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Abstract— For the optimal approximation of multivariate
Gaussian densities by means of Dirac mixtures, i.e., by means of
a sum of weighted Dirac distributions on a continuous domain,
a novel systematic method is introduced. The parameters of
this approximate density are calculated by minimizing a global
distance measure, a generalization of the well–known Cramér–
von Mises distance to the multivariate case. This generalization
is obtained by defining an alternative to the classical cumulative
distribution, the Localized Cumulative Distribution (LCD). In
contrast to the cumulative distribution, the LCD is unique
and symmetric even in the multivariate case. The resulting
deterministic approximation of Gaussian densities by means of
discrete samples provides the basis for new types of Gaussian
filters for estimating the state of nonlinear dynamic systems
from noisy measurements.

I. INTRODUCTION

Estimating the state of a nonlinear dynamic system from
noisy observations is a difficult task. Even calculating a close
approximation of the true posterior density for the prediction
step or the filter step is very demanding from both a theoretical
and a computational point of view.

However, for weakly nonlinear systems and unimodal
posterior densities, a Gaussian approximation of the posterior
density might be sufficient, which can be obtained by either a
system approximation or a suitable approximation of the prior
density. A system approximation is, for example, performed
by the Extended Kalman Filter (EKF) by linearizing the
system nonlinearities around the current estimate with a
subsequent application of the Kalman filter. This, however, is
of limited usefulness as the local linearization typically does
neither sufficiently capture the global characteristics of the
considered system nor the uncertainty of the prior density.

On the other hand, various approaches have been proposed
for approximating the prior Gaussian density by sample
points that are either selected randomly or carefully selected
according to some optimality criterion [1], [2], [3]. These prior
sample points are then propagated through the system and
the measurement equation characterizing the given nonlinear
system. Finally, based on the resulting posterior sample points,
a suitable Gaussian approximation of the true (non–Gaussian)
posterior density is calculated by means of, for example,
moment matching. This Gaussian density can then be used
recursively as a prior density for the next processing step.
This paper focuses on the optimal approximation of prior
Gaussian densities.
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A Gaussian density with mean m and covariance matrix
Σ according to

f̃(x) =
1

(2π)N/2|Σ| exp
(
−1

2
(x−m)TΣ−1(x−m)

)
(1)

characterizing a random vector x ∈ IRN is approximated by
a Dirac mixture density with L components given by

f(x) =
L∑
i=1

wi · δ(x− xi) , (2)

with positive weights, i.e., wi > 0 for i = 1, . . . , L, and

locations xi =
[
x

(1)
i , x

(2)
i , . . . , x

(N)
i

]T
for i = 1, . . . , L.

Available approximation methods consider a random vector
xs distributed according to a standard Gaussian density given
by

f̃(xs) =
N∏
k=1

1√
2π σ

exp

−1
2

(
x

(k)
s

)2

σ2

 (3)

with zero mean and equal standard deviations σ in every
dimension. The original random vector is recovered by the
transformation

x = S xs +m , (4)

where S is some matrix square root of the covariance matrix
Σ with Σ = SST , e.g., the Cholesky decomposition of Σ.
After performing the approximation of the density of xs, the
resulting Dirac mixture is transformed by using (4) to yield
the desired approximation of the density of x.

Several techniques for approximating a standard Gaussian
density by a Dirac mixture are available in the literature,
which can be divided into probabilistic and deterministic
methods. Probabilistic methods draw samples from the given
density, which can be implemented efficiently [4]. However,
a lot of samples are typically required. Deterministic methods
so far are limited to either placing components on a grid
[5], which scales poorly for high–dimensional problems, or
to placing components on the coordinate axes in order to
avoid the curse of dimensionality. The simplest deterministic
method, the so–called unscented transform [1], places two
components along each coordinate axis and an optional
component at the origin in such a way that the first two
moments of the given density are matched. This technique
has been generalized in [2] to match higher–order moments
by placing more components along the coordinate axes. In
[3], methods for the systematic Dirac mixture approximation
of one–dimensional Gaussian densities by minimizing cumu-
lative distance measures [6], [7] are exploited to again place
the resulting components along the coordinate axes. Besides



considering shape information, this method also allows to
match arbitrary moments.

