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Direct Acyclic Graph-based Ledger for Internet of
Things: Performance and Security Analysis

Yixin Li, Bin Cao∗, Mugen Peng, Long Zhang, Lei Zhang, Daquan Feng and Jihong Yu

Abstract—Direct Acyclic Graph (DAG)-based ledger and the
corresponding consensus algorithm has been identified as a
promising technology for Internet of Things (IoT). Compared
with Proof-of-Work (PoW) and Proof-of-Stake (PoS) that have
been widely used in blockchain, the consensus mechanism de-
signed on DAG structure (simply called as DAG consensus) can
overcome some shortcomings such as high resource consump-
tion, high transaction fee, low transaction throughput and long
confirmation delay. However, the theoretic analysis on the DAG
consensus is an untapped venue to be explored. To this end,
based on one of the most typical DAG consensuses, Tangle,
we investigate the impact of network load on the performance
and security of the DAG-based ledger. Considering unsteady
network load, we first propose a Markov chain model to capture
the behavior of DAG consensus process under dynamic load
conditions. The key performance metrics, i.e., cumulative weight
and confirmation delay are analysed based on the proposed
model. Then, we leverage a stochastic model to analyse the
probability of a successful double-spending attack in different
network load regimes. The results can provide an insightful
understanding of DAG consensus process, e.g., how the network
load affects the confirmation delay and the probability of a
successful attack. Meanwhile, we also demonstrate the trade-off
between security level and confirmation delay, which can act as
a guidance for practical deployment of DAG-based ledgers.

Index Terms—Blockchain, Internet of Things, Consensus Al-
gorithm, Direct Acyclic Graph, Tangle, Network load, Double-
spending.

I. INTRODUCTION

BLOCKCHAIN is a distributed ledger technology for
establishing trust and consensus in peer-to-peer (P2P)

networks. It is originally proposed in 2009 as the fundamental
technology of crypto-currency, Bitcoin [1]. The decentraliza-
tion provided by blockchain can be largely attributed to its
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consensus algorithm, which enables peer-to-peer trading in a
distributed manner and leverages the computational power of
the whole network to ensure the immutability of the stored
data. As such a safe decentralization solution, blockchain has
been identified as a most promising technology to support the
future digital society, and attracted much attention from both
industry and academia.

Recently, blockchain has shown a great potential to be
used in the Internet of Things (IoT) ecosystems, such as
smart vehicles [2], energy trading [3], supply chain [4], and
ehealth [5]. Blockchain comes with characteristics of decen-
tralization, high security, interoperation, and trust-building,
which can solve the problem of high cost of infrastructure
and maintenance in the traditional centralized IoT systems.
According to IBM report [6], to be safe, scalable and efficient,
the centralized IoT cloud systems will be transformed to
blockchain-enabled decentralized systems by 2025.

It is well-known that consensus algorithm plays a key role
to establish a blockchain-enabled IoT system, which motivates
the nodes in the network to efficiently and securely insert the
new block into the chain [7]. Considering the IoT systems
are typically resource-limited and large-scale, the consensus
algorithm adopted in IoT systems must be resource efficiency,
low cost and can support high transaction throughput. To
this end, we first review the main ideas of two widely used
consensus algorithms in blockchain and discuss their viability
for IoT systems.

Proof-of-Work (PoW) [8]: The core idea of PoW is the
competition of computational power. The miners constantly
perform hash operations to compete for the right to generate
the new block with a bonus. The winner is the first miner who
obtains a hash value that is lower than the announced target.
On the one hand, the computational complexity in PoW must
be high enough for preventing forking. But on the other hand,
the high computational complexity will cause high energy
consumption to generate a new block.

