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We show that the pseudorelativistic physics of graphene near the Fermi level can be extended to three

dimensional (3D) materials. Unlike in phase transitions from inversion symmetric topological to normal

insulators, we show that particular space groups also allow 3D Dirac points as symmetry protected

degeneracies. We provide criteria necessary to identify these groups and, as an example, present ab initio

calculations of �-cristobalite BiO2 which exhibits three Dirac points at the Fermi level. We find that

�-cristobalite BiO2 is metastable, so it can be physically realized as a 3D analog to graphene.

DOI: 10.1103/PhysRevLett.108.140405 PACS numbers: 05.30.Fk, 31.15.�p, 71.20.�b

In a Dirac semimetal, the conduction and valence bands
contact only at discrete (Dirac) points in the Brillouin zone
(BZ) and disperse linearly in all directions around these
critical points. In two dimensions, spinless graphene ex-
hibits such pointlike degeneracies between the conduction
and valence bands: the low energy effective theory at

each of the critical points takes the Dirac form, ĤðkÞ ¼
vðkx�x þ ky�yÞ where ~� ¼ f�x; �y; �zg are the Pauli

matrices and v � 0 [1]. The existence of Dirac points
near the Fermi level is responsible for many important
properties of graphene such as high electron mobility and
conductivity. However, these Dirac points are not robust
because they can be gapped by a perturbation proportional
to�z. Spin-orbit coupling doubles the number of states and
gaps the Dirac points [2]; however, the splitting is very
small because carbon is a light atom.

In 3D, the analogous (and slightly generalized)

Hamiltonian is ĤðkÞ ¼ vijki�j. Provided det½vij� � 0,

ĤðkÞ is robust against perturbations because it uses all
three Pauli matrices. This Hamiltonian is called a Weyl
Hamiltonian because it describes two linearly dispersing
bands that are degenerate at a (Weyl) point. The robustness
of a Weyl point can be quantified by the Chern number of
the valence band on a sphere surrounding the point, which
takes values sgnðdet½vij�Þ ¼ �1. If a Weyl point occurs at

some BZ momentum k, time reversal (T) symmetry re-
quires that another Weyl point occur at �k with equal
Chern number. However, the total Chern number associ-
ated with the entire Fermi surface must vanish. Hence there
must exist two more Weyl points of opposite Chern
number at k0 and �k0. Inversion (I) symmetry requires
that Weyl points at k and�k have opposite Chern number.
Hence under both T and I symmetries, k ¼ k0 and the
effective Hamiltonian involves four linearly dispersing
bands around k. Such a Hamiltonian is called a Dirac
Hamiltonian, and it is not robust against perturbations
because there are additional 4� 4 Dirac matrices that
can be used to open a gap at the Dirac point.

The Fermi surface of a Dirac semimetal consists en-
tirely of such pointlike (Dirac) degeneracies. 3D Dirac
semimetals are predicted to exist at the phase transition
between a topological and a normal insulator when
I-symmetry is preserved [3,4] (Ref. [5] demonstrates
such a Dirac point degenerate with massive bands). If
either I or T symmetry is broken at the transition, a
Dirac point separates into Weyl points and one obtains a
Weyl semimetal [Fig. 1(c)]. The topological nature of
Weyl points gives rise to interesting properties such as
Fermi-arc surface states [6] and pressure induced anoma-
lous Hall effect [7]. Recent proposals to design a Weyl
semimetal have been predicated upon the existence of a
parent Dirac semimetal which splits into a Weyl semi-
metal by breaking I [8] or T symmetry [9]. Reference [10]
demonstrates the existence of bulk chiral fermions due to
crystal symmetry in single space groups.
Dirac points that arise in a topological phase transition

described above are accidental degeneracies. In general,
two Weyl points with opposite Chern numbers annihilate
each other unless their degeneracy is protected by addi-
tional space-group symmetry. Therefore, we ask if a Dirac
point can arise as a result of a crystallographic symmetry.
Indeed certain double space groups allow Dirac points at
high symmetry points on the boundary of the BZ. As an
example we present ab initio calculations of �-cristobalite
BiO2 [Fig. 2(b)] which exhibits Dirac points at three
symmetry related X points on the boundary of the FCC
BZ [Figs. 1(b) and 3(c)]. This system realizes a Dirac
degeneracy first encountered in a tight-binding model of
s states in diamond in Ref. [11] [the Fu-Kane-Mele (FKM)
model]. In the absence of T symmetry, two Weyl points
with equal Chern numbers can be degenerate due to a point
group symmetry as shown in Ref. [12].
A 3D double space group must satisfy the following

