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Abstract The main object of the present paper is to investi-
gate the Dirac equation (Dirac fermions) in presence of scalar
and vector potential in a class of flat Gödel-type space-time
called Som–Raychaudhuri space-time by using the methods
quasi-exactly solvable (QES) differential equations and the
Nikiforov Uvarov (NU) form. In addition, we evaluate the
Einstein, and the Papapetrou.

1 Introduction

Som and Raychaudhuri [1] provided a family of stationary
cylindrically symmetric solutions of the Einstain–Maxwell
equations corresponding to a charged dust distribution in
rigid rotation. In this solution, the Lorentz force vanishes
everywhere and the ratio of charge density to mass den-
sity may assume arbitrary value. Barrow and Dabrowski [2]
showed that homogeneous Gödel-type space-times need not
contain closed time-like curves in low-energy effective string
theories. They found exact solutions for the Gödel-type met-
ric in string theory [3] for the full O(α) action including
both dilaton and axion fields [2,4]. The Som–Raychaudhuri
space-time belongs to the class of flat Gödel-type solutions.
Different aspects of the Gödel-type solutions are discussed in
[5–8]. Gürses et al. showed with several examples that Gödel-
type metrics can be used in obtaining exact solutions to var-
ious supergravity theories and in constructing space-times
that contain both closed time-like and closed null curves,
and that contain neither of these [9]. Clifton et al. [10] deter-
mined the general conditions for the existence of Gödel, Ein-
stein static, and de-Sitter universes in gravity theories derived
from a Lagrangian that is an arbitrary function of the scalar
curvature and Riemann curvature invariants. Explicit expres-
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sions for the solutions were found in terms of the parameters
defining the Lagrangian. Also they determined the conditions
on the Lagrangian of the theory under which time-travel is
allowed in Gödel universes.

Several researchers have been investigated the physi-
cal properties of a series of backgrounds with the Som
Raychaudhuri space-time. For example, properties of the
rotating Som–Raychaudhuri homogeneous space-time, rel-
ativistic quantum dynamics of spin-zero particles in Som–
Raychaudhuri space-time under the influence of the gravita-
tional field produced by a topology [11], the Klein–Gordon
oscillator in Som–Raychaudhuri space-time with a cosmic
dispiration [12], linear confinement of a scalar particle in
Som–Raychaudhuri space-time [13], linear confinement of a
scalar particle in a topologically trivial flat Gödel-type space-
time [14]. Additionally, in Ref. [15] the quantum dynamics
of scalar and spin-half particles in Gödel-type space-times
with positive, negative and zero curvatures, were investi-
gated. In Refs. [16,17] the quantum dynamics of scalar par-
ticles in a class of Gödel-type solutions, were investigated.
They observed the similarity of the energy levels with the
Landau problem in flat, spherical and hyperbolic spaces. In
Ref. [18] the quantum dynamics of scalar particles in Som–
Raychaudhuri space-time, were investigated and compared
the results with the Landau levels in flat space. In Ref. [19]
the quantum dynamics of spin-half particles (Dirac fermions)
in Som–Raychaudhuri background space-time with torsion
and a cosmic string passing through them, were investiagted.
They observed that the presence of the topological defect
breaks the degeneracy of the relativistic energy levels and
the corresponding eigenfunctions depend on the topological
defect in the background space-time with torsion. In Ref. [20]
the quantum dynamics of spin-half particles (Weyl fermions)
in Som–Raychaudhuri space-time with a topological defect,
were investigated. In Ref. [21] the scalar quantum particle
in a class of Gödel-type solutions with a cosmic string pass-
ing through the space-time, were investigated. In Ref. [22]
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the Fermi field and Dirac oscillator in a Som–Raychaudhuri
space-time, were investigated. The Klein–Gordon equation
with a vector and a scalar potentials of Coulomb-type under
the influence of non-inertial effects in the cosmic string
space-time, were investigated in Ref. [23]. Two different
classes of solutions for the Klein–Gordon equation in the
presence of Coulomb-like scalar potential under the influ-
ence of non-inertial effects in the cosmic string space-time,
were studied in Ref. [24].