Proof-of-Stake (PoS) [9]: Unlike PoW that relies on com-
puting capability, coin age is used in PoS to avoid the high
computational cost of hash operations. The coin age of an
unspent asset is defined as its value multiplied by the time
period after it was created. In PoS, a higher coin age will
result in a higher probability to obtain the right of creating
a new block, and in turn the coin age would be consumed
(reset as zero) when the winner receives a bonus. Since the
probability to win is directly determined by coin age, PoS is
beneficial to the wealthy miner, and might cause monopoly,
which may result in the generation of powerful third party.

Both PoW and PoS work on a “single chain” structure,
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Fig. 1: Consensus process of a new transaction

where forking is illegal [8]. To reduce the probability of
forking and maintain a single version of blockchain ledger
among all nodes in the network, the consensus algorithm must
slow down the generation rate of new blocks. This design
principle causes the following two bottlenecks: (i) Throughput
limitation: since the capacity of the blocks is limited, the
transaction throughput is usually limited to dozens, e.g., 7
TPS in Bitcoin [1] and 20 to 30 TPS in Ethereum [10],
which is unable to respond to the exponential growth of IoT
nodes and needs. (ii) Confirmation delay: low block generation
rate results in long confirmation delay, e.g., 60 minutes in
Bitcoin and 3 minutes in Ethereum. Besides this, to maintain
the security of the single chain structure, one block needs to
contain high computational power or coinage. This causes the
other two bottlenecks for IoT systems: (iii) Fairness: only the
nodes with high computational power or coinage have the right
to generate new block. This feature cannot meet the needs of
IoT systems, where the computational power of IoT nodes
is usually very limited, and it is costly to provide enough
token for each node. (iv) High Transaction fee: unfairness
leads to professional and powerful miners. It is a heavy burden
to feedback the miners in the IoT systems with frequent
micropayments.

To overcome the above shortcomings of PoW and PoS,
DAG consensus is originally proposed in [11] and allows any
node to insert a new block into the ledger immediately, as long
as they process the earlier transactions. In this way, many fork-
ings would be generated simultaneously. This phenomenon
is regarded as a problem in many traditional consensus pro-
cess since it would cause “double-spending” [12]. However,
DAG consensuses use some effective algorithms (e.g., Markov
Chain Monte Carlo algorithm [13] and virtual voting algorithm
[15]) to address double-spending problem and allow new
arrival transactions access the ledger in a forking topology.
As a result, the transaction throughput in DAG consensus
process will not be limited anymore [16]. Moreover, unlike
the single chain design in PoW or PoS, the data stored in
DAG-based ledgers is protected by massive forking blocks,
thus, the average resource consumption on each node can be
very low. Accordingly, the professional miner is not necessary
and low or no transaction fee is possible, which is critical to
IoT ecosystems.

Despite many advantages for IoT, DAG consensus also faces
some challenges. In practical IoT systems, it is impossible that
new transactions arrive quickly and steadily all the time. When

the transaction arrival rate becomes low, the confirmation
delay will increase significantly since the earlier transactions
must wait for the new transactions to process. In [13], the
growth curves of cumulative weight in high load and low load
regimes are analysed, which are shown in Fig. 1, where λ
represents the transaction arrival rate (transactions per second).
The cumulative weight of a transaction is proportional to
the amount of computational power accumulating behind it.
When the cumulative weight reaches the defined threshold,
the transaction is confirmed and the probability of malicious
modification is very low. We can see that the growth rate
of cumulative weight in the low load regime is much lower
than that in the high load regime, which will result in a long
confirmation delay. In fact, the network load is determined by
transaction arrival rate which could be fluctuant in practical
IoT systems. In such an unsteady load regime, the perfor-
mance of DAG consensus process becomes more complicated.
Moreover, the network load will also affect the security of
system, where a lower load will result in a lower cumulative
weight growth rate, and thus lead to a higher probability of a
successful double-spending attack.