In this paper, we propose a systematic method for multi-
variate approximation by minimizing an appropriate distance
measure between the given Gaussian density f̃(x) and its
Dirac mixture approximation f(x). For that purpose, it is not
necessary to constrain the placement of the Dirac components
in any way. In addition, it is possible to directly approximate
Gaussian densities with different standard deviations in every
dimension. Compared to the approximation of a standard
Gaussian density with subsequent transformation, better
approximation results are obtained, as the distance measure
is not invariant to scaling. Hence, the scaling of the original
density is left unchanged and we consider a random vector
xa characterized by a translated and rotated variant of the
original density according to

f̃(xa) =
N∏
k=1

1√
2πσ(k)

exp

−1
2

(
x

(k)
a

)2

(
σ(k)

)2
 (5)

with zero mean and different standard deviations σ(k) in every
dimension. With

Σ = R diag
([
σ(1), σ(2), . . . , σ(N)

])
RT

and RRT = I, the original random vector is recovered by

x = R xa +m , (6)

which also holds for obtaining the approximation of the den-
sity of the original random vector x from the approximation
of the density of xa.

Standard density–based distance measures are not directly
applicable to Dirac mixture densities, so distance measures
based on cumulative distributions are typically employed.
However, multivariate cumulative distributions exhibit the
well-known problem of neither being unique nor symmetric
[8]. Hence, an alternative to the classical cumulative dis-
tribution, the so called Localized Cumulative Distribution
(LCD) is introduced in the next section. Based on this LCD,
a generalization of the Cramér–von Mises distance, which is
the squared integral difference between the LCD of the given
density and the LCD of the approximate density is given in
Section III. This new distance measure is used for determining
the parameters of the approximate density in such a way that
it is as close as possible to the given Gaussian density in
Section IV. The new approach is discussed in Section V.

II. LOCALIZED CUMULATIVE DISTRIBUTION

In the scalar case, the classical cumulative distribution
F c(m) is often employed for characterizing discrete random
quantities or for comparing continuous and discrete random
variables [6], [7]. However, when we consider the cumulative
distribution F c(m) corresponding to a multivariate density
function g(x) defined by

F c(m) =
∫ m(N)

−∞
· · ·
∫ m(1)

−∞
g(x) dx(1) . . . dx(N) ,

it is obvious that the integration performed over half–open
infinite hyper–spaces makes F c(m) non–unique as different
directions of integration are possible. In addition, due to
the asymmetric integration, the resulting F c(m) is also not
symmetric. While non–uniqueness and asymmetry do not pose
a problem in the scalar case, the cumulative distribution is
not well suited for comparing multivariate random quantities
[8].

In contrast, the Localized Cumulative Distribution (LCD)
considered in this paper is an alternative cumulative represen-
tation of a given random vector that performs an integration
over symmetric kernels at all possible positions and for all
kernels sizes.

Definition II.1 (Localized Cumulative Distribution) Let x
be a random vector with x ∈ IRN , which is characterized by
an N–dimensional probability density function g(x) : IRN→
IR+. The corresponding Localized Cumulative Distribution
(LCD) is defined as

F (m, b) =
∫

IRN
g(x) ·K(x−m, b) dx

with b ∈ IRN
+ and F (., .) : Ω → [0, 1], Ω ⊂ IRN × IRN

+ .
K(x−m, b) is a suitable (symmetric & integrable) kernel
located at position m and size characterized by b with K(., .) :
Ω→ [0, 1].

In this paper, we focus attention on separable kernels of
the type

K(x−m, b) =
N∏
k=1

K(x(k) −m(k), b(k)) .

Furthermore, we consider kernels with equal width in every
dimension, i.e., b(k) = b for k = 1, . . . , N , which gives

K(x−m, b) =
N∏
i=k

K(x(k) −m(k), b) .

In contrast to [8], where we considered rectangular kernels,
the specific kernels used in this paper are of Gaussian type

K(x−m, b) =
N∏
k=1

exp

(
−1

2

(
x(k) −m(k)

)2
b2

)
.

