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Abstract

Bax, a central cell death regulator, is an indispensable gateway to mitochondrial dysfunction and a 

major pro-apoptotic member of the Bcl-2 family proteins that control apoptosis in normal and 

cancer cells. Dysfunction of apoptosis renders the cancer cell resistant to treatment as well as 

promotes tumorigenesis. Bax activation induces mitochondrial membrane permeabilization, 

thereby leading to the release of apoptotic factor cytochrome c and consequently cancer cell death. 

A number of drugs in clinical use are known to indirectly activate Bax. Intriguingly, recent efforts 

demonstrate that Bax can serve as a promising direct target for small-molecule drug discovery. 

Several direct Bax activators have been identified to hold promise for cancer therapy with the 

advantages of specificity and the potential of overcoming chemo- and radioresistance. Further 

investigation of this new class of drug candidates will be needed to advance them into the clinic as 

a novel means to treat cancer.
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1. INTRODUCTION

Cell death1 has numerous vital roles in sculpting tissues and optimizing functions (e.g. in the 

immune or central nervous systems) during normal human body development.1,2 Apoptosis, 

a.k.a. programmed cell death, is a major death process of cells that is critical for elimination 

of unwanted, damaged or infected cells and is associated with diverse biological processes 

including cell development, differentiation and proliferation.3 Insufficient apoptosis may 

promote cancer and auto immune diseases, while excessive cell death may augment 

ischemic conditions and drive neurodegeneration.4 The recognition that apoptosis is 

crucially involved in the regulation of tumor formation and also critically determines 

treatment response is one of the most important advances in cancer research in recent 

years.5-7 The intrinsic and extrinsic signaling pathways are two principal processes leading 

to apoptosis.8 The intrinsic pathway, also termed as the mitochondrial pathway, is triggered 

by diverse cytotoxic stimuli including oncogenic stress, chemotherapeutic agents as well as 
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metabolic stress. These stimuli activate related Bcl-2 family proteins leading to 

mitochondrial outer membrane permeabilization (MOMP).9 Upon disruption of the outer 

mitochondrial membrane, a set of apoptotic proteins are released including cytochrome c 

and Smac/DIABLO.3,10,11 Cytosolic cytochrome c recruits apoptosis protease-activating 

factor 1 (Apaf-1) and procaspase 9 to generate “apoptosome” which activates caspase 9 

leading to processing of caspase 3.12-14,10 Caspases are executive proteins of apoptosis. The 

extrinsic pathway, a.k.a. death receptor pathway, is activated by the interactions between 

death receptors and their cognate ligands of the tumor necrosis factor (TNF) family. Death 

ligand stimulation brings about oligomerization of the receptors and recruitment of the 

adaptor protein FADD and caspase 8, resulting in the formation of a death-inducing 

signaling complex (DISC). Autoactivation of caspase 8 activates other effector caspases 

including caspase 3, 6 and 7.15 These two pathways converge on effector caspases and 

subsequently on other proteases and nucleases that drive cell death. Mitochondrial signaling 

is critical for normal cellular homeostasis and participates in the pathogenesis of various 

diseases12,16 including cancer,17 diabetes mellitus,18 obesity,19 and neurodegenerative 

disorders20,18 such as Parkinson’s disease.21,20 Thus, abnormalities in mitochondrial 

signaling represent an actively pursued research frontier of the biomedical enterprise.

The mitochondrial signaling is primarily regulated by the interactions of B-cell lymphoma 2 

(Bcl-2) family proteins.22 Based on their different structures and functions, the Bcl-2 family 

is classified into two groups (Fig. 1a): anti-apoptotic proteins (e.g. Bcl-2, Bcl-xL, Bcl-w, 

Mcl-1 and A1) and pro-apoptotic proteins. Pro-apoptotic proteins are further divided into 

two sub-classes: multi-domain proteins (e.g. Bax and Bak) and BH3-only proteins (e.g. Bid, 

Bim, Puma, Bad, Noxa, Bik, Bmf and Hrk) according to the presence of Bcl-2 homology 

domains (BH1-4 domains).22 Multi-domain pro-apoptotic proteins Bax and Bak are 

essential executive proteins responsible for MOMP and a requisite gateway to mitochondrial 

dysfunction as well as cell death.23,16 Cells lacking both Bax and Bak have proven to be 

completely resistant to truncated Bid (t-Bid)-induced cytochrome c release and apoptosis.23 

Bax likely can be inhibited by all the anti-apoptotic proteins,24 whereas Bak is inhibited 

predominantly by Bcl-xL, Mcl-1 and A125 (Fig. 1b). Bcl-2 anti-apoptotic (or pro-survival) 

family members sequester BH3-only proteins or neutralize Bax and Bak, thus preventing the 

allosteric activation of Bax and a subsequent mitochondrial program of apoptosis.26,27 The 

BH3-only proteins are classified as “activators” and “sensitizers” based on the direct 

activation model, one of the three generally accepted apoptotic models.28,29 Activator-type 

BH3-proteins such as Bid,30,24 Bim31 and Puma32,33,24 function by the direct physical 

binding and activation of Bax to induce apoptosis, while sensitizer-type BH3-proteins such 

as Bad, Noxa and Bik engage pro-survival proteins to free up activators and induce Bax 

activation-mediated apoptosis.28,34 Homeostasis is maintained by controlling the ratio of 

active pro- and anti-apoptotic proteins along with tissue-specific patterns of expression.35

Currently, three models are available as to how Bcl-2 family proteins control apoptosis - the 

direct activation model, the displacement model and the unified model.4,36,37 The direct 

activation model27 (Fig. 2a) contends that activator type BH3-only proteins directly 

associate with Bax/Bak4 and cause the downstream series of events leading to cell 

death.38,39,20,54 The sensitizer type BH3-only proteins bind to the anti-apoptotic proteins to 
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liberate activators, thereby facilitating Bax activation and MOMP.28 The sole function of 

anti-apoptotic proteins is to sequester BH3-only proteins instead of Bax or Bak.40 The 

displacement model (Fig. 2b) concludes that BH3-only proteins cause apoptosis through 