Computing the quantities the energy and momentum in
curved space-time is still an open problem in general relativ-
ity. Following Einstein’s original pseudotensor for energy–
momentum [23], several expressions have been introduced
in the literature (see references in Ref. [24]). Various authors
evaluated the energy and momentum distributions in differ-
ent space-times using the known complexes and found quite
interesting results. For example, the energy and momentum
distributions in (1 + 2)-dimensions rotating BTZ black hole
solution [25], non-static circularly symmetric space-time
[26], (1 + 2)-dimensions non-rotating black hole solutions
with non-zero cosmological constant under various parame-
ter conditions [27], and (1 + 2)-dimensions circularly sym-
metric Gurses space-time [28]. In four-dimensions space-
time, numerous work have been done by physicists (see Ref.
[24] and references therein). In Refs. [29–31] the energy and
momentum distributions of a closed homogeneous isotropic
universe described by Friedmann–Robertson–Walker (FRW)
space-time were evaluated and are equal to zero. The local-
ization of energy and momentum in curved space-times are
in doubts. According to Misner et al. [32] the energy is local-
izable only for spherical systems, whereas for Cooperstock
et al. [33] it is for all systems. Cooperstock [34–36] later
proposed a hypothesis that the energy and momentum are
confined to the region of non-vanishing stress–energy ten-
sor (T μ

ν ) of matter and all non-gravitational fields in curved
space-time. This hypothesis has neither been proved nor dis-
proved. On the contrary, there are many results which sup-
ported this hypothesis (see Ref. [24] and references therein).
In the present work, we evaluate the energy and momen-
tum distributions in Som–Raychaudhuri space-time using the
known energy–momentum complexes.

In the present work, the quantum dynamics of spin-half
particles (Dirac fermions) by solving the Dirac equation
in the presence of scalar and vector potentials in Som–
Raychaudhuri space-time, are study in details. This paper is
organized as: in Sect. 2, we solve the Dirac equation in Som–
Raychaudhuri space-time with scalar and vector potentials
and evaluate the energy spectrum and corresponding wave
functions using the quasi exactly solvable (QES) method
and Nikiforova–Uvarov (NU) method. In addition, we cal-
culate the energy–momentum distributions in this Som–
Raychaudhuri metric with the known energy–momentum
complexes in Sect. 3, and finally conclusions in section end.

2 The Dirac equation in Som–Raychaudhuri space-time

with scalar and vector potential

The Gödel-type solution with torsion and a topological defect
can be written in cylindrical cordinates as the space-time
metric [22]

ds2 = −(dt+α�r2dϕ)2 + dr2 + α2r2dϕ2 + dz2. (2.1)

The Dirac equation for a free Fermi field � of mass M in
curved space-time with scalar and vector potential is given
by

[i γ μ(∇μ + i e Aμ) − (M + S(r))]�(r, t) = 0 (2.2)

where in Eq. (2.2) Aμ = (V (r), 0, 0, 0) , ∇μ = (∂μ + Ŵμ)

and Ŵμ is the affine connection

Ŵμ =
−1

8
ωμab[γ a, γ b] (2.3)

In Eq. (2.2), γ μ are the Dirac matrices in the flat Minkowski
space-time, and ωμab is the spin connection, given by

γ μ(x) = eμ
a γ a (2.4)

ωμab = ηacec
νeσ

b Ŵν
σμ − ηaceν

b∂μec
ν (2.5)

where in Eq. (2.5) involves the Christoffel symbols Ŵ
μ
i j

defined as

Ŵ
μ
i j =

1

2
gμν

{

∂gνi

∂q j
+

∂gν j

∂q i
−

∂gi j

∂qν

}

(2.6)

and e
μ
a (x) are the tetrads relate the curved-space-time coor-

dinates xμ to the Minkowski space-time variables xa [22]

gμν = ηabeμ
a (x)eν

b(x) (2.7)

