
Direct 4-D PET List Mode Parametric Reconstruction With a

Novel EM Algorithm

Jianhua Yan,

PET Center, Department of Diagnostic Radiology, Yale University, New Haven, CT 06520 USA.

He is now with the A*STAR-NUS, Clinical Imaging Research Center, Center for Translational

Medicine, Singapore 117599 (yan_jianhua@circ.a-star.edu.sg)

Beata Planeta-Wilson, and

PET Center, Department of Diagnostic Radiology, Yale University, New Haven, CT 06520 USA

Richard E. Carson* [Member, IEEE]
PET Center, Department of Diagnostic Radiology, Yale University, New Haven, CT 06520 USA

Abstract

The production of images of kinetic parameters is often the ultimate goal of positron emission

tomography (PET) imaging. The indirect method of PET parametric imaging, also called the

frame-based method (FM), is performed by fitting the time-activity curve (TAC) for each voxel

with an appropriate compartment model after image reconstruction. The indirect method is simple

and easily implemented, however, it usually leads to some loss of accuracy or precision, due to the

use of two separate steps. This paper presents a direct 4-D method for producing 3-D images of

kinetic parameters from list mode PET data. In this application, the TAC for each voxel is

described by a one-tissue compartment model (1T). Extending previous EM algorithms, a new

spatiotemporal complete data space was introduced to optimize the maximum likelihood function.

This leads to a straightforward closed-form parametric image update equation. This method was

implemented by extending the current list mode platform MOLAR to produce a parametric

algorithm PMOLAR-1T. Using an ordered subset approach, qualitative and quantitative

evaluations were performed using 2-D (x, t) and 4-D (x, y, z, t) simulated list mode data based on

brain receptor tracers and also with a human brain study. Comparisons with the indirect method

showed that the proposed direct method can lead to accurate estimation of the parametric image

values with reduced variance, especially at low count levels. In the 2-D test, the direct method

showed similar bias to the frame-based method but with variance reduction of 23%–60%. In the 4-

D test, bias values of both methods were no more than 4% and the direct method had lower

variability (coefficient of variation reduction of 0%–64% compared to the frame-based method) at

the normal count level. The direct method had a larger reduction in variability (27%–81%) and

lower bias (1%–5% for 4-D and 1%–19% for FM) at low count levels. The results in the human

brain study are similar with PMOLAR-1T showing lower noise than FM.
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I. Introduction

DYNAMIC positron emission tomography (PET) permits quantification of tracer dynamics.

An important goal of much of quantitative brain PET is to produce parametric images of

kinetic parameters, such as the uptake rate K1 and the total volume of distribution (VT) [1].

The current data processing path for parametric imaging is to reconstruct a time series of

images from measured projection data independently, and then estimate each voxel’s kinetic

parameters from the time-activity curve (TAC), typically with a compartmental model. This

indirect or frame-based approach requires selection of the duration of each frame, involving

a choice between using longer scans with better counting statistics but poor temporal

resolution, and shorter scans that are noisy but preserve temporal resolution. Optimal use of

the dynamic data requires accurate noise estimates for data weighting; this estimation is

challenging for nonlinear iterative reconstruction methods because noise is spatially variant

and object dependent [2], [3].

Direct approaches for creation of parametric images have been in the literature for nearly 30

years. In 1984, Snyder [4] developed a list mode expectation-maximization (EM) maximum

likelihood (ML) algorithm for estimation of parametric images using an inhomogeneous

spatial-temporal Poisson processes and a kinetic compartmental model. Carson and Lange

[5] also proposed an EM framework for direct parametric image reconstruction algorithm

for a one-tissue model. Subsequently, many direct kinetic estimation methods [6]–[10] for

sinogram data have been produced. However, for a high-resolution scanner such as the

HRRT [11] with 4.5×109 potential lines of response, list mode data is preferred, since it can

reduce the data storage requirements while maintaining the highest resolution by storing the

measured attributes of each event in the list. Other direct methods [12]–[20] were developed

from linear basis functions, whose temporal model is linear with respect to the parameters.

Although such basis functions can describe the TAC, they have no direct physiological

meaning and kinetic parameters must still be calculated from the dynamic images, leading

again to a two-step process.

The use of kinetic compartment models has a firmer biological basis, and is thus the primary

goal of dynamic PET. Tsoumpas et al. [9] and Wang et al. [10] proposed direct parametric

image reconstruction methods, whose compartment model is linear (Patlak plot), and is thus

limited to irreversible tracers such as FDG. Furthermore, Rahmim et al. [21] proposed a

closed-form direct 4-D parametric image estimation method for reversible tracers employing

a recently published linear graphical analysis model. Recently, Wang and Qi [22] proposed a

generalized direct parametric image reconstruction approach applicable to any kinetic

model, which was comprised of two steps for each parameter update (reconstruction of

intermediate images and kinetic parameter estimation with accurate weights determined

from the derived algorithm).