Inspired by these observations, this paper aims to investigate
the impact of network load on the performance and security of
DAG consensus in an analytical manner. First, we introduce
a Markov chain model to capture the impact of network load
on the performance of DAG consensus process in terms of
cumulative weight growth rate and confirmation delay. Then,
we formulate attack strategies and leverage a stochastic model
to examine the probability of a successful double-spending
attack in different network load regimes. The analytical models
and results can provide an insightful understanding of the
performance and security in the DAG consensus. The main
contributions of this paper can be summarized as follows.

• We point out the impact of network load on the perfor-
mance and security of DAG consensus. By classifying
four network load regimes, we reflect this impact in a
qualitative and quantitative manner.

• Considering the characteristics of fluctuant network load
in practical IoT systems, we propose Markov chain model
for DAG consensus process and capture the impact of
the change in load mathematically. The proposed model
demonstrates the relationship between the action of nodes
in DAG network and the corresponding influence to sys-
tem performance, which offers an insightful observation
of DAG consensus process.

• We examine the attack strategy based on network load
using a stochastic model, and derive the expression of
the probability to conduct a successful double-spending
attack. The equations can indicate the required computa-
tional power of attacker for double-spending in different
load regimes. This analysis clearly explains the malicious
action of attacker, and thus serves as a theoretical guid-
ance to protect the honest transactions.

• Through extensive experiments, we validate our analy-
sis and obtain insightful results: (i) compared with the
steady high load regime, when the network load changes
from high to low, the confirmation delay will increase
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Fig. 2: An example of consensus process in Tangle

significantly (in worst case, it is even much longer than
low load regime). In contrast, when the load changes
from low to high, the confirmation can happen very fast.
(ii) the adaptation period (introduced in section IV) in
consensus process can be used to increase the probability
of a successful attack. (iii) the trade-off between security
level and confirmation delay can provide a guideline to
find a suitable confirmation threshold for protocol design
of DAG consensus.

The rest of this paper is organized as follows. Section
II provides some basic principles in the DAG-based ledger.
In Section III, we introduce the Markov chain model for
consensus process. Based on the proposed model, Section
IV analyses the performance in terms of cumulative weight
growth and confirmation delay under different network load
regimes. Section V introduces the double-spending attack in
the DAG-based ledger, and use a stochastic model to study
the attack process. In Section VI, we examine the attack
strategy in DAG consensus process and obtain the probability
of a successful attack under different network load regimes.
Section VII conducts some experiments for comparisons and
discussions. Section VIII reviews some related work, and
finally, Section IX concludes the whole paper.

II. PRELIMINARIES

A. The Basic Principles
The principle of DAG consensus is to attach the new

transactions in a forking topology. Under such design, there are
several proposed consensus algorithms, such as Tangle [13],
Byteball [14] and Hashgraph [15]. Among them, Tangle is
the first proposed one that has attracted much attention in IoT
field, and it has the highest market capitalization in DAG-based
ledgers [17]. Therefore, we adopt it as a typical example to
examine DAG consensus process in this work.

Tangle is the mathematical foundation of IOTA, a cryp-
tocurrency for the IoT industry [13]. As a DAG-based ledger
for recording transactions, Tangle allows different branches to
eventually merge into the chain, and thus leads to a much
higher overall throughput compared with PoW and PoS. To
access the DAG-based ledger as a new block, any new transac-
tion has to approve a number of earlier transactions (typically
two [13]). Thanks to this, the higher transaction arrival rate,
the faster a transaction can be confirmed. Moreover, since
the workload to create a new block is light, the powerful
professional miners are not necessary in this network. As a
result, all nodes can issue their own transactions without a
transaction fee. This is critical to the IoT applications, since
micro-payments are typical trading scenarios. Some basic
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Fig. 3: Longest chain in PoW vs. Heaviest DAG in Tangle

concepts in Tangle are listed as follows, and also illustrated
in Fig. 2.

