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Abstract. Using principles of quantum symmetries we derive the algebraic part of the real

spectral triple data for the standard Podleś quantum sphere: equivariant representation, chiral

grading γ, reality structure J and the Dirac operator D, which has bounded commutators with

the elements of the algebra and satisfies the first order condition.

1. Introduction. It is a prevailing common opinion that Connes’ approach to non-

commutative geometry [4] is in a sense incompatible with the (compact) quantum-group

examples of q-deformations [9]. The main obstacle was the construction of an appro-

priate Dirac operator D, fulfilling the requirements postulated in [5]. In this paper we

solve this problem for the standard Podleś quantum sphere [14] by finding a Dirac op-

erator satisfying the ‘algebraic’ part of the axioms of real spectral triples. We simplify

our considerations by making an additional assumption of symmetry with respect to the

Uq(su(2)) action, thus pursuing the principles of construction of equivariant real spectral
triples [15].

2. The standard quantum sphere and its symmetry. We recall the definition of

the algebra A(S2q ) of the standard Podleś quantum sphere as a subalgebra of the quantum
SU(2) function algebra [14, 16].
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Let q be a real number 0 < q ≤ 1 and A(SUq(2)) be a ∗-algebra generated by a, a∗
and b, b∗, which satisfy the following commutation rules:

ba = qab,

b∗a = qab∗, bb∗ = b∗b,

a∗b = qba∗, a∗a+ q2bb∗ = 1,

a∗b∗ = qb∗a∗, aa∗ + bb∗ = 1.

(1)

The algebra A(S2q ) is isomorphic to the subalgebra generated by:

B = ab,

B∗ = b∗a∗,

A = bb∗.

(2)

They obey the following relations:

AB = q2BA, AB∗ = q−2B∗A,

BB∗ = q−2A(1−A), B∗B = A(1− q2A).
(3)

The quantized algebra Uq(su(2)) has e, f, k, k−1 as generators of the ∗-Hopf algebra,
satisfying the relations:

ek = qke, kf = qfk, k2 − k−2 = (q − q−1)(fe− ef).(4)

The coproduct is given by:

∆k = k ⊗ k, ∆e = e⊗ k + k−1 ⊗ e, ∆f = f ⊗ k + k−1 ⊗ f.(5)

The counit ǫ, antipode S, and star structure are as follows:

ǫ(k) = 1, ǫ(e) = 0, ǫ(f) = 0,

Sk = k−1, Sf = −qf, Se = −q−1e,
k∗ = k, e∗ = f, f∗ = e.

(6)

From the usual Hopf algebra pairing between Uq(su(2)) and A(SUq(2)) we obtain an
action of Uq(su(2)) on A(SUq(2)) given on generators by:

k ⊲ a = q
1

2 a, k ⊲ a∗ = q−
1

2 a∗,

k ⊲ b = q
1

2 b, k ⊲ b∗ = q−
1

2 b∗,

e ⊲ a = −b∗, e ⊲ a∗ = 0,

e ⊲ b = q−1a∗, e ⊲ b∗ = 0,

f ⊲ a = 0, f ⊲ a∗ = qb,

f ⊲ b = 0, f ⊲ b∗ = −a.

(7)

This action preserves the ∗-structure:

h ⊲ (x∗) = ((Sh)∗ ⊲ x)
∗
, ∀h ∈ Uq(su(2)), x ∈ A(S2q ).(8)
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Hence we derive the action of Uq(su(2)) on the generators of the standard Podleś sphere:
e ⊲ B = −(q 12 + q− 32 )A+ q− 32 ,
e ⊲ B∗ = 0,

e ⊲ A = q−
1

2B∗,

k ⊲ B = qB,

k ⊲ B∗ = q−1B∗,

k ⊲ A = A,

f ⊲ B = 0,

f ⊲ B∗ = (q
3

2 + q−
1

2 )A− q− 12 ,
f ⊲ A = −q 12B.

(9)

3. Equivariant representation of A(Sq ). As the next step we shall find a rep-

resentation of the algebra A(S2q ) on a Hilbert space H, which is equivariant under the
action of Uq(su(2)) defined in (9).
Definition 1. Let V be an A-module and H be a Hopf algebra. Also, let V and A be

H-modules. We call V an H-equivariant A-module if the following condition is satisfied:

h(αv) = (h(1) ⊲ α)(h(2)v) , ∀h ∈ H, α ∈ A, v ∈ V.(10)

Here we use Sweedler’s notation for the coproduct of H and ⊲ for the action of H on A.