ea
μ =

⎛

⎜

⎜

⎝

1 0 α�r2 0
0 1 0 0
0 0 αr 0
0 0 0 1

⎞

⎟

⎟

⎠

, eμ
a =

⎛

⎜

⎜

⎝

1 0 −�r 0
0 1 0 0
0 0 1

αr
0

0 0 0 1

⎞

⎟

⎟

⎠

(2.8)

where ηab = diag(−+++) is the flat Minkowski space-time
metric. Also we can read the metric components directly from
Eq. (2.1)

gμν =

⎛

⎜

⎜

⎝

−1 0 −α�r2 0
0 1 0 0

−α�r2 0 α2r2 − α2�2r4 0
0 0 0 1

⎞

⎟

⎟

⎠

(2.9)

The first term in Eq. (2.2) reduces to

iγ μ∂μ = i

⎛

⎝

∂t −r�σ 2∂t +σ 1∂r + σ 2

rα
∂ϕ+σ 3∂z

r�σ 2∂t−σ 1∂r − σ 2

rα
∂ϕ−σ 3∂z −∂t

⎞

⎠

(2.10)
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Then from Eq. (2.3), we obtain the affine connection,

Ŵt =
(

i�
2 σ 3 0
0 i�

2 σ 3

)

(2.11)

Ŵϕ =
(

iα
2 (r2�2 − 1)σ 3 0

0 iα
2 (r2�2 − 1)σ 3

)

(2.12)

Ŵr = O4×4 , Ŵz = O4×4 (2.13)

The second term in Eq. (2.2) reduces to

iγ μŴμ = i

(

i�
2 σ 3 −i

2r
σ 2σ 3

i
2r

σ 2σ 3 −i�
2 σ 3

)

(2.14)

By selecting the wave function as below:

�(t, r, ϕ, z) = exp(−i E t + i m ϕ + i k z)

(

ψ(r)

χ(r)

)

(2.15)

Substituting various term into the Eq. (2.2) and setting k = 0,
we have two relationships
(

E −
�

2
σ 3 − V (r) − (M + S(r)

)

ψ(r)

+
(

r�σ 2V (r) − r�σ 2 E

−
mσ 2

rα
+

1

2r
σ 2σ 3 + iσ 1 ∂

∂r

)

χ(r) = 0 (2.16)

(

E −
�

2
σ 3 − V (r) + (M + S(r)

)

χ(r)

+
(

r�σ 2V (r) − r�σ 2 E

−
mσ 2

rα
+

1

2r
σ 2σ 3 + iσ 1 ∂

∂r

)

ψ(r) = 0. (2.17)

By choosing V (r) = S(r) and substituting χ(r) from Eq.
(2.17) in Eq. (2.16) we obtain

ψ ′′(r) +
[

E2 − M2 − 2E�σ 3

+
�2

4
− 2(M + E)V (r) + 2�σ 3V (r)

−
2m

α
�(E − V (r)) + �σ 3V (r)

−
(

m2

α2
−

m

α
σ 3 +

1

4

)

1

r2

− (E2 + V 2(r) − 2EV (r))r2�2
]

ψ(r) = 0. (2.18)

Here we have considered the potentials as follow:

Case 1: V(r) = 0

[

d2

dr2
− E2 �2 r2 −

(

m s
α

− 1
2

)2

r2

+
(

E2 − M2 − 2 E � s

+
�2

4
−

2 m E �

α

)]

ψ(r) = 0, (2.19)

where σ 3ψ(r) = sψ(r) and s = ±1, also we can rewrite the
differential Eq. (2.19) in a simpler form

ψ ′′(r) +
(

λ1r2 +
λ2

r2
+ λ3

)

ψ(r) = 0 (2.20)

where

λ1 = − E2�2

λ2 = −
(

ms

α
−

1

2

)2

λ3 = E2 − M2 − 2E�s +
�2

4
−

2 m � E

α
. (2.21)

By using the transformation of the form z = r2 in Eq.
(2.20),we obtain

d2

dz2
+

1

2z

d

dz
+

1

z2

(

λ1

4
z2 +

λ2

4
+

λ3

4
z

)

