulators 

and graphene,33–35 but has never been applied to a kagome lattice. As shown in Fig. 2k,l, the 

photoemission intensity is strongly modulated around the Dirac cone, a direct consequence of 

phase interference between wave functions from different kagome sublattices. The intensity 

modulation follows a cos𝜙 function (where 𝜙 is an azimuthal rotation angle around the Dirac 

cone), with both maximum and minimum along the G-K direction but at opposite momenta above 

(Fig. 2k) and below (Fig. 2l) the Dirac point, identical to the case of graphene.34,35 As shown in 

Fig. 2n,o, our simulation based on sublattice interference of kagome initial state wavefunctions 

with Berry phase p (Fig. 2m) closely reproduces this intensity pattern, demonstrating the chirality 

of kagome-derived Dirac fermions in FeSn (See Supplementary Informations for details). 

Having fully characterized the kagome-derived Dirac states, we also searched for the 

topological flat bands in FeSn, the other defining feature of an ideal kagome lattices. Despite 

surging theoretical interests on the physics of flat bands,8,36,37 their direct signatures have been 

elusive: for example, flat bands reported in other kagome systems including Fe3Sn2 and Co3Sn2S2 

were confined to subregions of the Brillouin zone possibly due to the complex interlayer 

interactions in these systems.18,22 Based on our orbital analysis above, we could infer that FeSn 

might be an ideal system where flat bands constructed from in-plane d-orbitals are invulnerable to 

interlayer interactions and retain their nondispersive character in all three momentum-space 

directions. Accordingly, our bulk DFT calculation reveals quasi-2D nearly flat bands (with the 

bandwidth about 1/5 of that of the Dirac bands) with dxy and dx2-y2 characters at about 0.5 eV above 



Fermi level (see Supplementary Fig. S9 and Fig. 4a). In combination with the observed Dirac cone 

structure, the complete prototypical kagome band structure of Fig. 1b could be thus realized or 

mimicked in FeSn using electronic bands derived from in-plane 3d orbitals. 

The aforementioned quasi-2D nearly flat band cannot be directly observed by ARPES as 

it lies above the Fermi level. Instead, we can search for a signature of flat bands from other d-

orbital degree of freedom, which can arise at various energies (see Supplementary Fig. S8 for d-

orbital-based kagome tight-binding model). Fig. 4b,c display the experimental band structures of 

FeSn along G-K-M high symmetry directions measured with linear horizontal (LH) and linear 

vertical (LV) polarizations respectively. The signature of flat bands is absent under LH 

polarization, while LV polarization reveals a strikingly nondispersive excitation near the Fermi 

level (Eflat = –0.23 ± 0.05 eV). Accordingly, as shown in the constant energy map at Eflat in Fig. 

4d, the spectral weight of this band is uniformly distributed across almost the full Brillouin zone 

except around the K-points due to the intensity leakage from the Dirac bands. This observation 

represents the first momentum-space evidence of the flat band in the kagome system. The 

experimental bandwidth of the flat band is less than 1/10 of that of the Dirac bands and comparable 

to what has been observed in f-electron systems.38 Unlike the latter cases, however, the kagome-

derived flat band arises from a destructive phase interference of hopping in a frustrated geometry 

(inset of Fig. 4c), and is thus intrinsically topological with finite spin-orbit coupling.10 In real-

space, this phase interference effectively localizes the wavefunction into a single hexagon as 

depicted in the inset of Fig. 4c. Such localization to the subregion of real space is similar to the 

case of engineered flat band in the magic-angle twisted bilayer graphene, with electron localized 

to the AA-stacked region of the Moiré superlattice.39 Comparing the length scale of localization d, 

the kagome lattice (in ideal case) evidently promotes a stronger localization (d » 5 Å) than the 

Moiré superlattice (d » 50 Å), which directly implies stronger effective Coulomb energy scale by 

𝑈 = 𝑒//4𝜋𝜀𝑑. The identification of the flat band opens up important opportunities for engineering 

new correlated electron phases in the kagome lattice via local electrostatic gates (tuning the flat 

bands near the Fermi level) and by controlling the strength of magnetic exchange splitting. 