Based on these Gaussian kernels, an N–dimensional Dirac
component δ(x− x̂) at location x̂ corresponds to its LCD

∆(m, b) =
∫

IRN
δ(x− x̂) ·K(x−m, b) dx

=
N∏
k=1

exp

(
−1

2

(
x̂(k) −m(k)

)2
b2

)
.

As a result, the LCD of the Dirac mixture in (2) is given by

F (m, b) =
L∑
i=1

wi

N∏
k=1

exp

−1
2

(
x

(k)
i −m(k)

)2

b2

 . (7)



The Gaussian density f̃(x) according to (5) corresponds
to an LCD

F̃ (m, b) =
∫

IRN
f̃(x)K(x−m, b) dx

=
∫ ∞
−∞

N∏
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2
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)2(
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)2
)
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(
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2
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x(k) −m(k)
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)
dx(k)

=
N∏
k=1

b√(
σ(k)

)2 + b2
exp

(
−1

2

(
m(k)

)2(
σ(k)

)2 + b2

)
.

(8)

The LCD defined in this section is of versatile applicability
and can be used as a suitable replacement in any expression
involving the classical cumulative distribution. In the next
section, it is used for generalizing the Cramér–von Mises
distance.

III. MODIFIED CRAMÉR–VON MISES DISTANCE

Based on the definition of the Localized Cumulative
Distribution (LCD), we will now present a modified version
of the Cramér–von Mises distance [9] suitable for comparing
multivariate random quantities, i.e., random vectors.

Definition III.1 (Modified Cramér–von Mises Distance)
The distance D between two densities f̃(x) : IRN → IR+ and
f(x) : IRN → IR+ is given in terms of their corresponding
LCDs F̃ (m, b) and F (m, b) as

D =
∫

IR+

w(b)
∫

IRN

(
F̃ (m, b)− F (m, b)

)2

dm db , (9)

where w(b) : IR+ → [0, 1] is a suitable weighting function.

An intuitive interpretation of the distance measure is the
following. For a fixed kernel at position m and size b, the
probability masses of the continuous and the discrete density
under the kernel are compared by calculating their LCDs.
The distance measure now includes kernels of all sizes at
all positions and compares the resulting probability masses.
For that purpose, the integral of the square of the difference
between the LCD of the true density f̃(x) and the LCD of
its approximation f(x) is employed.

Theorem III.1 For the LCDs of the Gaussian F̃ (m, b) and
the Dirac mixture F (m, b) and the weighting function

w(b) =

{
1

bN−1 b ∈ [0, bmax]
0 elsewhere

, (10)

the following expression for the distance D is obtained

D = D1 − 2D2 +D3 with Di =
∫

IR+

w(b)Pi db

for i = 1, 2, 3,

P1 = π
N
2 b2N

N∏
k=1

1√(
σ(k)

)2 + b2
,

P2 = (2π)
N
2 b2N

 N∏
k=1

1√(
σ(k)

)2 + 2 b2


L∑
i=1

wi exp

−1
2

N∑
k=1

(
x

(k)
i

)2

(
σ(k)

)2 + 2 b2

 ,

P3 = π
N
2 bN

L∑
i=1

L∑
j=1

wi wj exp
(
−1

2
Tij
2 b2

)
and

Tij =
N∑
k=1

(
x

(k)
i − x

(k)
j

)2

.

PROOF. The proof is given in Appendix I. �
The formulas for the distance measure in Theorem III.1

require a one–dimensional numerical integration over the
variable b. A closed–form expression for the third part of
the distance measure, i.e., D3, will be derived subsequently.
Closed–form expressions for D1, D2 can be derived for the
special case of a standard normal density (3), i.e., for equal
variances in every dimension.

In contrast to the on–line solution proposed in this paper,
the closed–form solutions for D1, D2 can be used for off–line
approximation. This comprises an off–line step for calculating
the optimal parameters of a Dirac mixture approximation of
the standard normal density in (3) for a desired number
of components L and an on–line step for transforming
the obtained parameters back to the space of the given
arbitrary density by means of (4). This procedure is of lower
computational complexity for the on–line step compared to the
full on–line approximation procedure proposed in this paper.
However, as mentioned before, the approximation quality is
worse, as the distance measure is not invariant to scaling.