Bax or Bak indirectly by neutralizing the relevant anti-apoptotic proteins, thereby enabling 

the activation of Bax and Bak to proceed.24,41,42,163 Bax and Bak are always active and anti-

apoptotic proteins constitutively bind them to prevent MOMP in this mode. The sole 

function of BH3-only proteins is to displace Bax and Bak from pro-survival proteins, rather 

than bind Bax or Bak. The unified model43 (Fig. 2c) builds on the embedded together model 

which combines features of both aforementioned models. The unified model assigns dual 

functions to pro-survival proteins, sequestering not only the activator type BH3-only 

proteins but also the active forms of Bax and Bak. The embedded together model44 similar 

to the unified model emphasizes that binding to membranes is essential for interactions 

between Bcl-2 family members.45,46

Overexpression of anti-apoptotic Bcl-2 or Bcl-xL exists in a large number of human 

cancers,47 and inactivating mutations of pro-apoptotic proteins occurs in numerous cancers 

leading to an uncontrolled growth of tumors.48-50 Moreover, overexpression of anti-

apoptotic Bcl-2 and its close relatives is a major component of chemoresistance.51 Bcl-2 

family proteins are critical checkpoints of apoptotic cell death,52,35 and targeting various 

Bcl-2 family members is thus one of the most promising therapeutic strategies for 

dysfunctional apoptosis related diseases including cancer,4,53-59,36 autoimmune diseases 

and35 neurodegenerative disorders.60,43 In this review, we summarize the current 

understanding of the structures and physiological functions of Bax protein, and focus on 

recent advances in the direct targeting of Bax for cancer therapy. Several newly emerged 

direct activators of Bax including peptides and non-peptide small molecules, and their 

potential as novel cancer therapeutics are highlighted.

2. STRUCTURE OF BAX

Bax, a tumor suppressor,61 was first identified as a heterodimer with Bcl-2 in 1993.62 It is a 

21 kD protein of 192 amino acids possessing 9 α-helices and its three-dimensional structure 

was resolved by nuclear magnetic resonance (NMR) in 2000.63 Just like other three 

dimensional structures of Bcl-2 family proteins,35 Bax exhibits a similar tertiary structure 

(Fig. 3). Helices α5 (Hα5) and Hα6 constitute the core of the protein and are embedded 

within the other 7 helices which are amphipathic and keep their hydrophilic residues 

exposed to the exterior.64 Hα5 and Hα6 are recognized as the putative mitochondria pore-

forming domain65 and transmembrane domain.66-68 N-terminal Hα1 containing a 

mitochondrial addressing signal is believed to be essential for the translocation of Bax to 

mitochondria.69-71 In addition, Hα1 is the interaction site for BH3-only proteins t-Bid and 

Puma.72 Hα1 controls the engagement of the α9 helix into the dimerization pocket formed 

by BH1, BH2 and BH3, rendering Bax as a monomer in cytosol. Once Hα1 is attacked by 

BH3-only proteins (e.g. tBid, Bim and Puma) and exposed, Hα9 will disengage from the 

hydrophobic groove, leading to mitochondrial insertion.39 There is a long and unstructured 

loop between Hα1 and Hα2, which is a common feature of Bcl-2 family members. The 

amino acid sequence of this region is highly variable, and its function remains to be further 

elucidated. Hα2 comprises the BH3 domain which is requisite for the heterodimerization 
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with other Bcl-2 family members.73 It has been determined by mutational analyses that Bax/

Bcl-2 heterodimerization requires the BH1, BH2 and BH3 domains of Bcl-2 but only the 

BH3 domain of Bax.74,75 Hα2, Hα3, Hα4 and Hα5 form a hydrophobic groove of the 

protein which is the canonical BH3-binding site. Hα9 is bound to the Bax hydrophobic 

groove63 and thought to participate in the conformational stability.76 Bax is predominantly 

an inactive monomer in the cytosol of healthy cells or loosely attached to the mitochondrial, 

nuclear, or endoplastic reticulum membrane.70,77 The hydrophobic side chains (e.g. Ser55, 

Thr56, Leu59, Leu63, Ile66 and Leu70) of the BH3 helix point inward toward Hα5/Hα6 and 

are covered by Hα9. During apoptosis, Bax translocates to the mitochondria in the fully 

activated form whose Hα9 disengages from the binding groove and Hα2 rotates about its 

axis to expose the hydrophobic side chains of the BH3 domain.64

Some critical amino acid residues have also been identified. Cys62 within Hα2 close to the 

BH3 domain and Cys126 between the Hα5 and Hα6 are both exposed and potentially form a 

disulfide bridge for homo- or heterodimerization.78,77,61 Ser184, at the end of C-terminus, 

and Thr167, between Hα8 and Hα9, are identified as two important phosphorylation sites. 

Phosphorylation of Ser184 by protein kinase C zeta,79 or AKT80 neutralizes Bax, while its 

dephosphorylation by protein phosphatase 2A actives Bax.81 Mutation or deletion of Ser184 

also influences Bax localization.82,83 Pro168 and Pro13 are also found to be important for 