Altogether, our discovery and extensive analysis of Dirac cone and flat bands in the ideal kagome 

metal FeSn unlock new perspectives and avenues for the realization of novel correlated topological 

phases and spintronic devices based on kagome lattices. 



Methods 
 

Sample growth and characterizations. Single crystals of FeSn were grown using a chemical 

vapor transport technique with I2 as a transport agent. Fe powder (Alfa Aesar, 99.998%) and Sn 

powder (Sigma Aldrich, 99.99%) were loaded in a quartz tube with ~3 mg/cm3 I2. The evacuated 

quartz tube was put in a temperature gradient of 520 oC (source) - 680 oC (sink) in a horizontal 

three zone furnace. Thin plate-like, hexagonal single crystals were obtained and a typical growth 

duration lasts from 3 weeks to 1 month. The phase of the grown crystals was confirmed with 

powder X-ray diffraction. Basic transport properties were measured with a standard five-probe 

configuration in a commercial cryostat. 

 

Angle-resolved photoemission spectroscopy experiments. ARPES experiments were performed 

at two different synchrotron beamlines: the main data were acquired at Beamline 7 (MAESTRO) 

of the Advanced Light Source, and preliminary experiments were conducted at beamline 21-ID-1 

(ESM-ARPES) of the National Synchrotron Light Source II. The two ARPES endstations are 

respectively equipped with R4000 and DA30 hemispherical electron analyzer (Scienta Omicron). 

FeSn samples were cleaved inside ultrahigh vacuum chamber with a base pressure better than 4 ´ 

10-11 torr. The ARPES data were acquired within 6 hours after cleaving to minimize the effect of 

surface degradation. All datasets were collected at 20 K, except the one in Supplementary Fig. S4a 

which was collected at 80 K. The lateral size of the beam was smaller than 20 ´ 10 µm2. Fermi 

surfaces and energy-momentum dispersions presented in Fig. 2, Supplementary Fig. S11, and 

Supplementary Fig. S13 were acquired with 92 eV and 140 eV photons which maximize the 

visibility of Dirac bands. We mainly used LH polarized photons unless otherwise specified. The 

energy and momentum resolutions were better than 20 meV and 0.01 Å-1 respectively. Photon 

energy dependence in Supplementary Fig. S4 were scanned from 80 eV to 150 eV which covers 

the complete Brillouin zone of FeSn in kz direction. 

 

X-ray photoelectron spectroscopy. XPS experiments were conducted at Beamline 7 (MAESTRO) 

of Advanced Light Source using R4000 hemispherical electron analyzer (Scienta Omicron). XPS 

spectra were measured on the same in situ cleaved samples where ARPES experiments were 

conducted. Before acquiring XPS spectra, we optimized beam position to a large single domain by 



monitoring the clarity of ARPES spectra. The XPS experimental geometry was such that the 

analyzer was placed normal to the sample surface while the beam comes from 55° with respect to 

the sample normal. We acquired XPS spectra from 7 different FeSn samples: four of them 

represent Sn termination, while the other three represent kagome termination (See Supplementary 

Fig. S2 for the full dataset). For comparison, we also acquired XPS spectra of Fe3Sn2 on the same 

condition (see Supplementary Fig. S2 for detailed comparison). 

 

Magneto-quantum oscillations. The magneto-quantum oscillation experiments were performed 

at the National High Magnetic Field Laboratory (NHMFL). Temperature and angular dependence 

of the oscillations were examined to reveal the effective mass and dimensionalities of the Fermi 

surfaces of interest.  

        The de Haas-van Alphen (dHvA) effects in the magnetic torque were measured using 

piezoresistive cantilevers (Seiko PRC-400 at the DC field facility and Seiko PRC-150 at the pulsed 

field facility) under 3He or 4He atmosphere. No signature of a magnetic phase transition is observed 

up to 65 T and the transverse magnetization perpendicular to the applied field is estimated to be 

less than 0.0025 µB per Fe, implying a minimal change in the magnetic structure at high fields 

where oscillations were observed. We performed additional in-house torque measurements in a 

superconducting magnet using both capacitive (Cu:Be foil, 10-25 µm) and piezoresistive (SCL 

Sensortech PRSA-L300) cantilevers. 

