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DIRAC’'S COSMOLOGY AND THE GENERAL THEORY
OF RELATIVITY

C. Gilbert
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Summary

An explanation is given, according to the principles of the general theory
of relativity, of some results previously obtained by Dirac. It is assumed that
there is a different unit of distance for electromagnetic phenomena from the
unit of distance used for describing gravitational phenomena. The ratio of
these units varies with the time. 'The former unit gives the usual ¢ cosmic”’
distance and a Newtonian law of gravitation which is independent of the time,
the latter unit leads to a Newtonian law of gravitation for which the gravitational
power of matter varies inversely as the epoch.

Formulae are derived which enable the age of the universe (£), Hubble’s
constant (H) and the mean density of matter in the universe (w), to be calculated
from the values of the constants of atomic theory and the present observed value
of the gravitational ¢ constant ”’, It is found that =41 X 10? years, H=160
km/sec/megaparsec, and w=4'8 X 1072 gm/cm3.

1. Introduction.—Nearly twenty years ago Dirac gave “a new basis for
cosmology” (1), in which he used some numerical coincidences which occur
between large dimensionless numbers formed from the constants of Nature, to
show that the gravitational “‘ constant” is in fact not constant, but a quantity
which varies inversely as the epoch. Dirac gave a relativistic treatment of the
theory, but unfortunately the method he used is open to criticism (2z), and
consequently his results have not been generally accepted.  Itis, in fact, generally
believed that a theory of gravitation with variable y is beyond the scope of the
general theory of relativity. In this paper I show that this is not the case and I
obtain results similar to those given by Dirac by use of the principles of the
general theory of relativity.

The usual derivation of the Einstein constant « depends on obtaining an
approximation to Poisson’s equation for weak static fields, without considering
the relation of these fields to the field generated by the rest of the matter in the
universe. This has led to the assumption having been made that the spatial
coordinates and the time occurring in Newtonian theory are the same as those
for which the velocity of light i vacuo is constant. It will be shown that this
is not necessarily the case, and, in order to bring this point out clearly, we derive
the value of « in a different manner, which makes use of equations for the
relativistic models of the universe, which form the basis of ‘Newtonian
Cosmology” (3, 4). We then show how Newton’s law of gravitation can be
derived from the relativistic equations of motion, for both local and large-scale
gravitational phenomena, in two forms. In one form the usual ‘ cosmic”
coordinates are used and the gravitational power of matter is constant, in the
other form a different unit of distance is used and the gravitational power y varies
inversely as the epoch.
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Classical electrodynamics is independent of Newtonian mechanics. It is
not therefore necessary for the spatial coordinates used in forming Maxwell’s
equations iz vacuo to be the same as those occurring in Newton’s law of gravita-
tion. We shall assume that the former coordinates correspond to cosmic distance
coordinates and the latter coordinates are those which give rise to the value of y
which varies inversely as the epoch. We also assume that the measurements of
the coordinates and other quantities occurring in the description of the Universe
are based on atomic units of mass, length, and time. The rather tentative
nature of the approach, which comes from making these assumptions, is made
more rigorous in Section 10, where it is shown that Dirac’s equation expresses
the relation between the units of the electrical and gravitational fields in a local
gauge-system.

We consider the Einstein-de Sitter model of the universe (5), and we
show that the present epoch may be calculated for this model, from the present
values of the physical constants. The properties of the model may then be
fully determined without making assumptions about the values of any arbitrary
constants.

P. Jordan (6, 7) and E. A. Milne (8), have described models for which
the physical constants varied with the time, but the present approach is different
from theirs, which used different mathematical techniques. The cosmology of
Jordan is based on Dirac’s results, and uses the technique of projective relativity,
whereas the rather different results of Milne’s theory were obtained by the methods
of kinematic relativity.

2. The atomic units of measurement,—We assume that the metric of the
expanding universe has the form

ds® = c® di? — R2(dx? + dx2 + dx?), (1)
where R is a function of ¢ only, ¢ is the velocity of light and the 3-spaces ¢ = constant
are conformal to Euclidean space in which radial distance r = (x + x3 + x2)1/2,

We assume that the matter of the universe exerts negligible pressure and

that the cosmological constant occurring in the field equations is zero. We
then find from the field equations that the mean density of matter p,, is given by

Kpoo = 3R/ R2¢, (2)
where « is Einstein’s constant, and
R PR
ZE + ﬁ =0. (3)
From (3) we find
R2 = K/R) (4)
where K is a constant of integration. A further integration gives
R=(3K%t+ A)23, (5)
where A is a constant. We can without loss of generality take A=o0 and
K=4C2 ~(6)
Equation (5) then gives
R=(Ct)™ (7)

The system of coordinates (¢, x;, ¥, %;) we call basic coordinates. These
coordinates are usually said to be co-moving because the coordinate distance
between any two particles of matter is constant, We assume that although the

l
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matter in the universe may be treated mathematically as a continuous distribution,
it does in fact consist of protons and electrons of masses m, and m, gm and that
associated with these particles there are fundamental intervals of time esecs
and distance dcm. The basic coordinates are assumed to be measured in
terms of these fundamental constants as units of time and length. We also
assume that the average charge density in the neighbourhood of any event is
zero, and that ¢ at any event is measurable from the local properties of matter,
and therefore has the nature of an absolute time and gives a meaning to simul-
taneity of events independently of light-signals between events.