A closed–form solution for the expression D3 is given in
the next theorem.

Theorem III.2 For w(b) according to (10) and large bmax,
the following closed–form expression for D3 is obtained

D3 =
π
N
2

8

L∑
i=1

L∑
j=1

wiwj
(
4b2max − Cb Tij + xlog(Tij)

)
,

with xlog(z) = z · log(z) and constants Cb = log(4 b2max)−Γ
and

Tij =
N∑
k=1

(
x

(k)
i − x

(k)
j

)2

.

PROOF. The proof is given in Appendix II. �
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Fig. 1. Approximations of two–dimensional Gaussian densities according to Example IV.1 for different numbers L of Dirac mixture components.

IV. APPROXIMATION

The desired parameters of the Dirac mixture in (2) approx-
imating the given arbitrary multivariate Gaussian density
in (1) are obtained by minimizing the distance measure
in Theorem III.1. For that purpose, the Gaussian density
(1) is first transformed to the zero–mean, axis–aligned (but
unscaled) representation in (5). Then, the distance measure is
minimized by means of some standard optimization routine.
Here, we use the quasi–Newton method proposed in [10]
for that purpose. Finally, the Dirac mixture obtained is
transformed back to the original space by (6).

The optimization process reliably converges to the desired
solution even when initialized with a set of randomly selected
Dirac components. A formal derivation of conditions for
uniqueness of the solution is currently investigated. However,
intuitively the use of kernels of all sizes in the distance
measure smoothes out unwanted local minima that exist for
fixed kernel sizes and, hence, facilitates uniqueness.

For acceleration of the minimization procedure, the gradient
of the distance measure is employed, which is now derived
in analogy to the distance measure itself.

Theorem IV.1 The gradient of the general distance measure
in Theorem III.1 with respect to the locations of the Dirac
components is given by

G
(η)
ξ =

∂D

∂x
(η)
ξ

= G
(η,1)
ξ +G

(η,2)
ξ

with

G
(η,1)
ξ = 2 (2π)

N
2 wξ x

(η)
ξ

∫ bmax

0

bN+1(
σ(η)

)2 + 2 b2 N∏
k=1

1√(
σ(k)

)2 + 2 b2

 exp

−1
2

N∑
k=1

(
x

(k)
ξ

)2

(
σ(k)

)2 + 2 b2

 db

and

G
(η,2)
ξ = −πN2 wξ

L∑
i=1

wi

(
x

(η)
ξ − x

(η)
i

)
∫ bmax

0

1
b

exp
(
−1

2
Tξi
2 b2

)
db

for component index ξ = 1, . . . , L and dimension index η =
1, . . . , N with

Tξi =
N∑
k=1

(
x

(k)
ξ − x

(k)
i

)2

.

PROOF. The proof is given in Appendix III. �
The gradient in Theorem IV.1 again requires a one–

dimensional numerical integration over the variable b. How-
ever, a closed–form expression for G(η,2)

ξ can be found, which
is given in the next theorem.

Theorem IV.2 For large bmax, a closed–form expression for
the second term of the gradient of the distance measure with
respect to the locations of the Dirac components is given by

G
(η,2)
ξ =

π
N
2

2
wξ

{
L∑
i=1

wi

(
x

(η)
ξ − x

(η)
i

)
log

(
N∑
k=1

(
x

(k)
ξ − x

(k)
i

)2
)

+ Cb

(
L∑
i=1

wix
(η)
i − x

(η)
ξ

)}
,

for component index ξ = 1, . . . , L and dimension index η =
1, . . . , N .
PROOF. The proof is given in Appendix IV. �

In many cases, it is desired to fulfill certain constraints, such
as exactly matching certain moments of the given Gaussian or
complying with certain restrictions in the state space like non–
negative states. Arbitrary constraints are considered by solving
an appropriate constrained optimization problem, where in
this paper the mean and the covariance matrix of the given
Gaussian are used as constraints. This can easily be achieved
by Lagrangian relaxation of (9) or by including additive
terms to (9) that penalize deviations from the true mean and
covariance.