Block: all the blocks in Fig. 2 are the storage units to record
information including transaction, digital signature, and hash
value. Since one block records one transaction in Tangle, a
block can be simply called as a transaction. Tip: it is the
transaction (or block) that has not been approved yet. Direct
approval and indirect approval: as shown in Fig. 2, each
edge represents an approval, a direct edge indicates the direct
approval, and a path between two transactions with multi-hop
indicates the indirect approval. Own weight: the own weight
of a transaction is proportional to the amount of work which
is put in by its issuer. Cumulative weight: it is the sum of a
transaction’s own weight and the overall own weights of the
transactions that directly or indirectly approve it. Cumulative
weight stands for the confirmation level of a transaction in the
DAG-based ledger.

B. Consensus Process
To issue a new transaction and let the other nodes accept

it (i.e., reach an agreement for the consensus), the main
procedures are listed as follows. (i) A node creates a storage
unit to store the new transaction. (ii) The node selects two
tips with no-conflict according to Markov Chain Monte Carlo
(MCMC) tips selection algorithm [13], and adds the hash of
the selected tips into its storage unit. (iii) The node finds a
nonce to solve a cryptographic puzzle to meet the difficulty
target, which is similar to PoW but with a very low difficulty-
of-work for avoiding spamming. (iv) The node uses its private
key to sign the new transaction and broadcasts it to others. (v)
When the other nodes receive it, they check whether it is legal
or not based on the digital signature and nonce. For simplicity
of later analysis, we define procedures (i) to (v) as the reveal
stage of a new transaction.

After that, the successfully checked new transaction will be
added as a new tip in the DAG-based ledger, and then wait
for confirmation through direct approval and indirect approval
of subsequent transactions till its cumulative weight reaches
the defined threshold. This process is defined as the weight
accumulation stage of a new transaction.
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C. Forking Problem and the Solution
In a distributed ledger, building forking to redo the work is

the only way to tamper with the stored data. Based on this,
the main idea of the double-spending attack is to place two
conflicting transactions at two chains in parallel. After the first
transaction is spent on service, the attacker extends the chain
containing the conflicting transaction and lets it outpace the
first chain. When this action succeeds, the first transaction will
be orphaned and the attacker can spend the token more than
once.

To address forking for security, the single chain-based
ledger (e.g., Bitcoin) uses the longest chain as the criterion,
which is shown in Fig. 3. To maximize its profit, a rational
miner should work on the longest chain when forking occurs,
since the longest chain has the lowest probability to be or-
phaned [8]. In the DAG-based ledger, although DAG topology
can support a high performance in consensus process, the
forking in DAG also should be limited to a reasonable scale for
preventing double-spending. Similar to Bitcoin, IOTA uses the
heaviest DAG to address forking problem (sub-DAG). To this
end, a rational node in DAG network should use the MCMC
tip selection algorithm to extend the heaviest DAG, which has
the highest overall cumulative weight. Meanwhile, the sub-
DAG with less overall cumulative weight will not be approved
by new transactions gradually. In summary, both the honest
miners in Bitcoin and the honest nodes in IOTA use their own
computational power to prevent data from tampering.

III. MARKOV CHAIN MODEL FOR CONSENSUS PROCESS

In this section, we propose a Markov chain model to
analyse the consensus process of an observed transaction under
unsteady network load regimes.

A. System Model
Recalling that we have divided the consensus process of an

observed transaction in a DAG-based ledger into two stages:
reveal stage and weight accumulation stage. Reveal stage is to
attach the observed transaction into the DAG-based ledger, so
that the transaction can be seen by all nodes. Let the average
duration time in reveal stage be hr, which is determined by the
computation and transmission time. In weight accumulation
stage, the cumulative weight of the observed transaction in-
creases from its own weight to confirmation threshold (denoted
by m) gradually. Without loss of generality, we normalize
the average own weight of each transaction into 1, and thus
the cumulative weight of the observed transaction is 1 plus
the overall number of transactions that directly or indirectly
approve it.