Bax activation and localization to mitochondria.84, 85

3. Function of Bax and its associated signaling

Bax is a unique entry point for intrinsic apoptotic signaling (Fig. 4). The intrinsic pathway is 

initiated by various stimuli including DNA damage, cytokine deprivation and cytotoxic 

stress.86-88,61 Under these stresses, BH3-only proteins activate Bax via direct or indirect 

means according to the direct activation model. The direct mode is characterized by 

activators (e.g. Bim, t-Bid) that bind and activate Bax, leading to MOMP. The indirect mode 

is manifested by sensitizers (e.g. Bad, Noxa) that inhibit anti-apoptotic protein’s ability to 

bind activators and thereby induce subsequent Bax-mediated apoptosis. Bax function is 

tightly regulated through a series of changes including conformational switching (inactive to 

active conformation),89 trafficking (from cytosol to mitochondria),90 and aggregation status 

changes (from monomer to dimer and multimer).91 Oligomerized Bax facilitates 

mitochondrial membrane permeabilization and promotes the formation of pores which 

enables the release of cytochrome c and Smac/DIABLO from the intermembrane space into 

cytosol.10,92-94 Together with apoptotic protease activating factor 1 (Apaf-1), dATP and 

procaspase-9, cytochrome c forms a complex “apoptosome”, which activates caspase 9 

followed by downstream activation of other executioner caspases and ultimately results in 

cell death.12

Bax also participates in the extrinsic apoptotic pathway that is mediated by transmembrane 

death receptors.21 Bax reinforces the extrinsic pathway when caspase 8 cleaves Bid to 

generate the activated t-Bid (Fig. 4).95,22 It is also revealed that Bax-deficient human colon 

carcinoma cells are resistant to death-receptor ligands, while Bax-expressing sister clones 

are sensitive,96 indicating that Bax is essential for death receptor-mediated apoptosis. 

Moreover, it has been reported that sensitization of melanoma for TNF-related apoptosis-
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inducing ligand (TRAIL)-induced apoptosis appears to be particularly dependent on Bax.97 

Knockdown of Bax prevents release of Smac from the mitochondria and thereby blocking 

TRAIL-induced apoptosis.97,98 Suppressed Bax activity is one of the major reasons of 

TRAIL resistance in melanoma.11,99,100

Bax is also involved in the endoplasmic reticulum (ER) signaling pathway which plays a 

decisive role in many cellular events especially in cell death via crosstalk with mitochondrial 

pathways.101,102 Bax not only increases ER Ca2+ load and enhances Ca2+ release,103,104 but 

also modulates the unfolded-protein response (UPR) by directly interacting with inositol-

requiring 1α (IRE1α).48 Bax is also believed to regulate mitochondrial dynamics in healthy 

cells and to be required for normal fusion of mitochondria into elongated tubules.105

Bax is expressed in essentially all organs,106 indicating that it may be a regulator of 

apoptosis in various cell types.107,108 Bax-deficient mice display selective expansion of cell 

population,62 selective hyperplasias, and resistance to certain apoptotic stimuli.109 Although 

mice lacking Bax are viable with limited phenotypic abnormalities, Bax−/−Bak−/−mice show 

various developmental defects.110

Down-regulation and mutation of Bax plays an important role in tumor resistance to 

apoptosis.111 Reduced Bax expression was found to be associated with Cisplatin resistance 

in ovarian carcinoma cells.112 The Bax gene is down-regulated in tumor colorectal cancer 

cell lines acquiring resistance to 5-FU compared to wild type HT-29 cells, suggesting that 

Bax down-regulation may serve as a key factor during both colorectal carcinogenesis and 

cell resistance to 5-FU.113 Down-regulation of Bax also plays an important role in 

Zoledronat-resistant lung cancer cell lines.114 Decreased Bax/Bcl-2 ratio and caspase 

activity serves as the main mechanism of temozolomide (TMZ)-induced chemoresistance in 

U87MG cells115 and paclitaxel resistant MCF-7 cells.116 Inhibition of Bax conformational 

change by Akt also contributes to chemoresistance.117,118 Loss of function mutation of Bax 

was reported to be found in hematopoietic malignancies31 and results in TRAIL resistance 

in mitochondria dependent type II cancer cells.119 Acquired point mutation of Bax G179E 

confers resistance to ABT-299 by abrogating Bax translocation to mitochondria. In addition, 

G179E Bax mutation also induces partial cross-resistance to other antineoplastic drugs.120 

Phosphorylation (Ser184) of Bax inactivates its pro-apoptotic function by maintaining Bax 

in the cytoplasm and heterodimerizing with anti-apoptotic Bcl-2 proteins, and thus 

contributes to increased survival and chemoresistance of human lung cancer cells.83,121,118 

Interestingly, Bax dephosphorylation (T172, T174 and T186) of wild-type p53-induced 

phosphatase 1 (Wip1) suppresses Bax-mediated apoptosis in response to γ-irradiation in 

prostate cancer cells and the effect can be reversed by a Wip1 inhibitor.122,121 Taken 

together, abnormalities regarding Bax including down-regulation, inactivated mutation, 

phosphorylation and dephosphorylation affect the ratio of Bax/Bcl-2,62,123 and confer 

resistance to cell death as well as overexpression of Bcl-2.124 Therefore, Bax activators may 

be used to promote pro-apoptotic activity with the potential to overcome resistance, and 

serve as a surrogate in lieu of enhanced of Bax expression as a means to augment apoptotic 

stimuli and decrease tumor enlargement.125
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Given the critical role of Bax in apoptosis, it is not surprising that various anticancer agents 

that induce apoptosis of cancer cells involve the participation of the pro-apoptotic protein 

Bax. Examples include Hsp90 inhibitor 17-AAG126 and histone deacetylase (HDAC) 

inhibitors.127 Hsp90 inhibitors promote p53-dependent apoptosis through Puma and Bax.128 

Cells lacking Bax and Bak prevent apoptosis mediated by HDAC inhibitors.129 Human 

colorectal cancer cells that lack functional Bax genes are partially resistant to the apoptotic 

effects of chemotherapeutic agent 5-fluofouracil, and completely abolish the apoptotic 

response to the chemopreventive agent sulindac and other nonsteroidal antiinflammatory 

drugs (NSAIDs).130 Selected drugs which exert their effect with respect to Bax activation 

are listed in TABLE 1.