(In other words, V is a module over the crossed (smash) product of H and A.)

Definition 2. A bounded representation π of A on a Hilbert space H is called H-
equivariant if there exists a dense linear subspace V of H such that V is an H-equivariant
A-module and π(α)v = αv, ∀v ∈ V, α ∈ A.
We shall use the (known) representation theory of Uq(su(2)).
Lemma 3 ([9]). The irreducible finite dimensional representations of Uq(su(2)) are

labeled by l = 0, 12 , 1, . . . and they are given by

f |l,m〉 =
√
[l −m][l +m+ 1]|l,m+ 1〉,

e|l,m〉 =
√
[l −m+ 1][l +m]|l,m− 1〉,

k|l,m〉 = qm|l,m〉,
(11)

where m ∈ {−l,−l+1, . . . , l−1, l} and for any number x

[x] :=
qx − q−x
q − q−1 .

For a given l we denote the representation space by Vl.

The representations above are ∗-representations of Uq(su(2)) with respect to the (her-
mitian) scalar product for which the vectors |l,m〉 are orthonormal.
We attempt now to construct a Uq(su(2))-equivariant representation of A(S2q ) on the

Hilbert space completion of a Uq(su(2))-equivariant A(S2q )-module constructed as the
direct sum of all representations Vl. A priori some multiplicities can occur but we make

a simplifying assumption that this is not the case, guided by the picture of spinors on
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the classical (commutative) sphere. However, it may be easily verified that the results of

Lemma 3 could be generalized to the case with multiplicities.

Lemma 4. A Uq(su(2))-equivariant representation of A(S2q ) on the Hilbert space
completion of V0 ⊕ V 1

2

⊕ V1 ⊕ . . . must have the following form:

B|l,m〉 = B+l,m|l + 1,m+ 1〉+B0l,m|l,m+ 1〉+B−l,m|l − 1,m+ 1〉,(12)

B∗|l,m〉 = B̃+l,m|l + 1,m− 1〉+ B̃0l,m|l,m− 1〉+ B̃−l,m|l − 1,m− 1〉,(13)

A|l,m〉 = A+l,m|l + 1,m〉+ A0l,m|l,m〉+A−l,m|l − 1,m〉,(14)

where Ajl,m, B
j
l,m, B̃

j
l,m for j = +, 0,−, are constants.

Proof. We use the covariance property (10) on the algebraic direct sum of Vj . First,

from the action of k on B we see that B must increase the exponent m of the eigenvalue

of k by 1. Similar arguments show that B∗ decreases m by 1 and A does not change m.

Therefore B|l,m〉 is a sum:

B|l,m〉 =
∑

i

Bi|i,m+ 1〉,(15)

where the sum runs over i = 0, 12 , 1,
3
2 , . . . with finite number of nonzero coefficients.

Applying f l−m+1 to both sides we obtain 0 on the left-hand side and a sum starting

with i = l+2 on the right-hand side. By linear independence of all elements in this sum,

we see that the sum over i in (15) runs only up to l+1. (This does not eliminate yet the

possibility of i < l − 1.)
Using a similar argument, with B∗ instead of B, we observe that again the terms with

i > l+1, in a corresponding sum, do not appear. Since we are looking for a ∗-representation
of A(S2q ), we conclude that in both expressions i runs from l − 1 to l + 1, as stated in
(12-14). From the sphere defining relations (3) it follows that this holds also for A.

It follows from (12-14) that we can separate the half integer spin representations from

the integer spin representations. In the sequel we restrict ourselves only to the case of

the Hilbert space H 1
2

given by completion of the direct sum

V = V 1
2

⊕ V 3
2

⊕ . . .
of all half-integer representations of Uq(su(2)), motivated by the classical picture of (chi-
ral) spinors over S2.