ψ(z) = 0 (2.22)

If we compare this second-order differential equation with
the Nikiforov–Uvarov (NU) form, we obtain the wave-
function

�(r, t) = r
|
(

m s
α

− 1
2

)

e

(

−i E t− |E �|
2 r2

)

L

(

| m s
α

− 1
2 |
)

n (|E �| r2)

(2.23)

where Lα
n (x) is the generalized (or associated) Laguerre

polynomial, and so we obtain from Eq. (A.3) in Ref. [22]

2 |E �| (2 n + 1) −
(

E2 − M2 − 2 E � s +
�2

4

−
2 m � E

α

)

+ 2 |E �|
∣

∣

∣

∣

(

m s

α
−

1

2

)
∣

∣

∣

∣

= 0 (2.24)

For E > 0, the energy for Eq. (2.24) is given by

En,m =
1

2 α
[2 m �(s + 1) + α � (1 + 4 n + 2 s)

+
√

(2 m (s + 1) + α (1 + 4 n + 2 s))2 �2 + α2 (4 M2 − �2)

]

(2.25)

123



541 Page 4 of 8 Eur. Phys. J. C (2019) 79 :541

For m = 0, the energy eigenvalue reduces to

En,0 =
1

2 α

[

α�(1 + 4 n + 2 s)

+
√

α2 (1 + 4 n + 2 s)2 �2 + α2(4M2 − �2)

]

(2.26)

For E < 0, the energy for Eq. (2.24) is given by

En,m =
1

2 α
[2 m �(s − 1) − α � (1 + 4 n + 2 s)

+
√

(2 m (s − 1) − α (1 + 4 n + 2 s))2 �2 + α2 (4 M2 − �2)

]

(2.27)

For m = 0, the energy eigenvalue reduces to

En,0 =
1

2 α
[−α � (1 + 4 n + 2 s)

+
√

(α2 (1 + 4n + 2s)2 �2 + α2 (4M2 − �2)

]

(2.28)

Case 2: V (r) = a
r

By introducing the Coulomb scalar potential V (r) = a
r

where a is constant, we obtain

H =
d2

dr2
− E2�2 r2 + 2 E �2 a r

+
(

E2 − M2 − 2 E � s +
�2

4

+
2 m

α
E � − �2 a2

)

+
{

(2 � + 1) s a +
2 m

α
a � − 2 (M + E) a

}

1

r

+
(

m

α
s −

m2

α2
+

1

4

)

1

r2
. (2.29)

Making the gauge transformation

ψ(r) = G ψ̃(r), (2.30)

where is G = e−A and A obtained from Eq. (A.9) and Table 1
in Ref. [37]

A =
[

� a r +
E � r2

2

−
1

2

⎧

⎨

⎩

1 −

√

1 + 4

(

m s

α
−

1

2

)2
⎫

⎬

⎭

lnr

⎤

⎦ . (2.31)

In this case, H̃ is equivalent to the H under the transformation
given by

H̃ = G−1 H G (2.32)

From Eq. (2.32) we obtain

H̃ ≡ r
d2

dr2
+
[

2 � a r − 2 E � r2 − 1

+

√

1 + 4

(

m s

α
−

1

2

)2]
d

dr

+
[

E � + �2a2

+ E �

⎧

⎨

⎩

−1 +

√

1 + 4

(

m s

α
−

1

2

)2
⎫

⎬

⎭

+ E2 − M2

− 2 E � s +
�2

4
+

2 m

α
E � − �2 a2

]

r − 2 E �2 a

+ 2
m

α
a � + a s

− � a

⎧

⎨

⎩

−1 +

√

1 + 4

(

m s

α
−

1

2

)2
⎫

⎬

⎭

+ 2 � a s − 2 (E + M) a (2.33)

From Eq. (A.14), any QES differential operator can be rep-
resented a

H̃ = C++ J+
n J+

n + C+0 J+
n J 0

n

+C+− J+
n J−

n + C0− J 0
n J−

n + C−− J−
n J−

n

+C+ J+
n + C0 J 0

n + C− J−
n + C, (2.34)

where

J+
n = r2 d

dr
− nr,

J 0
n = r

d

dr
−

n

2
,

J−
n =

d

dr
. (2.35)