        The Shubnikov-de Haas (SdH) oscillations are observed in magnetoresistance on a thin piece 

of crystal (~ 6 µm thick) structured with focused ion beam (FIB) and the measurements were 

performed in DC fields up to 35 T with 3He atmosphere. The FIB fabrication was performed with 

a FEI Helios Nanolab 600 dual beam microscope with a Ga ion beam flux of 21 nA at the 

magnification of 350.  

        The oscillatory patterns of both dHvA and SdH oscillations were analyzed with Fast Fourier 

transform (FFT) as a function of inverse fields. Each set of oscillatory amplitude is modulated by 

both the thermal and Dingle (residual impurity scattering) damping factors 𝑅56 𝑅76 . Here i labels the 

i-th band, and the thermal damping factor is given by 𝑅56 = /89:;5<=∗
ℏ?@ 	 sinhEF	(/89:;5<=∗

ℏ?@ ) and the 

Dingle damping factor is given by 𝑅76 = exp[− /89:;5N=<=∗
ℏ?@ ]. ℏ, 𝑘@ are the reduced Planck constant 

and the Boltzmann constant, respectively. Fitting the temperature/field dependence of the 



oscillation (FFT) amplitudes yields the effective mass m* and Dingle temperature TD. Here B is 

taken as the average field of the FFT window from 𝐵EF = F
/ (𝐵<6SEF + 𝐵<UVEF ) . 

 

Bulk and surface electronic structure calculation from the first principles. Density functional 

theory (DFT) calculations were performed with the full-potential local-orbital (FPLO) code,40 

version 18.00. The exchange and correlation energy was considered in the generalized gradient 

approximation (GGA) using the parameterization of Perdew, Burke, and Ernzerhof (PBE-96).41 

Self-consistent calculations were carried out using the four-component fully relativistic mode of 

FPLO. The following basis states were treated as valence states: Fe: 3s, 3p, 4s, 5s, 3d, 4d, 4p and 

Sn: 4s, 4p, 4d, 5s, 6s, 5d, 5p, 6p. We used a linear tetrahedron method with 12 × 12 × 12 

subdivisions in the full Brillouin zone for the bulk and 8 × 8 × 1 subdivisions for the slabs. We 

used the experimental structural data. Using the PYFPLO module of the FPLO package,40 we built 

a tight-binding Hamiltonian by projecting the Bloch states onto atomic-orbital like Wannier 

functions associated with Fe 3d and 4s states, and Sn 5s and 5p states. We used this Hamiltonian 

to compute the Fermi surface, the de Haas van Alphen spectrum and the kz-integrated spectrum 

shown in Fig. 4. For the Wannier construction we used a mesh of 8 × 8 × 8 subdivisions in the full 

Brillouin zone. 

In order to simulate the [001] surface state, slabs of various thickness, ranging from four 

atomic layers (one antiferromagnetic unit cell with two kagome layers and two Sn layers) to 16 

atomic layers (four antiferromagnetic unit cells with 8 kagome layers and 8 Sn layers). In all cases, 

we fixed a vacuum of 1.7924 nm, which is four times the lattice parameter c and kept the atomic 

distances and bond angles as in the bulk. The slabs are terminated with kagome layer on one side 

and Sn layer on the other side. Thus, they are stoichiometric and their electronic structure can be 

projected to either termination. 

We also performed total energy calculations to estimate the cleavage energy using a k-mesh 

with 24 × 24 × 1 subdivisions. We find convergence of the cleavage energy with layer thickness 

already for a slab with eight atomic layers. The calculated GGA cleavage energy amounts to 2.0 

J/m2 which is significantly larger than that of graphite (0.4 J/m2) and smaller than that of the 

isotropic three-dimensional (3D) metallic compound FeAl (6 J/m2). We conclude that, from a 

chemical point of view, FeSn is not a 2D system but may be called an anisotropic 3D system. This 



conclusion is supported by similar band dispersions within the x-y plane (Γ-M-K-Γ) and 