Example IV.1 The approximation results for various two–
dimensional Gaussian densities (w.l.o.g. zero mean) obtained with
the proposed optimization procedure are shown in Figure 1. The
following covariance matrices Σ are considered

[
2 0.2

0.2 2

]
(left) ,

[
2 1
1 2

]
(mid) ,

[
2 −1.5
−1.5 2

]
(right)

and the approximation is performed for equally weighted Dirac
components with L = 10, 16, 24, respectively. It is obvious that the
original continuous Gaussian density is systematically approximated
by freely placed Dirac components without requiring any form of
grid.
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Fig. 2. Absolute errors of the mean E(z) for various approximation
algorithms in Example IV.2.

The next example demonstrates the performance of the
proposed Dirac mixture approximation by a nonlinear trans-
formation of a Gaussian random vector.

Example IV.2 A random vector x ∈ IR2 characterized by a zero–
mean Gaussian density with covariance matrix Σ = diag([2, 0.2])
is transformed to a scalar random variable z by

z = sin(x(1))2 + cos(x(2))2 .

Different types of Dirac mixture approximations of x are employed
to calculate the mean of z:

• Ground truth is obtained by using 107 random samples, which
gives the mean E true(z) = 0.6742.

• Applying the unscented transform [1] yields the mean
Eut(z) = 0.9212. The absolute error compared to the true
mean is depicted as a dashed black line in Figure 2.

• The Gauss filter [3] for various numbers of components gives
the absolute errors depicted by green circles in Figure 2.

• For every number of components L, 1000 different realizations
of L random samples of x are drawn, mapped to z, and used
for calculating an estimate of the mean of z. Based on the
resulting 1000 values for the absolute error between the mean
estimates and the true mean, an error bound is drawn by the
blue solid curve in Figure 2 that contains 95% of the absolute
errors.

• The results of the Dirac mixture approximation based on an
off–line approximation of a standard normal density discussed
in Section III for various numbers of components L are given
as red crosses in Figure 2.

• The on–line Dirac mixture approximation proposed in this
paper gives the absolute errors shown as black dots in Figure 2
for various numbers of components L.

In this example, the results of the UKF are far from the truth. The
Gauss filter gives better results than the UKF but does not converge
to the true result for an increasing number of components. Random
sampling gives increasingly better results for a growing number
of samples and eventually converges to the true results. However,
convergence is slow and a large number of samples is required for
ensuring satisfactory results. The Dirac mixture approximation based
on an off–line approximation of a standard normal density gives
satisfactory results even for small L and quickly approaches the true
values for increasing L. The on–line Dirac mixture approximation
proposed in this paper yields even better results and shows a faster
convergence rate.

For different nonlinear mappings, the performance was found to
be more or less unpredictable for the UKF, the Gauss filter, random
sampling for a small number of components, and also for the Dirac

mixture approximation based on an off–line approximation of a
standard normal density for a small number of components. The on–
line Dirac approximation proposed in this paper reliably produced
consistent results even for a small number of samples and quickly
converged to the true results.

V. DISCUSSION

The Dirac mixture approximation proposed in this paper
is used in several applications. One important application is
Gaussian filtering of nonlinear stochastic dynamic systems
as discussed in the introduction. Compared to standard
approaches, performance has been shown to be significantly
better as the full density is systematically approximated and
an arbitrary number of components can be used.

In this paper, only the optimization of the positions of
the Dirac mixture components with equal weights has been
considered. Of course, non–equally weighted Dirac mixtures
can be considered as well, where the weights are also
optimized.

The proposed approximation of continuous densities by
a discrete representation is completely different from avail-
able approaches like random sampling, Quasi Monte–Carlo,
and vector quantization. In contrast to random sampling,
no randomness is involved when calculating the proposed
approximation. Instead, fully deterministic and repeatable
results are obtained by solving an optimization problem. In
addition, significantly less components are required thanks
to the systematic placement, which is especially useful for
high–dimensional systems.