Here, we present a new EM-based direct 4-D parametric image reconstruction algorithm for

list mode data by combining the one-tissue (1T) compartment model into the scanner

physical model. ML estimation is a statistically efficient method, i.e., it will asymptotically

produce minimum variance unbiased estimators. The indirect methods are intrinsically not

ML methods since they do not carry the full statistical characteristics of the frame-based

voxel values into the kinetic parameter estimation. Therefore, we hypothesize that the direct

method will produce superior results to the indirect methods. Since this algorithm extends

the current list mode algorithm MOLAR for parametric imaging, it is called PMOLAR-1T.

An initial description of this algorithm has been published previously [23].

This paper is organized as follows. Section II reviews the 1T model. Section III describes

the theory of this work, consisting of 1) derivation of the direct 4-D bin-mode parametric
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reconstruction algorithm, 2) description of our current static list mode emission image

reconstruction method, and 3) extension to the direct 4-D list mode reconstruction scheme.

Simulation results are shown in Section IV. Discussion and conclusions follow in Sections

V and VI.

II. One-Tissue Compartment Model

Compartmental modeling is the most commonly used method for describing the uptake and

clearance of radioactive tracers in tissue [24]. The simple one tissue (1T) model describes

each voxel with one compartment and is defined by the following ordinary differential

equation:

(1)

where Cp(t) is the time course of tracer in the arterial plasma (input function, Bq·mL−1), K1

is the rate constant for entry of tracer from blood to tissue (mL·min−1·cm−3), k2 is the

constant for return of tracer to blood (min−1), and λ(t) is the tissue concentration in time bin

t (Bq·cm−3). The solution to the differential equation is

(2)

where “⊗” denotes the convolution operator.

For receptor binding agents, the volume of distribution (VT, mL·cm−3) is the most important

parameter [1]; this is defined as the ratio of tracer concentration in tissue to that in plasma at

equilibrium and, for the 1T model, is mathematically given by

(3)

III. Direct 4-D List Mode Parametric Reconstruction Method

A. Direct 4-D Bin Mode Parametric Reconstruction Method

We extend the notation of Lange and Carson [25] from static mode to dynamic mode and

use “bin mode” to illustrate first. The bin size is equal to the time resolution of the list mode

data; for the HRRT, the time resolution is 1 ms. Thus, for purpose of notation, it appears that

the data are binned into sinograms corresponding to each discrete time bin of the list mode

file. In this section, the physical model for the projection measurement Yit of line of

response (LOR) i(i = 1,…,I) in time bin t excludes physical factors such as attenuation,

normalization, randoms, scatter, and motion (see below for full model) and is given by

(4)

where cij is the probability of an emission from voxel j (activity λjt in time bin t) detected in

LOR i, Δt is the duration of time bin t, and Li accounts for decay (Li = exp(−(ln 2)t/t1/2),

where t1/2 is the half life of the tracer. The bin-mode log-likelihood function for I LORs and

T time bins is given by
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(5)

The activity λjt is assumed to be represented by the 1T model with known input function.

Inserting (2) yields

(6)

where Δt is the time binning of the plasma data, Pτ = Cp(τ)Δt, and K1j and k2j represent the

parameter values at voxel j.

Due to the nonlinearity of the above function with respect to the parameter k2, the maximum

likelihood estimate can not be easily obtained, even for the simpler static emission image

reconstruction. The expectation-maximization (EM) algorithm is often used in statistics to

find maximum likelihood estimates of parameters in probabilistic mixture models, and was

first introduced into static emission image reconstruction by Shepp and Vardi [26] and

Lange and Carson [25]. The Yi are the incomplete data, and the coupling of the voxels

makes it difficult to obtain maximum likelihood estimates directly. The problem can be

solved by creating complete data Xij defined as the counts emitted from voxel j collected

along LOR i, as shown in Fig. 1(a). This separation of the components of Yi into Xij allows

an EM algorithm to be defined and solved.