4. Small molecules as direct Bax activators

While a number of anticancer drugs in the clinic induce Bax activation indirectly to facilitate 

apoptosis, none of them directly activates Bax. Accumulating evidence suggests that direct 

activation of Bax can be viewed as a novel and specific approach for cancer therapy. First, 

Bax is often differentially expressed in cancer cell lines versus normal cells. It is reported 

that human lung cancer cells expressing higher levels of total Bax also contain relatively 

higher levels of pBax (e.g. H292 and H1975).143 Approximately 21% of human 

hematopoietic malignancies possess loss-of-function mutations of Bax, perhaps most 

commonly in the acute lymphoblastic leukemia subset.49 Additionally, Bax has unique and 

critical sites that are not shared with other Bcl-2 family members, providing the molecular 

basis for an ideal targeted approach for cancer treatment with the desired outcome of a 

decreased side effect profile. Given that Bax plays a primary role in the intrinsic apoptosis 

pathway and participates in the extrinsic pathway, which is not the case for BH-3 only 

proteins as evidenced by their dependence on Bax/Bak,23,144 small-molecule activation of 

Bax represents a novel approach to promote the pro-apoptotic function of this centrally 

acting protein. It has been shown that the expression of Bax appears to play an important 

role in suppressing cancer development,80,145 and decreased Bax levels contribute to 

chemoresistance in a number of cancers including lung cancer, chronic lymphocytic 

leukemia (CLL), prostate cancer and others which may be ameliorated by small-molecule 

Bax activators.62, 127 Intriguingly, several small-molecule activators of Bax have been 

identified to induce cell death in a Bax-dependent fashion via direct binding to Bax in vitro 

and in vivo. By leveraging the requisite conformational change of Bax from its inactive to 

active state via several binding sites and key amino acid residues, the potential to explore the 

rational development of Bax small-molecule activators may prove fruitful towards the 

discovery of novel cancer therapeutics. Given that many anticancer agents induce cancer cell 

death via Bax activation, direct activation of Bax may also provide powerful agents for 

novel drug combinations. Taken together, direct activation of Bax represents a promising 

approach for cancer therapy.

4.1 Peptides Bid SAHBA and Bim SAHB

Direct involvement by selected BH3 domains of BH3-only proteins has been implicated in 

initiating Bax activation.38,146,147 Not only BH3-only proteins such as Bim, Bid and Puma, 

but also the tumor suppressor p53,148 are found to act as direct activators of Bax, resulting in 
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cytochrome c release and apoptosis.149,150 A convenient and quick option to access Bax 

activators is through BH3 domain mimetics. Given that traditional peptides typically have 

poor uptake and are often comprised by their loss of secondary structures, several new 

approaches have emerged including a chemical strategy termed hydrocarbon stapling.151-154 

The stabled Bid BH3 (1; Fig. 5a) mimetic Bid SAHBA (stabilized α helices of Bcl-2 

domains, 2) is the first peptide identified to directly associate with Bax.147 The 

intramolecular all-hydrocarbon “staples”139 are generated by inserting non-natural amino 

acids bearing olefin tethers into the BH3 sequence, followed by ruthenium-catalyzed olefin 

metathesis (Fig. 5a). The peptide displays dramatically stabilized Bid BH3 α helicity 

compared to the random coil in solution.155 Fluorescein isothiocyanate (FITC)-derivatized 

Bid SAHBA demonstrates a direct binding interaction with full-length Bax, exhibiting an 

EC50 of 885 nM measured by a solution-phase fluorescence polarization assay (FPA) (Fig. 

5b).156,157 In contrast, Bid SAHBA (L,D-A) (3) mutant known to impair the biological 

activity of Bid BH3 with enhanced α helicity,28 displays no binding activity at Bax or Bid 

BH3. At the same time, Bid SAHBA also displays binding activity for full-length Bcl-xL 

with an EC50 of 230 nM. In vitro mitochondrial cytochrome c release assays were also 

performed using Bak-deficient mouse liver mitochondria. Dosing with Bid SAHBA and Bax 

resulted in the release of cytochrome c in a dose-dependent manner. Addition of Bcl-xL 

inhibits Bid SAHBA induced Bax activation. Bid SAHBA(L,D/A) mutant and Bad SAHBA (4) 

reveal no significant cytochrome c release. These results suggest that direct binding 

interaction between Bid SAHBA and Bax is sufficient to activate Bax and the interaction is 

specific. Similarly, Bax coimmunoprecipitated with Bid SAHBA, but not with mutant Bid 

SAHBAs, indicating that cell-permeable Bid SAHBA can interact with Bax in cells. Bid 

SAHBA may ultimately be a valuable pro-apoptotic agent as it has bifunctional properties by 

directly engaging both pro-apoptotic and pro-survival multi-domain proteins.

Utilizing BH3 peptides including Bid BH3 as chemical probes, new progress has been made 

on the mechanism of Bax activation based on the crystal structures of BaxΔC21 with 

detergents and BH3 peptides.158 Compared to the inactive form of Bax (Fig. 5c, left panel), 

Hα1-Hα5 are released from Hα6-Hα8 in the active form of BaxΔC21 (Fig. 5c, right panel) 

induced by the engagement of Bid BH3 into canonical hydrophobic groove of Bax and BH3 

domain of Bax is dislodged. The freed Bax BH3 domain then competes with activator BH3-

only proteins for binding Bax to form stable homodimers, which is the fundamental unit of 

the Bax oligomers. Several hydrophobic residues of Bid BH3 interacting with Bax are 

highlighted as h0 (resides Ile82 and Ile 83), h1 (Ile86), h2 (Leu90), h3 (Val93) and h4 

(Met97). Mutations at h0 position (I82A/I83A) abolish its activity of Bax activation in all 

assays. An isoleucine or a glutamate in h0 favors activator function on Bax. The 

destabilizing cavity is formed at the Bax-Bid BH3 intersurface to promote the liberty of Bax 

BH3 domain and trigger Bax oligomerization. Nevertheless, no cavities can be formed when 

BH3 peptides interact with pro-survival proteins. These findings based on the crystal 

structures of Bax and BH3 peptide complexes provide new insight on the mechanism of Bax 

activation and make it feasible to design BH3 sequences targeting Bax or pro-survival 

proteins selectively.
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Bim BH3 (5) mimetic Bim SAHB (6, Fig. 6a), obtained in a same fashion as Bid SAHBA, 

has also been investigated. It shows 35-fold greater potency than Bid SAHBA, with an EC50 

value of 23.7 nM. The direct Bim SAHB binding to Bax was confirmed by using NMR 

spectroscopy techniques and a new triggered binding site (Fig. 6b, right site), at which Bim 