perpendicular to that plane (Γ-A, L-M, K-H) as shown in Supplementary Fig. S9.  
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Figure 1 | Crystal structure of binary kagome metals. a, Top view of the kagome plane in binary 
kagome metals TmXn. The kagome network consists of 3d transition metal atoms (Tm: Fe, Mn, Co) 
with space-filling X: Sn, Ge atoms at the center of hexagon. The in-plane unit cell is marked with 
the parallelogram. b, Tight-binding band structure of kagome lattice exhibiting two Dirac bands 
at the K-point and a flat band across the whole Brillouin zone. c-e, Stacking sequences of the 
binary kagome metal series TmXn with m:n = 3:1, 3:2, and 1:1 respectively. Structural unit cells 
are marked with solid line. The kagome layers labeled with A-C have different in-plane lattice 
offset. Spacing layers consisting of X atoms in hexagonal arrangement are labeled with X. The 
structural two-dimensionality increases with increasing the ratio of X to T. In the TX (1:1) structure 
(e), the kagome layers are perfectly aligned with one another and are interleaved with X layers, 
while in the T3X structure (d), neighboring kagome layers are shifted with respect to each other. In 
the T3X2 structure (c) both types of stacking coexist. 
 

 

 

 



 
Figure 2 | Photoemission experiments on FeSn. a,b, Two representative XPS spectra of in situ 

cleaved FeSn, from which we identified the surface termination as Sn and kagome layers 
respectively. c,d, Fermi surfaces of FeSn measured on Sn and kagome terminations respectively. 
The Brillouin zone is marked with the red solid hexagon. Dashed black circle and triangle 
schematically represent the prominent Fermi surfaces centered at the K-point. e,f, Energy-
momentum dispersion of FeSn across the K-point along the dashed red line marked in c,d. DC1 
and DC2 indicate the position of Dirac points. Momentum distribution curves at Fermi energy are 
overlaided, with arrows indicating peaks at kF.  g-j, Constant energy maps measured on the kagome 
termination at +0.4 eV, +0.2 eV, 0 eV, and –0.2 eV with respect to the ED1, with clear shrinking 
and reopening of the Dirac pocket as the energy crosses the Dirac point. k,l, Constant energy map 
above and below DC1 respectively highlighting the modulation of photoemission intensity around 
the Dirac point. m, Dirac wave function on three sublattices of kagome lattice featuring Berry 
phase p acquired after 2p azimuthal rotation. n,o, Simulation of sublattice interference pattern of 
kagome lattice from Dirac wave functions in m. Colorbar at the bottom right of each panel 
indicates intensity from minimum (bottom) to maximum (top). 
  

Energy (eV)

In
te

n
s
it
y
 (

A
rb

. 
U

n
it
)

−26 −25 −24 −23

a 120 eV

Sn 4d
3/2

150 eV

Sn 4d
5/2

Bulk Surface

Energy (eV)

In
te

n
s
it
y
 (

A
rb

. 
U

n
it
)

−26 −25 −24 −23

b 120 eV

Sn 4d
3/2

Sn 4d
5/2

Bulk

Γ Μ

Κ

Γ Μ

Κ

k
x
 (Å–1)

k
y
 (
Å–

1
)

Γ Μ

Κ

k
x
 (Å–1)

k
y
 (
Å–

1
)

−0.5 0.5−0.5−1.0 0.5 1.00.0

−0.5

−1.0

0.5

1.0

0.0

−0.5−1.0 0.5 1.00.0

Κ

−0.5 0.5 −0.5−1.0 0.5 1.00.0Κ

−0.5

−1.0

0.5

1.0

0.0

E
n

e
rg

y
 (

e
V

)

E
F

−0.2

−0.4

−0.6

−0.8

−1.0

E
n

e
rg

y
 (

e
V

)

E
F

−0.2

−0.4

−0.6

−0.8

−1.0

k
x
 (Å–1)

k
x
 (Å–1) k

x
 (Å–1)

c e

d fIn
t.

In
t.

k
y
 (
Å–

1
)

k
y
 (
Å–

1
)

k
y
 (
Å–

1
)

k
y
 (
Å–

1
)

g

h

i

j

E
D1 

+ 0.2

E
D1 

+ 0.4

E
D1

E
D1 
− 0.2

Sn term.

Kagome term.

Sn term.

Kagome term. Kagome term. Kagome term.

Sn term.