We proceed by applying f on both sides of (12) to obtain the following recursion

relations for the coefficients Bjl,m:

1

q
Bjl,m+1

√
[l −m][l +m+ 1] = Bjl,m

√
[l + j −m− 1][l + j +m+ 2].(16)

We solve them explicitly for each value of m:

B+l,m = q
m
√
[l +m+ 1][l +m+ 2] α+l ,

B0l,m = q
m
√
[l +m+ 1][l −m] α0l ,

B−l,m = q
m
√
[l −m][l −m− 1] α−l ,

(17)

where α±l , α
0
l are yet undetermined functions of l.
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If we apply e to (13), we obtain

B̃+l,m = q
m−1√[l −m+ 2][l −m+ 1] α−l+1,

B̃0l,m = q
m−1√[l +m][l −m+ 1] α0l ,

B̃−l,m = q
m−1√[l +m][l +m− 1] α+l−1.

(18)

Finally, for A, using the action of e on B (or equivalently f on B∗) we get:

A+l,m = −qm+l+
1

2

√
[l −m+ 1][l +m+ 1] α+l

A0l,m = q
− 1
2
1
1+q2

(
[l −m+ 1][l +m]− q2[l −m][l +m+ 1]

)
α0l +

1
1+q2 ,

A−l,m = q
m−l− 1

2

√
[l −m][l +m] α−l .

(19)

Moreover, the ∗-representation condition yields a consistency relation between α+ and
α−:

α−l+1 = −q2l+2α+l , for l =
1

2
,
3

2
, . . . .(20)

Now, we use the relations defining the algebra A(S2q ) in order to calculate the form
of α+l and α

0
l . The comparison of the |l + 1,m+ 1〉 component of the action of the first

relation in (3) on |l,m〉 gives the following recurrence relation in l:

α0l+1[2l + 4] = α
0
l [2l] +

1√
q
(q − q−1).(21)

To get the relation for α+l and obtain the initial terms (that is, values for l =
1
2 )

we employ the last two relations in (3), of which we choose the following convenient

combination:

B∗B − q4BB∗ = (1− q2)A.(22)

Our results can be summarized in the following lemma.

Lemma 5. There are two inequivalent Uq(su(2))-equivariant representations of A(S2q )
on the Hilbert space H 1

2

given by formulae (12-14), (17-20) and by the following formulae

for α+l and α
0
l :

• π+:

α0l =
1√
q

(q − 1
q
)[l − 12 ][l + 32 ] + q
[2l][2l + 2]

,(23)

α+l = q
−l−2 1√

[2l + 2]([4l + 4] + [2][2l + 2])
.(24)

• π−:

α0l =
1√
q

(q − 1
q
)[l − 12 ][l + 32 ]− q−1

[2l][2l + 2]
,(25)

α+l = q
−l−1 1√

[2l + 2]([4l + 4] + [2][2l + 2])
.(26)

Proof. By direct calculation with the help of the symbolic algebra program.1

1The source file with definitions and examples is available from the web-site: http://www.cyf-
kr.edu.pl/˜ufsitarz/maple.html
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First we verify the value of α+1
2

:

(α+1
2

)2 = q−4∓1
1

([3])2[4]
,(27)

where the ± signs corresponds to the freedom we have. This leads to the explicit solution
of the recurrence relation (21), which is the formula (25). For α+l we use two relations

obtained from (22):

(α+l )
2q2l+3[2l + 3][2]− (α+l−1)2q2l+1[2l − 1][2]

−(α0l )2q[4l + 2]/[2l + 1] + α0l
√
q (q − q−1) = 0,

(28)

−(α+l )2q2l+3[4l + 6][2] + (α+l−1)2q2l+1[4l − 2][2]

+(α0l )
2q([2])2 − α0l

√
q (q − q−1)[4l + 2]/[2l + 1] + (q − q−1)2 = 0.

(29)

By subtracting the left-hand sides to eliminate α+l−1 and using the result (25) for α
0
l , we

arrive at the final formula (26) presented above. Besides (22) we also check that the last

two relations in (3) are separately fulfilled and that all elements of A(S2q ) are represented
as bounded operators on H 1

2

.

Note that the possible sign ambiguity in the formula for α+l can be globally resolved

by the redefinition of the basis.