SABH binds Bax leading to a battery of events including its direct activation and Bax-

mediated mitochondrial apoptosis, was revealed.159 This Bax trigger site is defined by 

helices α1 and α6, on the opposite face of canonical BH3 binding site (Fig. 6b, left site) of 

anti-apoptotic proteins. However, more recent studies on the crystal structure of Bim BH3 

peptide complexed with BaxΔ21 (Fig. 6c) did not address Bax activation at this site directly, 

while supporting the canonical binding site.160 The apoptotic response of Bax−/− Bak−/− 

mouse embryonic fibroblasts (DKO MEFs) reconstituted with Bax or Bax (K21E) and Bim 

SAHB or Bim SAHB (R153D) was examined. Neither Bim SAHB bearing a single amino 

acid mutation within the core BH3 consensus sequence nor Bax mutagenesis at the α1-α6 

interaction site induces time-dependent apoptosis. Specificity of Bim SAHB-induced Bax 

activation was further evidenced by the “staple scan” and mutagenesis studies. Different in 

vitro assays (oligomerization, 6A7 immunoprecipitation, liposomal and mitochondrial 

assays) that measure ligand-induced Bax activation indicate that Bim SAHB directly and 

dose dependently activates Bax. The identification of the novel binding sites to interact with 

and activate Bax, and the elucidations of the crystal structures of BH3 peptides complexed 

with BaxΔ21 represent exciting breakthroughs that support the direct targeting of Bax for 

the therapeutic modulation of apoptosis.

4.2 Non-peptide small molecule activators

Low bioavailability, poor membrane permeability and metabolic instability are the most 

common issues regarding the development of peptides as therapeutic agents.161-163 

Although the described “stapled” peptides have relatively increased stability, cell-

permeability, and the ability to induce apoptosis via direct binding and activation of Bax, 

non-peptide small molecules are preferred given the capacity of medicinal chemistry 

campaigns to fine tune molecular architecture towards the optimization of desired drug-like 

traits. Recently, several screen campaigns have been carried out to discover non-peptide 

small molecules that can directly bind and activate Bax to induce the apoptosis of cancer 

cells based on the Bax trigger site and critical amino acids residues.

4.2.1 BAM7 and its analogue BTC-8—BAM7 is a non-peptide small-molecule direct 

activator of Bax which was identified in 2012 by Walensky et al.164 Based upon the newly 

recognized triggered site of Bax by Bim SAHB, a diverse in silico screen of 750,000 small 

molecules was conducted using Glide 4.0. The top 100 hits were selected for experimental 

analysis using competitive FPA involving FITC-BIM SAHB and Bax. BAM7 (7; Fig. 7a), a 

pyrazolone core substituted with an ethoxyphenylhydrazono, methyl, and phenylthiazole 

moieties, was identified as the most effective small-molecule binder of Bax among the 

compounds tested in this series, with an IC50 value of 3.3 μM. NMR analysis of [15N]Bax 

upon BAM7 titration shows that BAM7 and Bax interact at the very surface used by the 

BIM BH3 helix to trigger Bax activation. Different from N-terminal acetylated Bim SAHB 

(Ac-Bim SAHB), which can effectively compete with FITC-Bim SAHB for binding to the 

diversity of Bcl-2 family multi-domain protein members, BAM7 shows little or no 

Liu et al. Page 8

Med Res Rev. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



competitive binding interactions with other Bcl-2 family targets including C-terminal 

deleted Bcl-xL (Bcl-xLΔC), Mcl-1ΔNΔC and BakΔC even at 50 μM concentration (Fig. 7b). 

Thus, BAM7 exhibits a high selectivity for Bax. The interaction between BAM7 and Bax 

induces characteristic structural changes yielding functional Bax oligomerization and Bax-

dependent cell death (Fig. 7c) according to structural, biochemical and cellular studies. In 

vitro, BAM7 only impairs the viability of Bak−/− MEFs which rely on Bax in a time- and 

dose-dependent manner, and BAM7 has no effect on Bax−/− or DKO MEFs. BAM7-treated 

Bak−/− MEFs display characteristic microscopic features of apoptosis including cellular 

shrinkage (Fig. 7d). These results suggest that directly targeting Bax with a non-peptide 

small-molecule activator is feasible to trigger its pro-apoptotic activity. BAM7 is a selective 

small molecular Bax activator that binds to the Bax trigger site, representing a new approach 

toward combating human cancer.

Recently, a structure-based lead optimization of BAM7 led to the discovery of BTC-8 (8; 

Fig. 7a), which induces MOMP with an EC50 of 700 nM, approximately one order of 

magnitude more potent than BAM7 in cultured HuH7 cells.165 BTC-8 was obtained through 

replacement of thiazole with phenyl ring and introduction of exocyclic basic group. BTC-8 

can induce translocation of Bax to mitochondria leading to the release of cytochrome c, 

activation of caspase 3 and formation of apoptotic nuclei. Moreover, it is selectively toxic 

for cancer cells (HuH7, NB4, SHSY-5Y and LLC1) and immortalized cells (MEF) while 

having little effects on healthy resting cells (healthy splenocytes). BTC-8 shows in vivo 

efficacy in a murine Lewis lung carcinoma mouse model at a low intraperitoneal injection 

dose of 1 mg/kg. After only 4 days of treatment, a significant tumor mass reduction was 

observed to reach 50% compared with control with no gross toxicity.165

4.2.2 Compound 106 (ZINC 14750348)—Structure-based drug design was used to 

discover agents capable of activating Bax, and compound 106 (9; Fig. 8a) was predicted to 

bind the Bax hydrophobic groove by a virtual screening approach.166 A total of 

approximately 10 million small molecules in the ZINC drug-like database were screened in 

the classic carboxyl-terminal transmembrane helix binding site based on the NMR structure 

of Bax (PDB code: 1F16) to identify compounds that can bind Bax. Among 46 high-scoring 

molecules that can fit into the hydrophobic groove, compound 106 was found to exhibit the 

highest Bax- and dose-dependent cytotoxicity.