Considering the nodes of a DAG-based ledger are roughly
independently distributed in a large scale IoT network, it is
reasonable to assume the new transaction arrival follows Pois-
son process. Let λ be the arrival rate of the new transactions
issued by the honest nodes. When a new transaction arrives,

it will select two tips using MCMC algorithm. The principle
of MCMC algorithm is to independently place some particles
on the old transactions of the DAG-based ledger and let these
particles perform random walks towards the tips. To orphan the
sub-DAG, these particles prefer to go through the transactions
with a higher cumulative weight. Since the difference of
cumulative weight among neighbouring transactions in the
heaviest DAG is very small, we can approximatively consider
that each tip in the heaviest DAG can be randomly selected by
MCMC algorithm with equal probability. On the other hand,
the overall cumulative weight of the heaviest DAG is much
larger than that of the sub-DAG, so that MCMC algorithm will
choose tips in the heaviest DAG and the sub-DAG generated
by attacker will be orphaned.

Moreover, to analyse the impact of network load, we classi-
fy the network load into four regimes: High load Regime (HR),
Low load Regime (LR), High to Low load Regime (H2LR)
and Low to High load Regime (L2HR) as follows.

B. Steady Regime: HR

The network load (transaction arrival rate) keeps steady in
this regime. Let h = 1/λ be the average interarrival time
between two transactions. When h ≤ hr, it means that the
network load is high, and it is defined as HR. In the DAG-
based ledger, after a new transaction directly approves two tips,
it will be a new tip and the selected two will be covered (they
are no longer tips and the other incoming transactions should
not directly approve them). However, when h ≤ hr, many
new transactions would arrive at the reveal stage of earlier
transactions, and the tips selected by earlier transactions have
not been broadcast to the network. As a result, it is probable
that the same tip will be directly approved by several different
transactions, and thus the number of tips will keep steady,
intuitively.

Let L(t) be the number of tips in the heaviest DAG at time
t. According to the analysis in [13], L(t) fluctuates around
a constant value L. Based on the stability of tips, we have
L(t)=L(t−hr)=L. Meanwhile, we know that there are λhr

new transactions arrive during t−hr to t on average. As a
result, at time t, λhr new tips in L(t) will replace λhr old
tips in L(t−hr). Therefore, we can rewrite L(t) = r+λhr,
where r represents the old tips, and λhr represents the tips
chosen by the new transactions during t−hr to t (they are not
tips anymore, but other nodes do not know at this time).

Moreover, when a new transaction arrives at time t, it
would select tips randomly from L(t). Since λhr are not tips
anymore, tips selection from λhr or r will affect the number
of L(t) in the future. If the new transaction selects zero tip
in r, L(t) will increase by 1; if it selects one tip in r, L(t)
will remain unchanged; otherwise, L(t) will decrease by 1.
The expected number of selected tips in r can be calculated
in (1). Based on the stability of L(t), we have 2r

r+λhr
= 1.

Thus, r= λhr and L=L(t)=2λhr.
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C. Steady Regime: LR
Compared with HR, LR is the situation when h>hr. In this

case, when a new transaction arrives, the earlier transactions
have revealed to the DAG-based leger in expectation. Since
one transaction covers two tips, the typical number of tips
in this regime will decline, and becomes 1 finally. Note that
L=2λhr is also available in LR, where L=2λhr ≈ 1 based
on h>hr.

D. Unsteady Regime: H2LR
The consensus process of an observed transaction in HR and

LR have been explored in [13]. In this work, we focus on the
consensus process in unsteady regimes. The transaction arrival
rate is steady in HR and LR, which can be denoted by λh

and λl, respectively. When the transaction arrival rate changes
from λh to λl suddenly, it is an unsteady regime and defined
as H2LR. Accordingly, the number of tips will decrease from
2λhhr (denoted by Lh) to 2λlhr=1 gradually.