However, in direct 4-D parametric imaging, emission activity of each voxel λjt and the

counts Yit collected along LOR i change continuously with time. As described in Section II,

the activity λjt in time bin t can be described as the convolution of the plasma input function

with an impulse response function (2), i.e., the activity at a given time is a weighted sum of

all of the previous input function values. The convolution property indicates that the later a

given molecule of tracer is delivered to the tissue, the greater is its contribution to the

activity λjt. A simple example is shown in Fig. 1(b), the input function, and Fig. 1(c), the

tissue TAC. The activity at time 20 min has four components, with each component derived

from the plasma input from different times, denoted with the matching colors. This ability to

separate the activity at a given time into its components, based on the arrival time in the

plasma, motivates the definition of the complete data space for a 4-D EM algorithm [as

shown in Fig. 1(d)], where different colors represents different arrival times). Thus, we

define a spatiotemporal complete data space Xijtr as the counts collected along LOR i in time

bin t emitted from voxel j and where the tracer input that produced that event was delivered

at time τ. For the 1T model, this random variable is

(7)

From the complete data definition, the E- and M-steps of the EM algorithm for estimation of

the parameters can be derived. In a similar manner to the static EM algorithm, the E-step

calculates the expectation of the complete data given measured data Y, and the current

kinetic parameters estimates K1 and k2 at iteration n
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(8)

The M-step maximizes the corresponding conditional complete data likelihood, which,

ignoring constant terms is

(9)

Taking partial derivatives with respect to K1j, and setting to zero, yields

(10)

which leads to the K1j update equation, in terms of k2j

(11)

where , the voxel sensitivity. For k2j

(12)

The K1j update (11) is inserted into (12), which leads to

(13)

The right-hand side of (13) is a function of the measured data and the current parameters (8).

The left-hand side is a function only of k2 and the known input function; we define this term

as H(k2). This function can be precomputed for a range of k2 values and is found to be

monotonically decreasing. Therefore, H is invertible for the 1T model, so H(k2) and the k2j

update equation are given by

(14)

(15)
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B. Static List Mode Reconstruction (MOLAR)

The HRRT [11] is a 3-D brain-dedicated scanner with high resolution (2.5–3 mm). It has a

total of 119 808 crystals which produce a total of 4.5 × 109 potential LORs, since each of the

eight detector panels is in coincidence with the five opposite panels. For this scanner, list

mode data is advantageous over sinogram data. First, unless resolution is reduced, sinogram

data have a higher storage cost than list mode data due to the very large number of LORs,

especially for dynamic PET where high temporal resolution is usually required. Secondly,

maintaining the full resolution by not averaging similar LORs provides the ability for

accurate physics modeling of individual LOR resolution characteristics such as detector

layer and incident angles. In order to fully exploit the HRRT resolution capabilities, we

designed and implemented MOLAR, the Motion compensation OSEM List mode Algorithm

for Resolution recovery, implemented on a computer cluster [27]. MOLAR, uses an OP-

OSEM approach, whereby there are no precorrections to the measured data, thus preserving

the Poisson nature of the data. Other features include randoms correction from singles

(without delayed coincidences), component-based count-rate dependent normalization,

iterative single scatter simulation, and event-by-event motion correction [28]. Let Yit equal

the number of prompt coincidences in LOR i in time bin t. The expected value of Yit at

iteration n is given by

(16)

where Δt is the time bin duration, cijt is the contribution of voxel j to LOR i in time bin t,

accounting for geometry, resolution, solid angle, and motion effects. Lit is the product of the

decay factor, the live time for this event (based on the block singles rates for this LOR at

time bin t) and the isotope branching fraction. Ait is the attenuation factor accounting for the

position of LOR i with respect to the attenuating object in time bin t, calculated by

projection through a precomputed attenuation image. The normalization term Ni is

determined using a count-rate dependent component-based model [29]. Rit is the estimate of

the random coincidence rate calculated from block single rates [30]. Sit is the scatter

estimate from the single scatter simulation method [31]. For static reconstructions, the list

mode algorithm processes only the M prompt coincidence events in each frame

(17)

where T is the frame duration and Qj is the voxel sensitivity, with summations over all

LORs and over all time bin periods

(18)

C. Direct 4-D List Mode Parametric Reconstruction (PMOLAR-1T)

The new direct 4-D parametric imaging method was integrated into the MOLAR algorithm,

and called Parametric MOLAR for the one-tissue model (PMOLAR-1T). In this

presentation, livetime, randoms, scatter, and motion factors were not included, so the system

matrix c and attenuation factor A are constant throughout the entire scan and Lt depends

only on decay. The complete data is given by

Yan et al. Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 May 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(19)

Following the strategy in Section III-A and converting from bin-mode to list mode indexing,

with M prompt coincident events indexed by m, the update equations with attenuation,

normalization, and decay factors are

(20)

(21)

(22)

where tm is the time of event m and Ym is always 1 in list mode. In (20), the numerator sums

over LORs with measured event, but the denominator sums over all LORs. This term is the

equivalent of Q (the sensitivity image) for static MOLAR (18) and is approximated by

random sampling of LORs, as in MOLAR [27].