criteria to allow a Dirac point. It must admit four dimen-
sional irreducible representations (FDIRs) at some point k
in the BZ such that the four bands degenerate at k disperse
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linearly in all directions around k and the two valence
bands carry zero total Chern number. If the little group Gk

at k contains a threefold or a sixfold rotation symmetry and
the valence and conduction bands around k are nondegen-
erate, the Chern number of the FDIR is guaranteed to be
nonzero. This rules out symmorphic space groups with
FDIRs because they contain threefold rotations. This also
rules out interior BZ momenta because nonsymmorphic
little groups without threefold rotations exhibit FDIRs only
on the boundary of the BZ [13]. To guarantee linear
dispersion of bands around k, the symmetric Kronecker
product [Rk � Rk] of the FDIR with itself must contain the
vector representation ofGk [14]. Finally, away from k, the
FDIR must split so that the valence and conduction bands
are nondegenerate everywhere except at k (Fig. 4).

We apply the above criteria to two important space
groups. The space group of diamond (227, Fd3m), which
is also the symmetry group of �-cristobalite BiO2, exhibits
FDIRs R� at � and RX at X. G� contains threefold rotation
symmetry and [R� � R�] does not contain the vector rep-
resentation of G�. Therefore the � point in a diamond
lattice cannot host a Dirac point. RX is a projective repre-
sentation of GX which does not have any threefold rota-
tions because all the point group operations inGX are those
of the group D4h. [RX � RX] contains the vector represen-
tation of GX. Finally RX splits into either two doublets or
four singlets away from X [Figs. 4(a) and 4(b)]. Therefore
theX point in space group 227 is a candidate to host a Dirac
semimetal if its FDIR can be elevated to the Fermi level.
Indeed, we show that �-cristobalite BiO2 exhibits such a
Dirac point at X, Fig. 3(c). The Dirac point at X in the FKM
model is also spanned by states belonging to RX [Fig. 3(d)].
The zinc blende lattice (space group 216, F �43m) has a

FDIR R0
� at � and the little group G0

� has a threefold

rotation symmetry. [R0
� � R0

�] contains the vector repre-

sentation ofG0
�. Mirror symmetry inG0

� requires R
0
� to split

into a twofold degenerate representation and two nonde-
generate representations along the (111) axis, which is also
the symmetry axis for the threefold rotation. Time reversal
symmetry requires that the twofold degenerate band
remain flat along the (111) axis, Fig. 4(d). Thus the lowest
band carries Chern number 0, while the two flat bands
carry 1 and �1. Therefore the dispersion of R0

� is not

Dirac-like along (111).
In HgTe, which takes the zinc blende lattice, the degen-

erate valence and conduction states at � span R0
� and

constitute the entire Fermi surface. It is known that in
HgTe the valence and conduction bands disperse linearly
in two directions around � and quadratically in a third
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FIG. 2 (color online). (a) Band structure of �-cristobalite
SiO2. Energy bands are plotted relative to the Fermi level.
Each band is twofold degenerate due to inversion symmetry.
The (highlighted) FDIR at �4:5 eV is split into two linearly
dispersing bands between X and � while the two degenerate
bands along X andW are weakly split. This FDIR is buried deep
below the Fermi level. (b) The �-cristobalite structure of SiO2

(BiO2). Silicon (bismuth) atoms (light gray) are arranged on a
diamond lattice, with oxygen atoms (dark gray) sitting midway
between pairs of silicon (bismuth).FIG. 1 (color online). 3D Dirac semimetal in �-cristobalite