3. The wvalue of Einstein’s constant.—The equation governing the radial
motion of matter in the universe can be put in Newtonian form when the distance
coordinates are

X,=Rx, (x=1,2,3). (8)
Writing
p=(X%+XZ+X32=(Ct)%, (9)
and v =dp/dt, we find that
= 2P ‘
= 3t (10)
The equation giving the radial motion of matter is then
dv 2p
AT & (r1)

Writing M(p) for the mass contained within a sphere of radius p, we find from

(2), (4), (6) and (7)

167 p®
Mp)=o5m (12)
dv T'M(p)
a7 (13)
where I is a constant satisfying \
8n I’
= (14)

An observer who uses coordinates (t, Xy, X, X;3) and uses Euclidean space will
describe the system as subject to a Newtonian law of gravitation, with gravita-
tional constant T', provided he assumes that matter at distances greater than p
gives no resultant gravitational force on the matter inside a sphere of radius p.
This result, which was obtained by Milne (3), is used in the present instance to
obtain the relation (14) defining «.

4. The local gravitational field—The coordinates (¢, X;, X,, X3) are usually
called cosmic coordinates. It has been shown (9) that when cosmic spatial
coordinates are used the gravitational field of a particle of mass m in the universe
is of the static Schwarzschild form, having the line element

ds? = 2 dr® — e~dp?® — p(d6? + sin® 0 d?), - (15)
where
2I'm

and (p, 0, ¢) are the spherical polar coordinates corresponding to cosmic
coordinates (X;, X,, X3) for Euclidean space.
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The condition that the field (15) shall join continuously onto the field (1)
at the 3-space r =« has been shown to be (9)

m= T (17)

We assume that ' is chosen to make a=1 when m=1. From (6) and (17) we
then find

2
=2, 18
5 (18)

The time 7 in (15) in general differs from cosmic time, but for speeds very much
less -than the speed of light, and when I'm/c% < 1, dr is approximately equal to
ds/c, which is the cosmic time measured by an observer at himself. It is also
known that for speeds very much less than the speed of light the equations of
motion for a free particle in the field (15) have the Newtonian form when ds/c
plays the part of Newtonian time. Cosmic time is therefore approximately the
same as Newtonian time for local gravitational phenomena.

5. The velocity of light.—The equations of the general theory of relativity
governing both the large scale motions of matter in the universe and the orbital
motions about a condensation of matter, have been shown to agree with the
equations of motion derived from Newtonian theory, when cosmic coordinates
are used. We now show that the relativistic equations giving the propagation
of light in vacuo are in agreement with Maxwell’s equations provided that cosmic
time and cosmic spatial coordinates are used in the latter equations.

Consider a spherical wave emitted from 7=o at time =%, Since the light
paths are the null geodesics of (1), we find that in basic coordinates the wave
front at time ¢ is given by

1 ‘ ¥ =3cC2B3(8 — ¢, 13), (19)
From (7) and (19) the wave front in cosmic coordinates is
p=3e(t — £054,15). (20)

From (20) we find that the velocity of light in cosmic coordinates tends to the
limiting value 3¢ as t tends to infinity. When ¢ = oo, the coordinate density of
matter is zero, and therefore when cosmic coordinates are used the velocity of
light in vacuo is 3c.

'The constant C in (7) was arbitrary. We now assume that it is a
dimensionless number formed from the constants of atomic theory. The
cosmic coordinates are then expressed in terms of constants of atomic theory.
Since it is always possible to form a quantity having the dimensions of a length
from one having the dimensions of time by multiplication by the velocity of
light, it is possible to choose one of the quantities € and & so that the velocity of
light in cosmic coordinates is unity. Hence we can take

, ‘ c=1. (21)
6. The variation of the gravitational power of matter with time.—We now
show that the relativistic equations can be put into the Newtonian form when
spatial coordinates differing from cosmic coordinates are used. In these coordi-

nates y is found to vary with the time. Let these coordinates {, (x=1, 2, 3)
be defined by

{,=Ax,, (22)
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where A is a slowly varying function of ¢, and write {=({%+ 33+ (2)}, v=d(/dt.
We then find that the radial motion of the matter in the universe is given by
a5 A
7 =35 (23)

Writing M({) for the mass of the homogeneous distribution contained within a
sphere of radius { we find from (12) and (22) that

€3
M({)= (24)
and
do yM(L)
‘ E = - C2 ’ (25)
where
v= —Az.).\. : (26)

Since A varies slowly with the time we find for the local field (15) that a free
particle will move under a Newtonian law of gravitation, approximately, with

A3 23

Equating the values of y from (26) and (27) we find that A must satisfy the equation
A 2
Integration of (28) gives :
A= C, 23 + C,213, (29)

where C; and C, are arbitrary constants.