Compound 106, a pyrazolo[4,3-c]pyridine core substituted with 3,4-dimethylbenzyl, 2-

methoxybenzyl and (R)-1-(3-hydroxypiperidin-1-yl)ethanone moieties can fit well into the 

cavity in the Bax hydrophobic groove according to the virtual screening experiments. 

Compound 106 can trigger cell apoptosis in a Bax-dependent fashion. It selectively induces 

cell death of Bak−/−Bax−/− MEFs expressing Bax rather than vector or Bak (Fig. 8b). 

Compound 106 activates Bax in vitro by altering the proteins conformation, inducing Bax 

insertion into mitochondria and subsequent cytochrome c release. Compound 106 kills 

various tumor cell lines including murine Lewis lung carcinoma (LLC) cells, A549 human 

non-small cell lung carcinoma cells, and PANC-1 human pancreatic carcinoma cells in a 

Bax- and dose-dependent fashion. Moreover, compound 106 inhibits lung tumor growth and 

induces tumor cell apoptosis in vivo on the female C57BL/6 mice implanted LLC cells at the 
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dose of 40 mg/kg/day by intraperitoneal injection. Compound 106 functions synergistically 

with carboplatin167 or ABT-737168 to induce human tumor cell death, indicating that Bax 

activators may serve as a component of combination chemotherapy regimens. Intriguingly, 

compound 106 is preferentially toxic to transformed MEFs cells (transformed by expression 

of the K-Ras and E1A oncogenes) compared to their normal counterparts with similar Bax 

expression (Fig. 8c). This finding suggests that tumor cells may respond more acutely than 

normal cells to stressful conditions such as Bax activation because of an overwhelmed 

antiapoptotic reserve, and Bax activators may thus have a superior selectivity for cancerous 

cells over normal cells.

4.2.3 SMBA COMPOUNDS—Recently, several new small molecular ligands as direct 

activators of Bax have been identified by our team.143 Based on the previous finding that 

nicotine-induced Bax phosphorylation at serine 184 (S184) inactivates the pro-apoptotic 

function of Bax,80 it was reasoned that the pocket around the S184 site is an attractive target 

for structure-based drug discovery. A total of about 300,000 molecules by using the NCI 

compound library were docked into the structural pocket around S184 residue with the 

DOCK program suite virtual screening software. Further investigation of selected hits on 

their apoptotic effects against human lung cancer A549 and H1299 cells led to the discovery 

of three structurally diverse lead compounds SMBA1 (10), SMBA2 (11) and SMBA3 (12) 

(Fig. 9a). All three compounds exhibit significant suppression effects on nicotine-induced 

Bax phosphorylation in A549 cells. The competition fluorescence polarization assay169 

demonstrates that SMBAs selectively bind to the Bax protein and display excellent binding 

affinities with Ki values of 43.3 ± 3.25 nM, 57.2 ± 7.29 nM and 54.1 ± 9.77 nM for SMBA1, 

SMBA2 and SMBA3, respectively, but fail to bind to other Bcl-2 family proteins such as 

Bcl-2, Bcl-xL, Mcl-1, Bcl-w, BFL-1/A1, Bid and Bak at the concentration of up to 0.5 μM 

(Fig. 9b). SMBAs selectively impair the viability of Bak−/− MEFs, but exhibit no effects on 

MEFs lacking Bax (Bax−/−) or both Bax and Bak (Bax−/− Bak−/−), indicating that Bax not 

Bak is the required essential target for SMBAs to induce apoptosis. Structural modeling with 

these chemical leads reveals that SMBAs can fit well into the Ser184 binding pocket. 

Further mechanistic investigation has validated that SMBAs indeed alter various apoptotic 

biomarkers and induce conformational changes of Bax, Bax oligomerization, mitochondrial 

insertion and cytochrome c release by blocking S184 phosphorylation.143

The anticancer activity of SMBA1 was further evaluated in vivo using nude mice bearing 

subcutaneous lung cancer xenograft derived from A549 cells. Significant antitumor efficacy 

was observed at the doses of 40 mg/kg and 60 mg/kg with treatment for 14 days. Body 

weight change of mice was monitored once every other day during treatment with increasing 

doses of SMBA1. No significant body weight loss and normal tissue toxicity in vivo were 

observed at all the tested doses, indicating that SMBA1 represents a new and safe class of 

anticancer agents. Intriguingly, SMBA1 shows target specificity, and almost displays no 

antitumor effect in Bax-deficient lung cancer xenograft derived from A549 expressing Bax 

siRNA at the effective dose of 40 mg/kg, demonstrating that Bax expression is essential for 

SMBA1 suppression of tumor growth in vivo (Fig. 9c).
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5. Conclusions and future directions

Since its discovery in 1993, Bax has attracted an increasing amount of attention due to its 

central role in the regulation of apoptosis. Bax is critical to maintain homeostasis while it 

tends to be disordered in cancerous cells. Based on the solid foundation of cancer genetics 

and cell biology studies, direct binding and activation of Bax as a promising approach for 

cancer therapy is not only feasible, but also proven to be effective both in vitro and in vivo. 

Direct Bax activators have demonstrated a variety of advantages including potential 

superiority to overcome radio- and chemoresistance as well as to selectively induce 

apoptosis of cancer cells with low toxicity in normal cells.

To date, several classes of novel direct Bax activators including Bid SAHBA, Bim SAHB, 

BAM7, BTC-8, compound 106 and SMBAs have been identified to effectively induce Bax-

mediate apoptosis in vitro and in vivo. Peptides Bid SAHBA and Bim SAHB exhibit an 

improved capability of overcoming the traditional limitations of peptides such as poor 

cellular permeability, bioavailability, solubility and metabolic stability as well as triggering 

Bax-mediated apoptosis. Bid SAHBA treatment consistently suppresses leukemia growth in 

vivo on immunodeficient mice bearing established human leukemia xenografts.155 However, 

it shows a relatively lower selectivity of Bax over other related Bcl-2 family members. 