DC1

DC1

DC2

k
x
 (Å–1)

φ

l

−0.5 0.5Κ

φ

k

k
y
 (
Å–

1
)

0.5

−0.5

Κ

k
x
 (Å–1)

φ

o

−0.5 0.5Κ

φ

k
y
 (
Å–

1
)

n0.5

−0.5

Κ

W
a

v
e

fu
n

c
ti
o

n

ψ
A

ψ
B

ψ
C

−1

0

1
m

k
x
 (Å–1)

−0.5 0.5Κ

Azimuthal angle φ (°)
0 90 180 270 360

k
x
 (Å–1)

−0.5 0.5Κ

A B

C

E
D1

 − 0.1E
D1

 + 0.2 E
D1

 − 0.1E
D1

 + 0.2E
D1

 + 0.2



 
Figure 3 | Magneto-quantum oscillations and slab DFT calculations of FeSn. a, Angular 
dependence of dHvA (circles) and SdH (triangles) oscillation frequencies of FeSn. Hollow 
symbols indicate the frequencies obtained from pulsed field measurement, while filled symbols 
indicate those obtained from DC field measurement. Different colors indicate different samples. 
The inset schematically represents the definition of q with respect to the kagome plane normal. 
Dashed lines indicate the fit of a bands to 1/cosq function, the behavior expected from a quasi 2D 
Fermi surface. b, Temperature dependence of quantum oscillation (dHvA for a1, SdH for a2 and 
a3) amplitude of a bands. Solid lines are fit to the Lifshitz-Kosevich formula (see Methods). All 
curves are normalized to the expected zero-temperature value. c,d, Slab DFT calculations of eight 
FeSn structural unit cells. Bottom-right insets show schematic structure of the slab with black lines 
representing Sn layers and rectangles representing kagome layers. Red and blue circles represent 
the weight of spin up and down states on topmost kagome layers (‘surf’), while orange circles 
represent the weight of states on the second topmost kagome layers (‘bulk’). The Top-right insets 
in d,e show the contours of Dirac pockets around the K-point at the Fermi level, which capture the 
anisotropic warping of bulk (DC1) and surface (DC2) Dirac cones (see Fig. 2c,d for comparison). 
  



 
Figure 4 | Signature of flat bands in FeSn. a, Energy-momentum dispersion of FeSn integrated 
along the out-of-plane momentum (kz). b,c, Experimental band structures of FeSn along the G-K-
M high symmetry directions measured with LH and LV polarizations (incident photons in- and 
out-of-the photoelectron emission plane, respectively) on kagome termination. The red box in c 
highlights the nearly flat band around Eflat = –0.23 eV. Inset in c depicts the confinement of electron 
in hexagon of kagome lattice arising from the destructive phase interference between hoppings 
from different sublattices. d, Constant energy map of FeSn at Eflat highlighting the almost uniform 
intensity distribution from the nondispersive band (the higher intensity at a few of the K-points is 
due to the presence of the Dirac band in the same energy range).  
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ARPES 

 AF (Å-2) vF (105 m/s) ED (eV) 

Dirac Cone 1 (DC1) 0.38 ± 0.03 1.70 ± 0.20 0.43 ± 0.02 

Dirac Cone 2 (DC2) 0.26 ± 0.02 1.87 ± 0.20 0.31 ± 0.02 

 

dHvA 

 f0 (T) m* (me) AF (Å-2) 𝑣" = WXNY
<∗ /cos𝜃 

(105 m/s) 

𝑣" = WXN9
<∗ /cos𝜃 

(105 m/s) 

a1 1310 ± 2 5.4 ± 0.4 0.1251 ± 0.0002 1.17 ± 0.07 1.04 ± 0.05 

a2 3641.5 ± 0.1 3.1 ± 0.2 0.34761 ± 0.00001 1.54 ± 0.09 1.34 ± 0.09 

a3 6755.3 ± 0.8 4.3 ± 0.3 0.65586 ± 0.00008 1.31 ± 0.08 1.13 ± 0.08 

 

Table 1 | Comparison of ARPES and dHvA experiments on FeSn. vF from ARPES is 
calculated from the slope of Dirac bands at the Fermi energy averaged on multiple momentum 
space directions to account for the trigonal warping. vF from dHvA is derived from the effective 

m* and ED as 𝑣" = W𝐸𝐷1
𝑚∗ /cos𝜃 assuming Dirac dispersion. 