IV. Algorithm Evaluation

To evaluate PMOLAR-1T, 2-D (x,t) and 4-D (x,y,z,t) tests were performed, and results were

compared to the indirect frame-based method (FM). In addition, one human brain study was

also evaluated.

A. 2-D Evaluation With Simulated Data

Given the huge computational demand of full 4-D reconstruction, it was deemed useful to

initially evaluate the new algorithm with simple 2-D (x,t) data. Tests were performed for the

case of a 1-D profile with one hundred voxels, where gray matter (GM, K1 = 0.55

mL·min−1·cm−3, VT = 6 mL·cm−3), white matter (WM, K1 = 0.15 mL·min−1·cm, VT = 3

mL·cm−3) and basal ganglia (BG, K1 = 0.55 mL·min−1·cm−3, VT = 12 mL·cm−3) were

simulated. Fig. 2 shows the phantom and its K1 and VT values as a function of position x.

These parameter values are typical for receptor ligand kinetics. Fifty 30-min list mode data

replicates were created with the forward projection model and a measured input function

from the tracer [11C]P943 [32] [Fig. 3(a)] and sampling, resolution, and sensitivity per voxel

(Q) comparable to that of HRRT scanner. The system matrix was based on a Gaussian point-

spread function with 2.5 mm full-width at half-maximum and voxel size of 1.2 mm. Poisson

noise was added to each replicate, corresponding to 6.3 × 105 events. Decay of tracer

[11C]P943 was included, but random and scattered events were not included.

For this algorithm, to update k2, the inverse of H(k2) is required. This was determined by

precomputing H(k2) for a range of k2 values. Then, the inverse function was obtained by
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fitting these values with a log-polynomial function as shown in (23). Since H(k2) is

independent of the measured data, it can be computed from the known plasma input data.

H(k2) for a 30-min simulation is shown in Fig. 3(b), plotted over the normal physiological

k2 range for a brain tracer. The inverse function for this simulation can be well fitted by a

fifth-order polynomial function and the absolute fitting error is shown in Fig. 3(c) and is less

than 1 × 10−4, i.e., less than 0.01% of the H(k2) values. The average (across x) true K1 and

k2 values of all voxels were used as initial guesses for PMOLAR-1T

(23)

For the indirect method, data were binned into 30 1-min frames and each frame’s image was

reconstructed by MLEM [25], [26] using the mean activity value of the phantom as the

initial guess for all frames. To fairly compare the two methods, for the indirect method

following reconstruction of each frame, weighted least squares (WLS) fitting with the

Levenberg–Marquardt algorithm was used to estimate parameters by minimizing the

weighted residual sum of squares (WRSS)

(24)

where WRSSj is the WRSS for voxel j, f is the frame index, Wf is the weight for frame f, λjf

is the activity for voxel j at frame f, and  is the activity for voxel j at frame f given by the

model (2). The weights were based on noise equivalent counts (NEC), which in this case

corresponded to total true events in each frame

(25)

Here, λwb is the mean whole phantom activity.

Region of interest (ROI) values were obtained from the mean values of the three regions

(GM, WM, and BG), excluding one voxel from each edge, to minimize the partial volume

effect. Thus, GM, WM, and BG regions were evaluated with 18, 34, and 18 voxels,

respectively. To measure bias and noise, standard deviation (SD) and mean 1-D profiles

were calculated from the reconstructed replicate 1-D profiles. The coefficient of variation

(COV) and percent bias was calculated in each ROI as the ratio of average voxel SD to the

true value and the ratio of the difference between average and true voxel values to the true

value, respectively. These values were assessed as a function of iteration. After 10 iterations,

both FM and PMOLAR-1T methods had almost 0% bias for k2 and bias of less than 2% for

K1. In this 2-D test, both methods converge quickly and there were minor differences in

bias.