BiO2. (a) Brillouin zone (BZ) of the FCC lattice. The plane
highlighted in gray joins the three symmetry related X points.
Other high symmetry points are also indicated. (b) Conduction
and valence bands of �-cristobalite BiO2 are plotted as functions
of momentum on the plane highlighted in gray on the left. Each
band is twofold degenerate due to inversion symmetry. Dirac
points appear at the center of the three zone faces of the BZ.
(c) Dirac, Weyl, and insulating phases in the diamond lattice.
(1) The states at the Dirac point at X span a four dimensional
projective representation of the little group at X which contains a
fourfold rotation accompanied by a sublattice exchange opera-
tion. (2) FourWeyl points on the zone face due to a small inversion
breaking perturbation. The Chern number of each Weyl point is
indicated. (3) TwoWeyl points appear on the line from X toW for
a T-breaking Zeeman field B oriented along that direction. B
oriented along other directions gaps all the Dirac points by
breaking enough rotational symmetry that no two-dimensional
representations are allowed. (4) Gapped phase obtained by break-
ing the fourfold rotation symmetry or by applying amagnetic field
in any direction except along x̂, ŷ, or ẑ. The insulating phase can
be a normal, strong, or a weak topological insulator [11].
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[Fig. 4(d) and Ref. [15] ]. One might ask if a perturbation
might turn HgTe into a Dirac semimetal. However, the zinc
blende lattice does not satisfy the criteria for 3D Dirac
points as outlined above, so HgTe cannot host a Dirac
semimetal. (a) � is an interior point of the BZ and the little
group at � contains a threefold rotation. (b) Mirror sym-
metry requires two bands to be degenerate along the (111)
axis but since the Chern number must vanish, the degen-
erate bands must be flat and consist of a conduction and a
valence band. This is why we see quadratic dispersion
along the (111) axis. (c) Breaking mirror symmetry splits
the degenerate flat band but then the Fermi surface devel-
ops other non-Dirac-like pockets to compensate for the
nonzero Chern number. (d) Breaking threefold rotation
symmetry splits the degeneracy at � entirely and the
material becomes a topological insulator [16].

We briefly discuss the theory behind the above criteria.
We are interested in FDIRs of double space groups at
points k such that the valence and conduction bands are
distinct in a small region around k and carry zero total

Chern number. The Chern number of a degenerate repre-
sentation can be determined up to an integer by the rotation
eigenvalues of the valence bands. Electron states spanning
a FDIR are equivalent to a p3=2 quadruplet exhibiting

eigenvalues e�i3�=n, e�i�=n for a 2�=n rotation symmetry.
Rotation eigenvalues of states at time reversed momenta
about the degenerate point are complex conjugates.
Therefore the FDIR will carry Chern numbers �1 mod n
for one valence band and�3mod n for the other with total
Chern number �4 mod n or �2 mod n for the FDIR. This
is zero only for n ¼ 1, 2, 4. If the conduction and valence
bands are distinct in a small region around k, the Chern
number of the FDIR will be nonzero if the little group Gk

contains a 2�=3 or 2�=6 rotation symmetry. In HgTe,
however, the little group at � contains a threefold rotation
symmetry but the FDIR at � has zero Chern number
because one of the valence bands is degenerate with one
of the conduction bands along the (111) axis.
Nonsymmorphic space groups contain point group

operations coupled with nonprimitive lattice translations.
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FIG. 3 (color online). Band structures of (a) AsO2, (b) SbO2, and (c) BiO2 in the �-cristobalite structure, and (d) s states on a
diamond lattice in the tight-binding model of Ref. [11]. Energy bands are plotted relative to the Fermi level. Each band is twofold
degenerate due to inversion symmetry. Insets: with increasing atomic number of the cation, spin-orbit coupling widens the gap along
the line V from X toW. In BiO2 and SbO2, the dispersion around the X point is linear in all directions indicating the existence of Dirac
points at X. BiO2 and SbO2 are Dirac semimetals because their Fermi surface consists entirely of Dirac points.
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For example, inversion interchanges the FCC sublattices in
the diamond space group. Representations of nonsymmor-
phic space groups at momenta inside the BZ momenta are
obtained from regular representations, while those at the
surface BZ momenta are obtained from projective repre-
sentations of the associated crystal point group. The factor
system of the projective representation is chosen to imple-
ment the required nonprimitive translation corresponding
to the nonsymmorphic point group operation [13]. A
theorem by Schur guarantees that projective representa-
tions of a group can be obtained by restricting to the group
elements the regular representations of a larger group
called the central extension group [13]. The central exten-
sion of a group is obtained by taking its product with
another finite Abelian group. The important point to
emphasize is that representations of nonsymmorphic space
groups are obtained from representations of central exten-
sions of the 32 point groups. Central extension groups
exhibit FDIRs even without threefold rotations in the
original point group. This is precisely why Dirac points
can exist in 3D as symmetry allowed degeneracies.

To realize a Dirac-like dispersion in the vicinity of a
FDIR, some of the matrix elements hc ijpjc ji, where jc ii
span the FDIR, must be nonzero. This is guaranteed if the
symmetric Kronecker product of the FDIR with itself con-
tains the vector representation of the central extension
group to which the FDIR belongs [14]. We restrict to
the symmetric part of the Kronecker product because ma-
trix elements hc ijpjc ji correspond to level transitions

between states spanning the same representation [15].
Finally, the allowed representations in the vicinity of a
FDIR should be such that each band disperses with nonzero

slope in all directions. This is possible only if the valence
band is distinct from the conduction band everywhere
except at the Dirac point. Figure 4 illustrates the various
possible ways in which a FDIR can split linearly.
Although crystallographic symmetries determine