Inspired by the designation of venetoclax, a Bcl-2 BH3 mimetic, as a breakthrough therapy 

for the treatment of 17p deletion relapsed-refractory CLL granted by FDA, these stapled 

peptides as BH3 mimetics of activator BH3-proteins may have great potential to be further 

optimized as unique chemical probes and peptide-based drugs.170,171 Both BAM7/BTC-8 

and SMBAs directly bind Bax with high selectivity over other Bcl-2 family members and 

induce Bax-dependent cell death in a genetically defined context. Intriguingly, BTC-8 is 

highly efficacious in vivo in a murine Lewis lung carcinoma mouse model even at a low 

dose of 1 mg/kg. SMBA1 displays nanomolar binding affinity to the unique Ser184 site and 

suppresses tumor growth in the lung tumor xenograft mouse model at the dose of 40 mg/kg 

with no overt toxicity. More extensive structure-activity relationship (SAR) studies are 

imperative to improve efficacy and drug-likeness to yield optimized drug candidates for 

human clinical trials. Given the tremendous market for novel anticancer agents, these target-

specific molecules that directly activate Bax offer great potential and hold promise for 

cancer treatment.

Both challenges and opportunities remain regarding the development of direct Bax 

activators. First, only a very limited number of small molecules have been reported that 

directly bind and activate Bax leaving the door open for the discovery of small molecules 

with diverse scaffolds suitable for preclinical development, representing an endeavor that is 

urgently needed. With the assistance of modern drug discovery technologies and 

multidisciplinary approaches including high-throughput screening (HTS), structure-based 

drug design, and computer-aided drug research, identifying new chemical entities directly 

targeting Bax likely can be facilitated. The discovery of BTC-8 appears to be a good 

example of structure-based drug design. Due to the well established in vitro and in vivo 

assays, HTS is feasible to yield more potent and otherwise undiscovered chemical scaffolds 

as direct Bax activators. Meanwhile, virtual screening with classic drug discovery guidelines 

properly applied is also a wise option given the crystal structures of Bax and relevant 
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complexes as well as several different binding pockets are well characterized. Furthermore, 

HTS of fragments with relatively weaker binding and fragment-based drug design 

(FBDD)172,173 may also facilitate the discovery and enhance the structural diversity of Bax 

activators. Given the importance of several specific amino acid residues of Bax (e.g. Ser184) 

and the role of the associated phosphorylation, developing appropriate phosphonate 

probes174,175 might be very useful for elucidating the mechanisms of Bax activation and 

assisting the target-specific drug discovery.175

As discussed, the currently available structural studies on Bax and BH3 peptides complexed 

with BaxΔ21 have provided critical insights into the molecular mechanism of Bax activation 

and interactions between Bax and other Bcl-2 family members. If co-crystal structures of 

Bax and its non-peptide small molecular activator complexes are revealed, we envision that 

the rational drug design will be significantly facilitated to yield new insights for directly 

targeting Bax. It is the opinion of the authors that developing novel and efficient small 

molecules as specific and direct Bax activators will find an important place in both 

biopharmaceutical industry and academic settings, and open new avenues for understanding 

the fundamental mechanisms of Bax in multiple cellular contexts and eventually lead to the 

development of viable therapeutic regimens that may benefit cancer patients. Given the 

important role of Bax in apoptosis and drug resistance, combination therapies of Bax 

activators and chemotherapeutic drugs can also take prominence in the years to come.
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Bcl-2 B-cell lymphoma 2

MOMP mitochondrial outer membrane permeabilization
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Smac/DIABLO second mitochondria-derived activator of caspase/direct IAP-binding 

protein with low PI

TNF tumor necrosis factor

FADD Fas-associated death domain protein

TRAIL TNF-related apoptosis-inducing ligand

ER endoplasmic reticulum

HDAC histone deacetylase

CLL chronic lymphocytic leukemia

SAHB stabilized α helices of Bcl-2 domains

DISC death-inducing signaling complex

BH Bcl-2 homology domains

NMR nuclear magnetic resonance

UPR unfolded-protein response

IRE1α inositol-requiring 1α

TMZ temozolomide

Wip1 wild-type p53-induced phosphatase 1

NSAIDs nonsteroidal antiinflammatory drugs

FITC fluorescein isothiocyanate

FPA fluorescence polarization assay

SAR structure-activity relationship

HTS high-throughput screening

FBDD fragment-based drug design
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Figure 1. The Bcl-2 family proteins and their interactions
a, The Bcl-2 family is classified into pro-survival proteins (or anti-apoptotic proteins, 

including Bcl-2, Bcl-xL, Bcl-w, Mcl-1, etc.) and pro-apoptotic proteins due to their different 

functions. The pro-apoptotic proteins are further divided into two sub-classes: multi-domain 

proteins (e.g. Bax, Bak and Bok) that exhibit BH1-4 domains and BH3-only proteins that 

exhibit sole BH3 domain (e.g. Bim, Bid, Puma, Noxa, Bad, Hrk, Bmf and Bik). Based on 

the direct activation model, BH3-only proteins consist of “activators” (e.g. Bim, Bid and 

Puma) that are able to bind and activate Bax directly and “sensitizers” (e.g. Bad and Noxa) 

that act by releasing activators from pro-survival proteins. b, Bax may be inhibited by all 

pro-survival proteins, while Bak is inhibited mainly by Bcl-xL, Mcl-1 and A1. Some BH3-

only proteins (e.g. Bim, Bid and Puma) are able to neutralize all pro-survival proteins, while 

some of them (e.g. Bad and Noxa) can only bind a limited subset.
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Figure 2. Different models of Bax activation-mediated mitochondrial outer membrane 
permeabilization (MOMP)
a, The direct activation model contends that activator type BH3-only proteins directly bind 

and activate Bax/Bak. b, The displacement model concludes that BH3-only proteins trigger 

apoptosis indirectly through Bax or Bak by neutralizing the relevant pro-survival proteins. c, 