Table I shows the percent bias and percent COV for GM, WM, and BG across the 50

replicates for FM and PMOLAR-1T after 60 iterations (no subsets). All bias values were

small. Percent bias of PMOLAR-1T was comparable to that of FM, and slightly smaller for

VT, which is the most important parameter for brain receptor studies. The advantage of

PMOLAR-1T was clearly demonstrated by the COV reduction of 23%–60%.
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B. 4-D Evaluation With Simulated Data

A 10-cm-diameter spherical 3-D phantom (Fig. 4) was created with three regions,

corresponding to GM (K1 = 0.55 mL·min−1·cm−3, VT = 6 mL·cm−3), WM (K1 = 0.15

mL·min−1·cm−3, VT = 3 mL·cm−3), and BG (K1 = 0.55 mL·min−1·cm−3, VT = 12 mL·cm−3),

with the same plasma input as the 2-D tests. Sixteen 60-min list mode file replicates (each

with ~430 M counts, a “normal” count level for an object this size) were simulated with

MOLAR by using the forward projection model to compute the expected value for a user-

defined number of LORs and then generating Poisson realizations. In the simulations, the

measured data did not include effects of livetime, randoms, scatter, or motion, in order to

focus on the reconstruction algorithm. Decay (C-11) was included in the simulation. The

reconstruction software was executed with an Intel Xeon computer cluster of 16 nodes with

each node having 2 CPUs of 3.2 GHz and 2.0 GB memory.

For comparison, the conventional FM employed MOLAR to reconstruct 21 frames (6 × 30 s,

3 × 60 s, 2 × 120 s, 10 × 300 s) and WLS was used to estimate each voxel’s parameters with

weights based on NEC. Both FM and PMOLAR-1T were implemented with ordered subsets

(30 subsets, two iterations) based on event order of arrival. Initial reconstruction values (K1

and k2) for PMOLAR-1T were both set as 0.01 and the initial λ of FM was a uniform

activity (37000 Bq·mL−1), as in our routine use.

Typical, mean and SD images reconstructed by the two methods are shown in Fig. 5(a), (b),

and (c), respectively. The similarity of K1 and VT mean images between FM and

PMOLAR-1T indicated that the two approaches result in similar accuracy of the estimates at

a normal count level (~430 M counts). However, the FM SD showed this method to be

noisier than PMOLAR-1T, which indicated that PMOLAR-1T had better performance.

To further compare the two methods, their performance under low count condition (~43 M

counts) was assessed by scaling down the original plasma input by a factor of 10 and

repeating the simulation. The typical, mean and SD images are shown in Fig. 6. Given the

higher noise level in these low-count simulations, the noise reduction in PMOLAR-1T is

visually more apparent. This difference is most apparent in the WM (low activity) region.

To quantitatively compare the two methods, ROIs were placed on the three regions (GM,

WM, BG) excluding all voxels within 2.5 mm of the edges of each region, and percent bias

and COV of each ROI were calculated from the average voxel mean and SD at the two

count levels (as shown in Table II). At the normal count level, the percent bias values of

both methods were small, with ≤ 4% for all parameters, although PMOLAR-1T was slightly

worse than FM.However,PMOLAR-1T produced lower variability than FM for all

parameters and regions (variability reduction of 36%–41% for K1, 59%–64% for k2, and

0%–30% for VT). At the low count level, PMOLAR-1T not only had a larger reduction in

variability (44%–67% for K1, 62%–81% for k2, and 27%–65% for VT) but also produced

lower percent bias values (1%–5%) than FM (1%–19%) for all parameters and all regions.

Consistent with visual inspection, PMOLAR-1T produces its most dramatic advantage over

FM in the WM (low activity) region.

C. 4-D Evaluation With Human Brain Data

One 120-min human [11C]AFM study was performed with list mode acquisition on the

HRRT scanner (~20 mCi injection). Since the simulations showed the most substantial

performance improvement at low counts, the original data were uniformly undersampled so

that the data had only one-sixth the count level of the original study. A 1T model has

previously been found to be appropriate for this tracer [33]. In advance of the scan, an

arterial catheter was inserted into the radial artery for blood sampling. An automated blood

counting system (PBS-101, Veenstra Instruments, Joure, The Netherlands) was used to
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measure the radioactivity in blood during the first 7 min. Fifteen handdrawn samples were

collected at later times. For each sample, plasma was counted in a cross-calibrated gamma

counter (1480 WIZARD, PerkinElmer, Waltham, MA). The total plasma curve from ~6 min

on was fitted to a sum of exponentials. The unchanged parent compound in plasma was

determined using a high performance liquid chromatography (HPLC) assay. The final

plasma input function was calculated as the product of the fitted total plasma curve and the

fitted HPLC fraction curve. In the conventional FM, MOLAR was employed to reconstruct

33 frames (6 × 30 s, 3 × 60 s, 2 × 120 s, 22 × 300 s) and then weighted least squares

estimation was used to estimate each voxel’s parameters with weights based on NEC.