whether 3D Dirac points can exist, physical and chemical
considerations dictate whether they arise at the Fermi level
without additional non-Dirac-like pockets in the Fermi
surface. In the FKM model, the Dirac point at X appears
at the Fermi energy. However, in known materials on a
diamond lattice s states appear below the Fermi energy. In
realistic systems, additional orbitals hybridize with these
s states and bands cross the Fermi level at other points
besides X. The problem is especially severe in space group
227: without spin, the line V from X to W is twofold
degenerate.With spin-orbit coupling, this line splits weakly
for lighter atoms so the bands dispersing along this line can
hybridize and introduce additional Fermi surface. Forcing
species with s1 valence states on the diamond lattice would
fail to realize the FKMmodel. Indeed, ab initio calculations
with group I elements and gold show that the splitting along
V is insufficient to overcome this dispersion. In some cases,
additional bands crossed the Fermi level. We performed
ab initio calculations using the plane wave density func-
tional theory package QUANTUM ESPRESSO [17], and de-
signed nonlocal pseudopotentials [18,19] with spin-orbit
interaction generated by OPIUM.
We consider derivatives of the diamond lattice that

remain in space group 227. We place additional atoms in
the lattice such that the configuration of added species
allows its valence orbitals to either belong to the FDIR of
interest, or appear away from the Fermi energy of the final
structure. If the new species can split the nearby p states of
the existing atoms away from the s levels, band crossing at
the Fermi level can be avoided.
One such structure is �-cristobalite SiO2 [Fig. 2(b)],

which consists of silicon atoms on a diamond lattice with
oxygen atoms placed midway along each silicon-silicon
bond [20]. Oxygen atoms have two consequences: part of
the O p shell strongly hybridizes with the Si p states,
moving them away from the Si s states, while the remain-
ing O p states span the same representation as the
Si s states. A Dirac point can be realized by Si s-O p
bonding/antibonding set of states. Figure 2(a) shows that
the Si s-O p bands are present and take a configuration
similar to the valence and conduction bands in the FKM
model, but appear well below the Fermi energy.
Additionally, the bands are nearly degenerate along the
line V from X to W due to weak spin-orbit coupling.
Heavier atoms substituting Si both widen this gap and

bring the FDIR of interest at X to the Fermi level. Figure 3
shows the band structures of compounds �-cristobalite
MO2, where M ¼ As=Sb=Bi. The change in chemical
identity promotes the M s-O p fourfold degeneracy at X
to the Fermi level, and stronger spin-orbit coupling widens

FIG. 4. Linear splitting of fourfold degenerate irreducible rep-
resentations (FDIRs). If the symmetric Kronecker product of a
FDIR with itself contains the vector representation of the group
to which the FDIR belongs, it will split in one of the four
possible ways displayed above. (a) The FDIR splits into two
twofold degenerate bands. This situation is realized at the X
point of the FCC Brillouin zone in a diamond lattice. (b) The
FDIR splits into four nondegenerate bands. This situation arises
at the � point in zinc blende if mirror symmetry is broken
(although the FDIR in zinc blende develops a nonzero Chern
number due to threefold rotation symmetry at �). (c) The FDIR
splits into two nondegenerate and one twofold degenerate band
with linear dispersion. (d) The splitting of the FDIR at � in zinc
blende. The twofold degenerate band is constrained to be flat
implying quadratic dispersion along that direction. The Chern
number of this representation is zero in spite of a threefold
rotation symmetry because the conduction and valence bands are
degenerate away from �.
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the gap along V. BiO2 bears striking similarity to the FKM
model, with linearly dispersing bands in a large energy
range around a Dirac point at the Fermi level. Our calcu-
lations show that the phonon frequencies for �-cristobalite
BiO2 at � are positive, so it is a metastable structure.
Further calculations reveal that it becomes unstable under
uniform compression exceeding 2 GPa, which represents a
stability barrier of approximately 0.025 eV per atom. On
this basis, the possibility of synthesis appears promising.
However, Bi2O4 is also likely to take the cervantite struc-
ture (after Sb2O4, which has similar stoichiometry [21])
which is 0.5 eV per atom lower in energy as compared to
� cristobalite and 60% smaller in volume. Therefore we
conclude that �-cristobalite BiO2 would be metastable if
synthesized, although preventing it from directly forming
the cervantite structure would be challenging. Nonetheless,
we have provided an existence proof of a Dirac semimetal
in �-cristobalite BiO2 due to real atomic potentials at the
DFT level.
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