Quasi Monte–Carlo methods employ low–discrepancy
sequences [11], where a variety of methods for generating uni-
formly distributed sequences is available [12]. Unfortunately,
for generating non–uniformly distributed low–discrepancy
sequences only transformation methods are known that rely on
the (typically unavailable) inverse distribution and suffer from
the problem that the low–discrepancy property is in general
not preserved for multi–dimensional random quantities [13].
The approach proposed in this paper directly approximates
the given density and does not require any sort of distribution–
based transformation method.

In vector quantization, the state space is tessellated into
encoding regions that are represented by their centroids in
such a way that the quantization error between the centroids
and the corresponding points in the regions is minimized
[14]. The joint optimization of both regions and centroids is
inherently discontinuous, requires discrete decisions, and is
prone to local minima. In the proposed method, no mapping
of regions to discrete quantities is required. Instead, a global
measure of the shape difference between the given continuous
density and its discrete representation is minimized, which
is inherently smooth. Hence, the desired parameters are
obtained by applying standard optimization methods in a
straightforward manner.

The paradigm of using LCDs can be exploited for cal-
culating discrete approximations for arbitrary continuous
densities, where the interesting special case of Gaussian
mixture densities directly follows from the results of this
paper. In addition, distance measures based on LCDs can
be used for approximating discrete densities by continuous



densities (density estimation) or for performing a reduction
of a given Dirac mixture density by representing it with fewer
components.

Example code for Dirac mixture approximation of Gaussian
densities can be found in the web at

http://isas.uka.de/material/
source-code/DM Gauss Approx .

APPENDIX I
PROOF OF THEOREM III.1

The inner integral in the distance measure (9) is solved
by exploiting the fact that the integration is over products of
(unnormalized) Gaussian densities, which can be performed
analytically. By inserting the LCD F̃ (m, b), the first term
can be written as

P1 =
N∏
k=1

∫
IR

b2(
σ(k)

)2 + b2
exp

(
−1

2
2
(
m(k)

)2(
σ(k)

)2 + b2

)
dm(k) .

Solving the N integrals gives

P1 =
N∏
k=1

√
π

b2√(
σ(k)

)2 + b2
= π

N
2 b2N

N∏
k=1

1√(
σ(k)

)2 + b2
.

Upon insertion of the LCDs F̃ (m, b) and F (m, b), the
second term is given by

P2 =
∫

IRN

N∏
k=1

b√(
σ(k)

)2 + b2
exp

(
−1

2

(
m(k)

)2(
σ(k)

)2 + b2

)

L∑
i=1

wi

N∏
k=1

exp

−1
2

(
x

(k)
i −m(k)

)2

b2

 dm .

Rearranging terms yields

P2 =
L∑
i=1

wi

N∏
k=1

∫
IR

b√(
σ(k)

)2 + b2
exp

(
−1

2

(
m(k)

)2(
σ(k)

)2 + b2

)

exp

−1
2

(
x

(k)
i −m(k)

)2

b2

 dm(k) ,

which after solving the N integrals over m(k), k = 1, . . . , N
gives

P2 =
L∑
i=1

wi

N∏
k=1

√
2π b2√(

σ(k)
)2 + 2 b2

exp

−1
2

(
x

(k)
i

)2

(
σ(k)

)2 + 2 b2

.
Further simplification finally gives the desired result.

The third term P3 is obtained by inserting the LCD F (m, b)
as

P3 =
∫

IRN

L∑
i=1

L∑
j=1

wiwj

N∏
k=1

exp

−1
2

(
x

(k)
i −m(k)

)2

b2


N∏
k=1

exp

−1
2

(
x

(k)
j −m(k)

)2

b2

dm.

Exchanging integration and summation gives

P3 =
L∑
i=1

L∑
j=1

wiwj

N∏
k=1

∫
IR

exp

−1
2

(
x

(k)
i −m(k)

)2

b2


exp

−1
2

(
x

(k)
j −m(k)

)2

b2

dm(k).