Substitution of Eq. (2.35) into Eq. (2.34) yields the following
differential for

(

P4
d2

dr2
+ P3

d

dr
+ P2

)

�̃(r) = 0 (2.36)

where Pi are the polynomials of degree i;

P4 = C++r4 + C+0r3 + C+−r2 + C0−r + C−−,

P3 = C++(2 − 2n)r3 +
(

C+ + C+0

(

1 −
3n

2

))

r2

+(C0 − nC+−)r +
(

C− −
n

2
C0−
)

,

P2 = C++n(n − 1)r2 +
(

n2

2
C+0 − nC+

)

r

+
(

C −
n

2
C0

)

. (2.37)
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Here the coefficients C++, . . . in the polynomials Pi are

C++ = C+0 = C+− = C−− = 0,

C0− = 1, C+ = −2E�,

C0 = 2�a, C− = −1 +

√

1 + 4

(

ms

α
−

1

2

)2

+
n

2
,

C =
n

2
C0 − 2E�2a − � a

⎧

⎨

⎩

−1 +

√

1 + 4

(

ms

α
−

1

2

)2
⎫

⎬

⎭

+
2m

α
� + as + 2�a s − 2 (M + E) a (2.38)

Therefore we have the following eigenvalue equations using
Eq. (2.38):

− n C+ = 2�E + E�

⎛

⎝−1 +

√

1 + 4

(

ms

α
−

1

2

)2
⎞

⎠

+E2 − M2 − 2E�s +
�2

4
+

2 m

α
E � (2.39)

Substituting Eq. (2.38) into the Eq. (2.39), we get the follow-
ing energy eigenvalues :

En,m =
1

2α

(

− 2m� − α� (1 − 2s − 2n +

√

1 + 4

(

ms

α
−

1

2

)2)

±

√

√

√

√

√

⎛

⎝2m − α

⎛

⎝1 + 2s + 2n −

√

1 + 4

(

ms

α
−

1

2

)2
⎞

⎠

⎞

⎠

2

�2 + α2(4M2 − �2)

⎞

⎟

⎟

⎠

(2.40)

For m = 0, the energy eigenvalue reduces to

En,0 =
1

2α

(

− α�(1 − 2s − 2n +
√

2) ±
√

(

−α�(1 + 2s + 2n −
√

2)

)2
+ α2(4M2 − �2)

)

(2.41)

With putting Eqs. (2.35) and (2.38) in Eq. (2.34):

H̃ = r
d2

dr2
+
(

2 � a r − 2 E � r2 − 1

+
n

2
+

√

1 + 4

(

m s

α
−

1

2

)2
⎞

⎠

d

dr

+2 n E � r + 2 � s a + s a − 2 (M − E) a

+
2 m a �

α
− 2 E a �2

−a �(−1 +

√

1 + 4

(

m s

α
−

1

2

)2

(2.42)

where ψ̃(r) is:

ψ̃(r) =
∞
∑

n=0

anrn (2.43)

For n = 0 the eigenfunction has the form ψ̃(r) = a0 and
the corresponding matrix equation is given by

υa0 = 0 (2.44)

where

υ = 2�as + as − 2a(M + E) +
2m

α
a� − 2Ea�2

− �a

⎛

⎝−1 +

√

1 + 4

(

ms

α
−

1

2

)2
⎞

⎠ (2.45)

Thus, from Eqs. (2.30) and (2.31) and (2.15) , we obtain the
ground-state wavefunction as

�0(r, t) = exp

(

−i Et − �ar −
E�r2

2

+

⎛

⎝

1

2
−

1

2

√

1 + 4

(

ms

α
−

1

2

)2
⎞

⎠ lnr

⎞

⎠ (2.46)

For n = 1 the corresponding eigenfunction becomes
ψ̃(r) = a0 + a1r . The corresponding matrix equation is
therefore given by