Comparable physics corrections including normalization, motion, attenuation, randoms, and

scatter were employed for both methods.

Fig. 7 shows images of K1 and VT created by PMOLAR-1T and FM for the human brain

data. The distribution patterns in the two sets of images are similar. However, many high

noise voxels exist in the FM images while PMOLAR-1T is less noisy. This is most clearly

visualized in the low-activity regions such as white matter, and is also more noticeable in the

VT image. The visual differences in low activity regions with human brain data are

consistent with those in the simulations.

V. Discussion

In this work, we proposed a direct 4-D parametric imaging method (PMOLAR-1T) for the

1T compartment model with a novel EM algorithm for list mode data and implemented it in

the MOLAR framework. A unique characteristic of this approach is the definition of the

complete data space, using temporal partitioning of the events based on the delivery time of

each radioactive molecule to the tissue, which echoes the spatial partitioning of events in

static EM methods based on the voxel of origin.

1) Comparison With Frame-Based Method

With a measured blood input, list mode replicates were simulated for the 2-D and 4-D tests.

In addition, human brain data were used for comparison of these two methods. 2-D results

showed that the direct method is slightly better (Table I) than the indirect method. Under the

4-D test, we used a typical frame timing scheme (21 frames: 6 × 30 s, 3 × 60 s, 2 × 120 s, 10

× 300 s) and WLS fitting method with weights based on NEC for FM. NEC is a useful

weighting approach for real data since it can be easily implemented.

The two methods were evaluated under our current routine reconstruction protocol (two

iterations, 30 subsets). Qualitative and quantitative comparisons at normal and low-count

levels showed that PMOLAR-1T can produce accurate estimates (percent bias less than 5%)

with lower variability, with a greater improvement at the low count level (up to 81%

reduction compared to the frame based method). Although the small sample size could

reduce the confidence in the COV reduction shown in Table II, the consistent reduction of

COV showed that 4-D has advantages over FM, especially at a low count level.

In addition to the NEC weighting for FM, we also compared the results of PMOLAR-1T

with the best possible results that could be achieved by FM. The process for the best case of

FM is comprised of the following three steps.

• Producing SD images of each frame across replicates in the first step of FM.

• Creating noisy TAC replicates for each ROI (GM, WM, and BG) by adding noise

to the true TAC with magnitude set to the mean of the SD images for each ROI.

• Fitting each noisy TAC by WLS with weights equal to 1/SD2 for each ROI.
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The quantitative results showed that PMOLAR-1T can achieve lower variability than the

best case of FM. When compared to original FM, the best case of FM had average COV

reduction of 8% and 32% for the two direct reconstructed parameters (K1 and k2) in all ROIs

at the normal and low count level, respectively, whereas the two COV reductions for

PMOLAR-1T were larger: 49% and 63%.

The results with a low-count human brain study showed that PMOLAR-1T and FM can

produce parametric images with similar patterns, but with lower noise with PMOLAR-1T.

In these comparisons, it is possible that the frame timing would affect FM bias and

variability results, so that further tuning of frame durations for FM could improve the bias/

variance behavior of the indirect method. For example, longer frames would have better

statistics and pixel values might have a more Gaussian distribution. Low-count frames have

also been shown to suffer from bias, however, MOLAR in FM produces little or no bias at

low count levels [34]. Since OSEM reconstructions of low-count/short-duration frames can

produce non-Gaussian statistics, the WLS method is suboptimal, since WLS assumes a

Gaussian distribution for the pixel values. Thus, an ideal frame-based method would require

the use of another optimization criterion instead of weighted least square. Such a criterion

would ideally also account for variations in quantitative accuracy between frames, since

iterative algorithms produce object-dependent resolution at finite iterations, and contrast

changes over time. Thus, without the development of such an optimization criterion for FM,

it is unlikely that these methods can match the performance of PMOLAR-1T where the

accurate statistical model is intrinsic to the algorithm.

2) Convergence

Convergence is an important indicator of performance of a reconstruction algorithm and fast

convergence usually means less computation cost. Due to the lack of convergence of OSEM,

it is better to evaluate the convergence of FM and PMOLAR-1T with their non-OS (ordered

subsets) versions. However, PMOLAR-1T suffers from high computation cost, therefore

only the OS versions of both methods were investigated. Bias and COV as a function of

iteration (three iterations) with 30 subsets for both methods were computed in the 4-D test at

the two count levels (data not shown). At the normal count level, both methods showed low

percent bias of ≤ 5%, and PMOLAR-1T values were more stable than those of FM with

iteration increasing. Moreover, sample means from PMOLAR-1T showed greater stability

with bias of FM sample means increasing substantially at the low count level. For example,

in the low activity region (WM) over three iterations, FM had increasing percent bias of 4%,

10%, and 24% for K1, 4%, 19%, and 44% for k2, whereas 4-D had percent bias values of

5%, 2%, and 2% for K1, 7%, 5%, and 5% for k2.