For further simplification, we use∫
IR

exp
(
−1

2
(zi −m)2

b2

)
exp

(
−1

2
(zj −m)2

b2

)
dm

=
√
π b exp

(
−1

2
(zi − zj)2

2 b2

)
,

(11)

which gives

P3 = π
N
2 bN

L∑
i=1

L∑
j=1

wiwj

N∏
k=1

exp

−1
2

(
x

(k)
i − x

(k)
j

)2

2 b2

 .

APPENDIX II
PROOF OF THEOREM III.2

For solving

D3 =
∫

IR+

1
bN−1

P3 db ,

we define

γ(z) =
∫ bmax

0

b exp
(
−1

2
z

2 b2

)
db

=
1
8

{
4 b2max exp

(
−1

2
z

2 b2max

)
+ z Ei

(
−1

2
z

2 b2max

)}
for z > 0, where Ei(.) is the exponential integral given by

Ei(x) =
∫ x

−∞

et

t
dt .

Hence, D3 is now given by

D3 = π
N
2

L∑
i=1

L∑
j=1

wi wj γ(Tij) .

For small x > 0, the exponential integral can be approxi-
mated by

Ei(−x) ≈ Γ + log(x)− x ,

where Γ ≈ 0.5772 is the Euler gamma constant. Hence, the
function γ(z) can be approximated according to

γ(z) ≈ 1
8

{
4 b2max exp

(
−1

2
z

2 b2max

)
+z

(
Γ + log

(
1
2

z

2 b2max

)
− 1

2
z

2 b2max

)}
≈ 1

8
{

4 b2max + z
(
Γ− log(4 b2max) + log(z)

)}
=

1
8
{

4 b2max − Cb z + xlog(z)
}

with Cb = log
(
4 b2max

)
−Γ and we obtain the desired result.



APPENDIX III
PROOF OF THEOREM IV.1

Taking the derivative of the distance measure in (9) with
respect to a location x(η)

ξ gives

G
(η)
ξ =

∂D

∂x
(η)
ξ

= −2
∫ bmax

0

1
bN−1∫

IRN

(
F̃ (m, b)− F (m, b)

) ∂F (m, b)

∂x
(η)
ξ

dm db ,

with

∂F (m, b)

∂x
(η)
ξ

=− wξ
x

(η)
ξ −m(η)

b2

N∏
k=1

exp

−1
2

(
x

(k)
ξ −m(k)

)2

b2

 .

In the following, we will treat the two parts of G(η)
ξ

according to
G

(η)
ξ = G

(η,1)
ξ +G

(η,2)
ξ

separately. The first part is given by

G
(η,1)
ξ = −2

∫ bmax

0

1
bN−1

∫
IRN

F̃ (m, b)
∂F (m, b)

∂x
(η)
ξ

dmdb .

By using the expressions for F̃ (m, b) and ∂F (m,b)

∂x
(η)
ξ

, we obtain

G
(η,1)
ξ = 2wξ

∫ bmax

0

1
bN−1

∫
IRN

N∏
k=1

b√(
σ(η)

)2 + b2
exp

(
−1

2

(
m(k)

)2(
σ(η)

)2 + b2

)

x
(η)
ξ −m(η)

b2

N∏
k=1

exp

−1
2

(
x

(k)
ξ −m(k)

)2

b2

dm db .

Combining the product terms gives

G
(η,1)
ξ = 2wξ

∫ bmax

0

1
bN−1

∫
IR

x
(η)
ξ −m(η)

b2

b√(
σ(η)

)2 + b2
exp

(
−1

2

(
m(η)

)2(
σ(η)

)2 + b2

)

exp

−1
2

(
x

(η)
ξ −m(η)

)2

b2

dm(η)

N∏
k=1
k 6=η

∫
IR

b√(
σ(η)

)2 + b2
exp

(
−1

2

(
m(k)

)2(
σ(η)

)2 + b2

)

exp

−1
2

(
x

(k)
ξ −m(k)

)2

b2

dm(k)db .