(

υ −1 +
√

1 + 4
(

ms
α

− 1
2

)2

2E� υ + 2a�

)

(

a0

a1

)

= 0 (2.47)

From Eq. (2.4), we obtain

a1 =
υ

√

1 + 4
(

ms
α

− 1
2

)2 − 1
a0 (2.48)

Therefore, by using Eqs. (2.30) and (2.31) and (2.15), the
wavefunction of the first excited-state can be written as
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�1(r, t) = exp

[

−i Et − �ar −
E�r2

2

+

⎛

⎝

1

2
−

1

2

√

1 + 4

(

ms

α
−

1

2

)2
⎞

⎠ lnr

⎤

⎦

×

⎛

⎝1 +
υ

√

1 + 4
(

ms
α

− 1
2

)2 − 1
r

⎞

⎠ (2.49)

3 Energy–momentum

Energy–momentum localization plays a leading role in the
theories advanced over the years in relation to general rela-
tivity. There is not a satisfactory description for the gravita-
tional energy and for formulating a proper definition for the
energy density of gravitational backgrounds there is a major
difficulty. In this section, we try to evaluate the energy and
momentum distributions in the Som–Raychaudhuri space-
time Eq. (2.1) using the known pseudotensor, the Landau–
Lifshitz complex, the Einstein complex, and the Papapetrou
complex [30,38–40].

3.1 Landau–Lifshitz energy–momentum

The energy and momentum densities in Landau–Lifshitz [30,
38,41] complex is given by

Lμρ =
1

16π
Sμνρσ
,νσ , (3.1)

Sμνρσ = −g(gμρgνσ − gμσ gνρ), (3.2)

where g is det (gμν) and the non-zero components of Sμνρσ

are

S0101 = α2r2(r2�2 − 1),

S0202 = α2r2
(

r2�2 − 1

α2r2
−

�2

α2

)

,

S0303 = α2r2(r2�2 − 1). (3.3)

Substituting Eq. (3.3) in Eq. (3.1), we get the energy-
density

L00 =
1

16π
(S0101

,11 + S0202
,22 + S0303

,33 ) =
1

8π
(6α2r2�2 −α2),

(3.4)

Therefore the energy which is contained in a Cylinder of
radisu r and length L (since the spatial section of the (1 +
3)-dimensional space-time is Three-dimensional the a one-
Cylinder ) given by

EL =
∫ r

0

∫ 2π

0

∫ L

0
L00rdrdϕdz =

L

8
α2r2(3�2r2 − 1).

(3.5)

3.2 Einstein energy–momentum

The energy–momentum complex is defined by [25,30,38]

�ν
μ =

1

16π
H νρ

μ,ρ (3.6)

where H
νρ
μ are

H νρ
μ = −Hρν

μ =
gμτ√−g

[−g(gντ gρσ − gρτ gνσ )],σ (3.7)

H01
0 = −2α�2r2 + 2α , H02

0 = H03
0 = 0. (3.8)

Substituting Eq. (3.8) in Eq. (3.6), we get the energy-density

�0
0 =

1

16π
H

0ρ
0,ρ =

1

16π
(H01

0,1 + H02
0,2 + H03

0,3) =
−1

4π
(α�2r)

(3.9)

Therefore the energy which is contained in a Cylinder of
radius r and length L (since the spatial section of the (1 +
3)-dimensional space-time is Three-dimensional the a one-
Cylinder ) given by

EE =
∫ r

0

∫ 2π

0

∫ L

0
�0

0rdrdϕdz =
−L

6
(α�2r3). (3.10)

3.3 Papapetrou energy–momentum

The symmetric energy–momentum complex of Papapetrou
[30,38,42] is given as

�μν =
1

16π
Nμνρσ

,ρσ (3.11)

where Nμνρσ are

Nμνρσ =
√

−g(gμυηρσ −gμρηνσ +gρσ ημν−gνσ ημρ)

(3.12)

N 0011 = (α�2r3−2αr), N 0022=αr

(

r2�2+
1

α2r2 − 1

)