PMOLAR-1T was developed from the method proposed by Carson and Lange [5] with a

new higher-dimension complete data space. Generally, PET image reconstruction methods

based on the EM algorithm with higher-dimension complete data spaces will converge

slower. However, it is worth noting that the parameter space in PMOLAR-1T is smaller than

the parameter space for frame-based reconstruction, since PMOLAR-1T does not

reconstruct individual frame concentration values. A smaller parameter space will likely

lead to faster convergence. Based on these initial results, net convergence speed is

comparable for these two methods, although much more evaluation is required.

3) Computation Time

In the current implementation of PMOLAR-1T, we introduced two 2-D look-up tables into

the update of  so that convolution was not required, but there was extra memory cost for

the intermediate variables. Each element of the look-up tables represented values of
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 and  for different t and k2. Moreover, PMOLAR-1T

is required to read in and process the entire list mode file, as opposed to frame-based

reconstructions where the program is executed multiple times using different portions of the

list mode file. Although the current code handled the situation where all events could not be

stored in memory at one time, more swapping time between disk and memory was needed to

handle the entire scan list mode file. Currently, the computation time for the reconstructions

of the frame-based method and PMOLAR-1T were 26 and 40 h, respectively, with 16

cluster nodes (each is dual core with 2G CPU and 2GB memory) when processing 430

million events. It is clearly necessary to optimize the PMOLAR-1T code to decrease the

total computation time. One approach that would reduce computation time for PMOLAR-1T

(and MOLAR) is a GPU implementation of the forward- and backprojections.

4) Randoms and Motion Correction

In MOLAR, randoms are estimated from the coincidence timing window and the block

singles rates, stored in the list mode file. The conversion from block to crystal singles rates

uses the crystal efficiency data from normalization. Delayed coincidences in the list mode

stream are not used in the reconstruction, except to validate the estimates of randoms rate.

Motion information is measured with the Polaris and Vicra devices, by tracking infrared

reflectors mounted on a “tool” attached to the subject’s head. The measured data are

processed into a file with time information and transformation matrix and then correct each

event. Both randoms and motion corrections are emission-image independent, so these

corrections can be directly applied in PMOLAR-1T as in MOLAR, since they do not affect

the Poisson nature of the data.

5) Scatter Correction

Currently, scatter correction is performed on an event-by-event basis using the single scatter

simulation (SSS) method [31]. The estimated scatter rate along a LOR is proportional to the

sum of the contributions calculated from a random distribution of scatter points within the

attenuation volume and depends on the activity image. In conventional frame mode dynamic

PET, the SSS method is used in each frame. For each frame, an initial uniform activity

image within the measured attenuation volume is defined for scatter computation. This

activity distribution is subsequently replaced by the image iteratively determined by

MOLAR and the scatter estimate is updated, typically with two updates within the first

iteration. In the frame method, each frame’s emission image is static and the LOR scatter

rate is time-independent. However, the emission image is time-varying in PMOLAR-1T.

Therefore, the SSS method could be directly used in PMOLAR-1T, however, since each

voxel’s activity changes over each time bin and scatter should, in theory, also change

accordingly, this would lead to highly expensive computation. Therefore, additional SSS

approximations are needed for PMOLAR-1T [35].

6) Model Applicability

Direct 4-D assumed that all voxels in the field-of-view can be described by the 1T model.

Depending on the tracer, other models might be required. The 4-D method can be directly

extended to various kinetic models that use only one nonlinear parameter such as the

Simplified Reference Tissue Model (SRTM) [36] with three parameters, or the FDG model

with or without a blood volume term (but without k4). Extensions to a model with two

nonlinear parameters (such as a model with two tissue compartments) would require a 2-D

search instead of the direct function inverse in (21). Note that there are very few examples in

the literature of voxel-by-voxel fitting of such a model without substantial regularization to

control noise.
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Further, although this model may be appropriate in the brain, this might not be true for

nonbrain regions, especially if radioactive metabolites enter nonbrain regions. Thus,

integration of modeling for regions outside the brain may require a hybrid method where the

4-D model is only applied to brain voxels. An additional correction that would be required

for real data is adjustment of the input function for time delay between the site of

measurement and the organ of interest. This is conventionally performed by a fit of the

whole brain TAC (often just the first few frames) with an additional delay parameter. Thus,

in the context of PMOLAR-1T, reconstructions of a few individual early frames may be

necessary to estimate this time delay. Further, sensitivity of PMOLAR-1T to other errors in

the input function, both deterministic and stochastic, must be evaluated and compared to

frame-based methods.