4. Real spectral triple for Sq . We begin by taking as the Hilbert space of Dirac

spinors, on which A(S2q ) is represented, the direct sum H := H 1
2

⊕H 1
2

, with the repre-

sentation given by:

π(a) =

(
π+(a) 0

0 π−(a)

)
,(30)

and the grading γ:

γ =

(
1 0

0 −1

)
.

It is obvious that the representation π is bounded on H, Uq(su(2))-equivariant and
[π(α), γ] = 0 for all α ∈ A(S2q ).
The next ingredient we search for is the reality structure given by an antilinear oper-

ator J . Denote by |l,m〉± the orthonormal basis in the first (resp. second) copy of H 1
2

in

H. We claim the following:
Lemma 6. For all real p > 0 the operator:

J |l,m〉± = i2mpm|l,−m〉∓,(31)

satisfies J2 = −1, γJ = −Jγ and
Jπ(α)Jπ(β) = π(β)Jπ(α)J, ∀α, β ∈ A(S2q ).(32)

Proof. Since m is fractional (hence 2m is odd) and J is antilinear, we have:

J2|l,m〉± = J
(
i2mpm|l,−m〉∓

)

= − i2mpmJ |l,−m〉∓ = − i2mpmi−2mp−m|l,m〉± = −|l,m〉±.
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The second property is obvious from the construction. The only nontrivial part is the

verification of (32). We have verified this explicitly for two pairs (α, β) = (B,B) and

(B,B∗) of generators, which clearly suffices in view of the relation (22). Also, as an inde-

pendent check, we have verified (32) with the help of a computer symbolic computation

program for all the generators of the algebra.

Remark 7. Note that J is not unitary unless p = 1, in which case it has the same

form as the classical charge conjugation on the sphere. However, only for p = q, J is

Uq(su(2))-equivariant, that is, for all h ∈ Uq(su(2)):
hJ = J(Sh)∗.(33)

In fact, it is the equivariance property [15, 12] which led us to this form of J .

Finally, we shall look for all possible Dirac operators D which satisfy the following

properties:

• D is an (unbounded in general) selfadjoint operator with compact resolvent defined
on a dense domain in H which contains V ⊕ V ,
• D is Uq(su(2))-invariant, that is,

Dh = hD, ∀h ∈ Uq(su(2)),
• Dγ = −γD,
• the commutators [D,π(α)] are bounded for all α ∈ A(S2q ),
• DJ = JD,
• D satisfies the first order condition:

[[D,π(α)], Jπ(β)J ] = 0 , ∀α, β ∈ A(S2q ).(34)

The following is the main result of the paper.

Theorem 8. All operators satisfying the conditions listed above are of the following

form:

D =

(
0 z̄D−
zD+ 0

)
, whereD±|l,m〉± = [l + 12 ] |l,m〉∓ and z ∈ C \ {0}.(35)

Proof. First, from the commutation with γ we obtain that D : H± → H∓. Then the
equivariance forces that:

D|l,m〉± = d±l |l,m〉∓,(36)

where d±l are constants. In addition, the condition for D to be hermitian yields

d±l = d
∓
l .(37)

Now, using the form of J from (31) we calculate DJ − JD:
(DJ − JD)|l,m〉± = Di2mpm|l,−m〉∓ − Jd±l |l,m〉∓

= i2mpm(d∓l − d±l )|l,m〉± = 0.
Here we used (37) in the final step.

Next, as a consequence of the derivation property of commutators and of (32), the first

order condition is satisfied for all α, β ∈ A(S2q ) iff it is satisfied for all pairs of generators.
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Furthermore, in view of (22), the Jacobi identity and skewsymmetry of commutators, it

suffices to verify (34) just for two pairs of generators (α, β) = (B,B) and (B,B∗). This

yields first the following recurrence relation for d+l :

d+l + d
+
l+2 = [2]d

+
l+1.(38)

Hence,

d+l = xq
l + yq−l,(39)

where x and y are arbitrary constants. Next, (34) also yields x = −qy, thus giving us the
form of the Dirac operator as in (35), where z is a complex parameter (we can rescale all

d+l by the same z and all d
−
l by z̄). Using this form of D we verify explicitly (again with

the help of symbolic computation program) that the first order condition is satisfied for

all pairs of generators of A(S2q ).
The parameter z must be nonzero in order for the resolvent of D to be compact. It

is also clear that the only accumulation points of the spectrum {±|z|[l + 1/2]} of D are
±∞ which guarantees the compactness of the resolvent. Finally, the Dirac operator D is
selfadjoint on the dense domain,
{
ψ =
∑

l,m,σ

cl,m,σ|l,m〉σ : cl,m,σ ∈ C ,
∑

l,m,σ

(1 + |z|2[l + 1/2]2)|cl,m,σ|2 <∞
}
,

where the sum runs over l = 12 ,
3
2 , . . ., m = −l, . . . , l and σ = ±.