,

N 0033 = αr3�2. (3.13)

Substituting Eq. (3.13) in Eq. (3.11), we get the energy-
density

�00=
1

16π
N 00ρσ

,ρσ =
1

16π
(N 0011

,11 +N 0022
,22 +N 0033

,33 )=
3

8π
α�2r

(3.14)

Therefore the energy which is contained in a Cylinder of
radius r and length L (since the spatial section of the (1 +
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3)-dimensional space-time is Three-dimensional the a one-
Cylinder ) given by

E p =
∫ r

0

∫ 2π

0

∫ L

0
�00rdrdϕdz =

L

4
(α�2r3) (3.15)

Notice that from Eqs. (3.5) and (3.10) and (3.15) we can write

E p = −
3

2
EE = −

2

3αr
EL +

1

6
αr. (3.16)

4 Conclusion

We have studied the behaviour of Dirac fermions in a class of
Gödel background space-times with a topological defect. We
have solved the Dirac equation under scalar and vector poten-
tial in Som–Raychaudhuri space-time by quasi-exactly solv-
able (QES) differential equations method and NU method.
We have evaluated the energy eigenvalues in the presence of
this V (r) = 0 potential and coulomb potential V (r) = a

r

and shown that the energy spectrum dependent in a Som–
Raychaudhuri space-time to � and breaks the degeneracy of
the energy levels. In Sect. 3, we have calculated the energy
and momentum distributions in Som–Raychaudhuri space-
time using the known complexes, the Einstein’s, the Landau–
Lifshitz’s, and the Papapetrou energy–momentum complex.
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Appendix

Quasi-exactly solvable differential equations
A linear differential operator H in a Hilbert space is called

QES [37,43–58].

(H − E)� = 0 (A.1)

H0 = H − E (A.2)

H0� = 0 (A.3)

H̃ is equivalent to the H0 under the transformation given by

H̃ �̃ = 0 (A.4)

Making the gauge [52]

H̃ = G−1.H.G (A.5)

G = e−A (A.6)
(

P4
d2

dr2
+ P3

d

dr
+ P2

)

�̃(r) = 0 (A.7)

V (r) = A′2 − A′′ + P2(r) (A.8)

where A:

A =
∫

P3

P4
dr − log(Z ′) (A.9)

Z =
∫

dr
√

P4
(A.10)

In one dimension, the only Lie algebra of the first-order dif-
ferential operators, which possesses finite-dimensional rep-
resentations, is the sl(2) algebra, whose generators

J+
n = r2 d

dr
− nr (A.11)

J 0
n = r

d

dr
−

n

2
(A.12)

J−
n =

d

dr
(A.13)

The operatorH̃ can be represented as a quadratic combi-
nation of the sl(2) generators as

H̃ =
∑

a,b=0,±
Cab J a J b +

∑

a=0,±
Ca J a + C (A.14)

any QES differential operator can be represented as

H̃ = C++ J+
n J+

n + C+0 J+
n J 0

n + C+− J+
n J−

n + C0− J 0
n J−

n

+ C−− J−
n J−

n + C+ J+
n + C0 J 0

n + C− J−
n + C (A.15)

Substitution of Eqs. (A.11-A.13) into Eq. (A.15) yields the
following differential form:

(

P4
d2

dr2
+ P3

d

dr
+ P2

)

�̃(r) = 0 (A.16)

where Pi are the polynomials of degree i;

P4 = C++r4 + C+0r3 + C+−r2 + C0−r + C−− (A.17)

P3 = C++(2 − 2n)r3 +
(

C+ + C+0

(

1 −
3n

2

))

r2

+(C0 − nC+−)r +
(

C− −
n

2
C0−
)

(A.18)

P2 = C++n(n − 1)r2 +
(

n2

2
C+0 − nC+

)

r

+
(

C −
n

2
C0

)

(A.19)
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with comparing Eqs. (A.16–A.19) we find C++, C−−, .. and
in end

�̃ =
∑

m=0

amrm (A.20)

� = G.�̃ (A.21)
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