The unified model assigns dual functions to anti-apoptotic proteins, sequestering not only 

the activator type BH3-only proteins but also the active forms of Bax and Bak.
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Figure 3. Structure of Bax
a, Ribbon representation of Bax (PDB: 1F16). The 9 α-helices are indicated separately. Hα2 

comprises BH3 domain. Hα5 (helices α5) and Hα6 form the core of the protein and are 

embedded within the other 7 helices. b, Critical amino acid residues (e.g. Cys126, Thr167, 

Pro168, Pro13 and Ser184) are highlighted including hydrophobic residues on BH3 domain 

(e.g. Ser55, Thr56, Leu59, Leu63, Ile66 and Leu70).
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Figure 4. The apoptotic pathways mediated by interactions between Bax and other Bcl-2 family 
members based on the direct activation model
Once initiated by stimuli, BH3-only proteins activate Bax directly or indirectly. 

Oligomerized Bax leads to mitochondrial membrane permeabilization/pore formation and 

cytochrome c release. Cytochrome c, Apaf-1, dATP and procaspase-9 form the apoptosome 

which activates caspase 9 and other downstream executioner caspases, thereby ultimately 

leading to cell death. Casp: Caspase. A: Activator type BH3-only proteins.
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Figure 5. Bid SAHBA binds Bax and activates Bax directly
a, Structure and sequence of Bid SAHBA. The native methionine of Bid BH3 was replaced 

with norleucine (NL) in Bid SAHBA due to the incompatibility of sulfur with the metathesis 

reaction. b, Fluorescence polarization binding assays were carried out using FITC-labeled 

peptides (50 nM) and full-length Bax. Direct interaction between Bid SAHBA and Bax was 

observed. c, Comparison of the inactive form of Bax (PDB: 1F16) and activated form of 

BaxΔ21 (PDB: 4BD2). The crystal structure of Bid BH3 peptide 

(SESQEDIIRNIARHLAQVGDSMDRSIPPGL) complexed with BaxΔ21 shows that Hα1-

Hα5 are released from Hα6-Hα8. Reproduced, with permission, from REF. 147© the 

Elsevier Inc. (2006).
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Figure 6. Different interaction sites of Bim BH3 peptides with Bax
a, Sequence of peptides Bim BH3 and Bim SAHB. b, Canonical BH3-binding site and the 

Bax trigger site located on the opposite sides of each other (PDB: 2K7W). c, The crystal 

structures of Bim BH3 peptide (RPEIWIAQELRRIGDEFNAYYA) complexed with Bax 

(PDB: 4ZIE) showing that the interaction site lies in the hydrophobic groove.
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Figure 7. BAM7 specifically binds Bax and induces Bax-dependent cell death
a, The structure of BAM7 and its analog BTC-8. b, The specificity of BAM7 for the BH3 

binding site on Bax was examined by competitive FPA employing FITC-BIM SAHB and 

Bcl-xLΔC (Only the result of BCL-xL is shown here). c, BAM7 selectively impairs the 

viability of Bak−/− MEFs but has no effect on MEFs lacking Bax (Bax−/−) or both Bax and 

Bak (Bax−/− Bak−/−). d. Bak−/− MEFs demonstrate the morphologic features of apoptosis in 

response to BAM7 treatment at the concentration of 15 μM. 1, 20 min; 2, 6 h; 3, 12 h; 4, 

12.5 h. Scale bars, 15 μm. Reproduced, with permission, from REF. 164 © the Macmillan 

Publishers Limited (2012).
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Figure 8. Compound 106 induces Bax-dependent apoptotic cell death
a, The chemical structure of compound 106 (ZINC 14750348). b, Compound 106 
preferentially induces cell death of Bak−/−Bax−/− MEFs expressing Bax at the concentration 

of 50 μM. c, The viability of the untransformed MEFs and their isogenic counterparts 

(transformed by expression of the K-Ras and E1A oncogenes) was determined 48 h 

following treatment with compound 106 at various concentrations (20-120 μM). 

Reproduced, with permission, from REF. 166 © 2014 by the American Society for 

Microbiology.
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Figure 9. SMBA1 suppresses lung cancer in vivo by specifically targeting Bax
a, The chemical structures of SMBA1~3. b, Bax agonist SMBA1 binds selectively with Bax 

rather than other relevant Bcl-2 family members at the increasing concentration (0~500 nM). 

c, Mice with xenografts derived from A549 expressing Bax siRNA, or Ctrl siRNA were 

treated with SMBA1 (40 mg/kg) or vehicle for 14 days. Reproduced, with permission, from 

REF. 143 © the Macmillan Publishers Limited (2014).
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Table 1

Selected drugs or drug candidates involving indirect activation of Bax

Name Structure Action mode Status Ref.

Bortezomib Proteasome inhibitor Launched 131-133

Ixabepilone Tubulin modulator Launched 134

Sorafenib
Flt3, Kit etc. tyrosine

kinase inhibitor
Launched 135

Atorvastatin
HMG CoA reductase

inhibitor
Launched 136

Erlotinib EGFR inhibitor Launched 137

Sirolimus mTOR inhibitor Launched 138

Simvastatin Hypercholesterolemia Launched
a 139

Paclitaxel Mitotic inhibitor Launched 140

Panobinostat
Histone deacetylase

inhibitor
Pre-registration 129
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Name Structure Action mode Status Ref.

Venetoclax
(ABT 199)

Bcl-2 inhibitor
Phase III

(breakthrough
therapy)

141

Navitoclax
(ABT 263)

Bcl-2 inhibitor Phase II 142

a
Simvastatin was approved as a lipid lowering medication rather than an agent for cancer therapy. The recently reported anticancer effect of 

simvastatin is correlated to Bax activation.
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