For further simplification, we use

∫
IR

b√
σ2 + b2

exp
(
−1

2
m2

σ2 + b2

)
exp

(
−1

2
(x−m)2

b2

)
dm

=
√

2π
b2√

σ2 + 2 b2
exp

(
−1

2
x2

σ2 + 2 b2

)

and

∫
IR

x−m
b2

b√
σ2 + b2

exp
(
−1

2
m2

σ2 + b2

)
exp

(
−1

2
(x−m)2

b2

)
dm

=
√

2π x
b2

(σ2 + 2 b2)
3
2

exp
(
−1

2
x2

σ2 + 2 b2

)
,

which gives

G
(η,1)
ξ = 2 (2π)

N
2 wξ x

(η)
ξ

∫ bmax

0

bN+1(
σ(η)

)2 + 2 b2

N∏
k=1

1√(
σ(k)

)2 + 2 b2
exp

−1
2

(
x

(k)
ξ

)2

(
σ(k)

)2 + 2 b2

 db .

Simplifying the product over exponential functions gives the
final result.

The second part is given by

G
(η,2)
ξ = 2

∫ bmax

0

1
bN−1

∫
IRN

F (m, b)
∂F (m, b)

∂x
(η)
ξ

dm db .

By using the expressions for F (m, b) and ∂F (m,b)

∂x
(η)
ξ

, we obtain

G
(η,2)
ξ =−2wξ

∫ bmax

0

1
bN−1

∫
IRN

L∑
i=1

wi

N∏
k=1

exp

−1
2

(
x

(k)
i −m(k)

)2

b2


x

(η)
ξ −m(η)

b2

N∏
k=1

exp

−1
2

(
x

(k)
ξ −m(k)

)2

b2

dm db .



Combining the product terms gives

G
(η,2)
ξ = −2wξ

L∑
i=1

wi

∫ bmax

0

1
bN−1

∫
IR

x
(η)
ξ −m(η)

b2
exp

−1
2

(
x

(η)
ξ −m(η)

)2

b2


exp

−1
2

(
x

(η)
i −m(η)

)2

b2

dm(η)

N∏
k=1
k 6=η

∫
IR

exp

−1
2

(
x

(k)
ξ −m(k)

)2

b2


exp

−1
2

(
x

(k)
i −m(k)

)2

b2

dm(k)db .

For further simplification, we use∫
IR

zi −m
b2

exp
(
−1

2
(zi −m)2

b2

)
exp

(
−1

2
(zj −m)2

b2

)
dm

=
√
π
zi − zj

2 b
exp

(
−1

2
(zi − zj)2

2 b2

)
and (11), which leads to

G
(η,2)
ξ =− πN2 wξ

L∑
i=1

wi

(
x

(η)
ξ − x

(η)
i

)
∫ bmax

0

1
b

N∏
k=1

exp

−1
2

(
x

(k)
ξ − x

(k)
i

)2

2 b2

 db

or equivalently

G
(η,2)
ξ = −πN2 wξ

L∑
i=1

wi

(
x

(η)
ξ − x

(η)
i

)
∫ bmax

0

1
b

exp
(
−1

2
Tξi
2 b2

)
db

for component index ξ = 1, . . . , L and dimension index
η = 1, . . . , N with

Tξi =
N∑
k=1

(
x

(k)
ξ − x

(k)
i

)2

.

APPENDIX IV
PROOF OF THEOREM IV.2

By solving the integral∫ bmax

0

1
b

exp
(
−1

2
z

2 b2

)
db = −1

2
Ei
(
−1

2
z

2 b2max

)
for z > 0, we obtain

G
(η,2)
ξ =

π
N
2

2
wξ

L∑
i=1

wi

(
x

(η)
ξ − x

(η)
i

)
Ei
(
−1

2
Tξi

2 b2max

)

with

Tξi =
N∑
k=1

(
x

(k)
ξ − x

(k)
i

)2

for component index ξ = 1, . . . , L and dimension index
η = 1, . . . , N . For large bmax, we obtain

Ei
(
− z

4 b2max

)
≈ Γ− z

4 b2max
+ log

(
z

4 b2max

)
≈ Γ− log

(
4 b2max

)
+ log(z)

= −Cb + log(z)

for z > 0. With

−Cb
L∑
i=1

wi

(
x

(η)
ξ − x

(η)
i

)
= Cb

(
L∑
i=1

wix
(η)
i − x

(η)
ξ

)
,

we obtain the desired result.
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