7. The case C,=C%3, Cy=o0 gives the cosmic system of coordinates, which
have already been discussed. We now discuss the case C;=0, Cy=1 g1v1ng
coordinates (¢, {;, {,, {5), which we shall call local coordinates.

We have from (22) _

L, =1, (30)
and from (27)

(31)

This shows that in local coordinates the gravitational power of matter varies
inversely as the epoch, in agreement with a result obtained by Dirac (x).

8. We assume that a terrestial observer uses cosmic coordinates for the
description of electromagnetic phenomena and local coordinates for the descrip-
tion of gravitional phenomena. Also instead of using the atomic units of length
mass and time he uses the c.g.s. system of measurement in which the atomic
units have the values 8, 7, and e respectively.

Writing ¢, ¢ and y for the velocity of light, the epoch and the gravitational
power of matter in the c.g.s. system we have

N.|"‘
.

y_.

\OIN

_ & o

c=—= 3¢’ (32)
t=et, (33)
- &8

Y= 7;;;2% ' (34)
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From (31), (32), (33) and (34) we find

- 6%

Y= T (35)

7]
The quantity € has to be chosen from amongst the quantities having the dimensions
of time which can be formed from the constants of atomic theory. We take
e=e2[m,c3, where e, m, are the charge and mass of an electron. This was the unit
of time taken by Dirac and we find that it leads to numerical results which are in
good agreement with observation. Substituting this value for € in (35) we find

¢ 6e2
(36}

€ mymgy’
9. Comparison with observation.—From the present value of the gravitational
““constant” and the atomic constants, we can calculate the value of  from (36).
We call this value of f the ““age of the universe”’. We find that '

the age of the universe t=4-1 x 10° years. (37)

t=

It can be shown that cosmic distance corresponds closely to ‘luminosity
distance ”’ (2) and must therefore be used in making estimates of Hubble’s constant
and the mean density of matter in the universe.

From (10) we find that Hubble’s constant is given by

H==. (38)

(3}

Substituting for ¢ from (36) we find that
Hubble’s constant H = 160 km/sec/megaparsec, (39)

corresponding to an age calculated from its reciprocal of 6 x 10° years.
The mean density of matter in the universe, w, is the same as the proper
density of matter, when cosmic distance is used. Therefore

w= —‘I—TLFF protons/unit cosmic volume (40)
I
= o gm/cmd. (41)
This gives
the mean density of matter =48 x 1072° gm/cm?3. (42)

10. The local gauge-system.—The following generalization may be regarded
as the essentially new concept of the work which has been done.  The measurements
of all quantities occurring in field theory shall be based on units of mass, length and
time, derived from the values of the atomic ‘‘ constants’ measured in a local frame
with arbitrarily chosen units. 1In order to discuss this generalization with regard
to the Einstein—de Sitter universe we first make a transformation t=C2T3,
where T is a new basic time coordinate. We find from (1), (7) and (21),

ds=(CT)dT*? - dx— dsl — ds). (43)
Let the proper interval in a local frame with arbitrarily chosen units be given by
ds'2=c2dT "2 — dx,2 — dx,? — dx.?, (44)

and let the measured values of the atomic constants be ¢, e, m,, m,. If we choose
new units of mass, length and time m,, e*/m,c* and e?[m,c® the measured values

DI
48*
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of the atomic constants are 1, +(m,/m,)"2, m,/m,, 1, respectively, and in basic
«coordinates (44) becomes

B dsi=dT?—dx}— dxi— dx} (45)
where ds'=(e?/m?)ds,. The atomic constants are therefore absolute constants
for basic coordinates provided m,/m, is an absolute constant, and their values
will not be affected by transformations of gauge. 'The electric field of a stationary
charge will thus transform differently from the gravitational field of a particle
under a gauge transformation. From the point of view of field theory Dirac’s
equation determines the gauge-system in which the unit of the electrical field
is defined in terms of the unit of the gravitational field. In the preceding work
measurements of distances in this gauge-system have been made in /local
coordinates, and the corresponding interval of proper time in the local gauge is
ds;=ds|C*¥T. It is possible that this local gauge-system may be determined
by a condition for the existence of free charges of the type proposed by Dirac (10).

In the uncharged state of the universe which we have been discussing, gauge
transformations are merely transformations to conformal space-times which do
not alter the field equations. 'The structure of the universe is then the same in
the different gauge-systems, but its description is different. It is from the descrip-
tion of the local gravitational field that we have been able to determine the local
gauge-system without a full knowledge of the field theory.

The generalization which has been arrived at is derived from the necessity
for field theory to use a system of measurement in which the atomic constants are
absolute constants. 'The suggestion of M. Born (11, 12)that field theory should
““introduce an absolute length (e?/m,c?) right from the beginning” is probably -
closely related, but was made for different reasons.

Department of Mathematics,
King’s College,
Newcastle-upon-Tyne:
1956 November.
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