For this form of D we show that the commutators [D,π(α)], for the elements α of the

algebra A(S2q ) are bounded. To see this it suffices to check it only for the generators. We
start with the generator B. For a given l, there are only three nonzero matrix elements

−〈l+j,m+1|[D,B]|l,m〉+ corresponding to j = −1, 0, 1. We verify that they are bounded.
In the case j = 1 we estimate:

|−〈l + 1,m+ 1|[D,π(B)]|l,m〉+|

= qm
√
[l+m+1][l+m+2]√

[2l+2]([4l+4]+[2][2l+2])
q−l−2

(
[l + 32 ]− q[l + 12 ]

)

≤ C+qmq−l−mq3lq−lq−l = C+,

(40)

where C+ is a constant. Similarly, for j = 0:

|−〈l,m+ 1|[D,π(B)]|l,m〉+|

= qm
√
[l+m+1][l−m]
√
q[2l][2l+2]

(
q−1 − q

)
[l + 12 ]

≤ C0qmq−lq4lq−l ≤ C0,

(41)

for a suitable constant C0. Finally, for j = −1:
|−〈l − 1,m+ 1|[D,π(B)]|l,m〉+|

= qm
√
[l−m][l−m−1]√

[2l+2]([4l+4]+[2][2l+2])
q−l−2q2l

(
[l + 32 ]− q[l + 12 ]

)

≤ C−qmq−l+mq3lq−lq−lq2l ≤ C−,

(42)

where in the last line we have used q−m ≤ q−l. It can be verified directly that similar

bounds hold also for the generators A and B∗, but this in fact is a consequence of (22)

and the fact that π is a bounded ∗-representation.
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Note that we get a perfect agreement with the picture of the classical spectral triple

on the commutative sphere. Using the notation of [2] (pp.407–419) we can (at q = 1)

identify |l,m〉± with Y ±l,m. Similarly, for p = 1 our J has the same form as the charge
conjugation C on spinors and one finds the eigenvectors and eigenvalues of D to have the

correct q = 1 limit.

5. Conclusions. It is quite surprising that despite the earlier mentioned common

belief that Connes’ approach to noncommutative geometry does not cover quantum-group

examples, we have been able to produce an example satisfying the algebraic axioms of real

spectral triples (noncommutative manifolds). We have been informed by Alain Connes

that also the dimension axiom can be satisfied (related to the asymptotic behavior of

the eigenvalues of the Dirac operator). We believe that elaborating on this example will

prove helpful to reconcile the noncommutative geometry with the q-geometry.

It should be noted that, unlike most of other approaches [1, 10, 11, 13], we do not

assume at the beginning any form of the Dirac operator (apart from the requirement of

equivariance) and we derive it step by step. Although its eigenvalues can be compared

with, e.g., those in [1], the essential difference is the explicit realization of all the data

on the Hilbert space. This includes the representation of the algebra and the proof that

the resulting differential forms have bounded representation [D,π(α)], as well as a pre-

sentation of reality and chirality operations. Also, in comparison to [7, 3] (apart from

using distinct starting algebras) our Hilbert space representation and the equivariance

requirements are fundamentally different. Moreover, an important new ingredient is the

reality operator.

There are still important problems to solve, which we shall address elsewhere: the

analytic properties of the spectral triple (summability, regularity and finiteness) as well

as the existence of the Hochschild cycle giving the volume form and Poincaré duality. (For

details on these notions and their applications see [2], 10.5.) Last not least, we plan to

study the details of the classical limit q → 1, the relation ofH± andH to q-deformed Hopf
bundles [8], and the equivariant Fredholm module obtained from our construction. Also

the systematic analysis of other Podleś spheres (in particular, the equatorial quantum

sphere) is in preparation [6].
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