VI. Conclusion

In this paper, we introduced a method called PMOLAR-1T for the direct reconstruction of

kinetic parameters from PET list mode data. This approach integrated the one tissue

compartment model and the PET physical model and facilitated kinetic parameters

estimation with the help of a novel EM algorithm using a new spatiotemporal complete data

space. Substantial more evaluation of this algorithm is required including simulations with

motion and motion correction, randoms correction and scatter correction and human data

evaluations. Careful evaluation of convergence between 4-D and frame-based methods will

also be essential for fair comparisons of resolution and noise. In addition, it is necessary to

optimize the software to decrease the computation time. Based on the results presented here,

we believe that this 4-D EM method is a promising approach to reduce noise in PET

parametric images, especially in low-count situations.
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Fig. 1.

Illustration of static and dynamic complete data spaces. (a) Static spatial complete data (Xij).

(b) Plasma input, colors represent different delivery times. (c) Time activity curve and

separation of activity based on tracer delivery time. (d) Spatiotemporal complete data (Xijtr).

See text for details.
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Fig. 2.

Numerical phantom used for 2-D (x,t) simulation. (a) K1(x). (b) VT(x).
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Fig. 3.

(a) Measured plasma input used for simulations. (b) H(k2) (14). (c) Absolute difference

between true k2 value and k2 calculated by the fitted polynomial function.
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Fig. 4.

The 10-cm-diameter 3-D phantom composed of gray matter (outer rim), white matter (inner

region), and Basal Ganglia (central spheres). (a) K1 (mL·min−1cm−3). (b) VT (mL·cm−3).
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Fig. 5.

Reconstructed parametric images (VT and K1) by the FM and PMOLAR-1T (4-D) at the

normal count level (two iterations, 30 subsets). (a) Typical images. (b) Mean images. (c)

Standard deviation images.
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Fig. 6.

Reconstructed parametric images (VT and K1) by FM and PMOLAR-1T (4-D) at a low-

count level (2 iterations, 30 subsets). (a) Typical images. (b) Mean images. (c) Standard

deviation images.
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Fig. 7.

Reconstructed parametric images (VT (scale: 0–60 mL·cm−3) and [scale: 0–1

mL·min−1·cm−3)] by FM and PMOLAR-1T (4-D) (two iterations, 30 subsets) from a human

brain study with [11C]AFM. (a) 4-D: K1. (b) FM: K1. (c) 4-D: VT. (d) FM: VT.
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TABLE I

2-D Test Results [Mean Percent Bias and COV for GM, WM, BG Over the 50 Replicates by FM and

PMOLAR-1T (4-D)]

Frame 4D

Bias (%) COV (%) Bias (%) COV (%) COV reduction (%)

Kt

GM 1.1 6.0 1.1 4.0 33

WM −1.6 9.2 −1.6 7.1 23

BG 1.2 5.0 1.2 2.0 60

k 2

GM 0.0 7.9 0.2 4.9 38

WM 0.1 19.1 0.2 14.1 26

BG 0.1 11.1 0.4 8.2 26

V T

GM 1.3 4.3 0.9 3.3 23

WM 0.6 13.1 −0.4 10.0 24

BG 1.8 7.2 1.2 5.1 29
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TABLE II

4-D Test Results [Mean Percent Bias and COV for GM, WM, BG Over the 16 Replicates by the FM and

PMOLAR-1T (4-D) at Normal and Low Count Levels.]

Bias (%) COV (%) COV reduction (%)

Regions BG WM GM BG WM GM BG WM GM

K1 (Normal) 4D 4 2 0 7 10 10
36 41 38

FM 3 1 1 11 17 16

K1 (Low) 4D 4 2 0 10 15 13
44 67 52

FM 4 10 4 18 46 27

k2 (Normal) 4D 0 4 0 6 8 7
60 64 59

FM 0 2 0 15 22 17

k2 (Low) 4D 1 5 0 11 16 11
62 81 69

FM 1 19 4 29 83 35

VT (Normal) 4D 3 − 1 1 5 7 6
29 30 0

FM 4 0 1 7 10 6

VT (Low) 4D 4 −1 1 11 15 11
52 65 27

FM 8 11 3 23 43 15
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