As a metric of confirmation level, let W (t) be a stochastic
process representing the cumulative weight of an observed
transaction at time t. It will increase with the approval of
new transactions over time. Meanwhile, the probability to
approve the observed transaction is affected by the number
of tips L(t) based on random selection, and L(t) is also
a stochastic process. Therefore, when the transaction arrival
rate becomes low, we can have the value of {W (t), L(t)}
at the next moment only depends on the present and is
independent of the past. Furthermore, when the transaction
arrival rate is low, we can approximatively consider that the
transactions attach to the DAG-based ledger one by one.
Therefore, {W (t), L(t)} can be formulated as a discrete-time
Markov chain {W (k), L(k)}, k=0, 1, 2, ...∞, where the state
changes with the arrival of each new transaction.

The Markov chain model for an observed transaction under
H2LR is shown in Fig. 4. The initial state represents that the
observed transaction reveals to the DAG-based ledger under
HR, where W (0) = 1, L(0) = Lh = 2λhhr. The observed
transaction is confirmed when W (k) =m, where m ≥ 2. In
each new transaction arrival interval, W (k) of the observed
transaction will remain the same or increase by 1 based on
the result of random selection. Since the new transaction will
choose two tips from L(k) randomly, the probability to select
the observed transaction for W (k+1) =W (k)+1 is 1

L(k) ×

...1 2 m ...

� � � �

Fig. 5: Markov Chain model for the consensus process of an observed
transaction under L2HR.

L(k)−1
L(k)−1+

L(k)−1
L(k) × 1

L(k)−1 =
2

L(k) . Accordingly, the probability
of not being selected for W (k+1)=W (k) is L(k)−2

L(k) . When
the new transaction approves two tips, it will be a new tip
and the selected two are not tips anymore. In this case, L(k)
will decrease by 1 in each arrival interval until L(k) = 1.
Especially, when L(k) reduces to 2, the observed transaction
will be approved by the incoming transaction with probability
1, and thus W (k) will increase by 1 and L(k) will decrease
by 1. In the following, L(k) remains 1 and W (k) increases
linearly with speed λl. Based on above analysis, the one-step
transition probabilities can be given by
⎧
⎪⎨

⎪⎩

P {i+1, j−1 | i, j}=2/j, i=1, 2, · · · , Lh−1; j=2, 3, · · · , Lh,

P {i, j−1 | i, j}=1−2/j, i=1, 2, · · · , Lh−1; j=2, 3, · · · , Lh,

P {i+1, 1 | i, j}=1, i=2, 3, · · · ,∞; j=1.
(2)

We adopt the short notation, where P {i+1, j−1 | i, j} =

P {W (k+1)= i+1, L(k+1)=j−1 | W (k)= i, L(k)=j}.
The first equation in (2) stands for the situation that the

observed transaction has been approved by an incoming new
transaction, thus W (k+1)=W (k)+1 and L(k+1)=L(k)−1.
The second equation stands for the situation that the observed
transaction has not been approved, so W (k+ 1) = W (k)
and L(k+1) = L(k)−1. The third indicates that H2LR has
transferred to LR. The observed transaction will be approved
by the following new transactions with probability 1, since it
has been indirectly approved by all tips.

Note that the above discussion is based on the worst
case to study the lower performance bound in H2LR, where
transaction arrival rate changes from λh to λl as soon as the
observed transaction reveals in the network and W (0)=1. In
contrast, the best case for upper performance bound in this
regime is that transaction arrival rate changes from λh to λl

when W (k) =m, which is similar to the consensus process
under HR. As an extending, the transaction arrival rate can
change from high to low at the any state of the observed
transaction by integrating the analysis of HR in [13] and the
proposed Markov chain model in H2LR.

E. Unsteady Regime: L2HR
Compared with H2LR, L2HR happens when the arrival rate

increases from λl to λh. Accordingly, the number of tips
increases from 1 to 2λhhr gradually.

The Markov chain model for an observed transaction under
L2HR is illustrated in Fig. 5. Since the observed transaction
reveals under LR where L(0)=1, it is fully covered and will
be directly or indirectly approved by all the new transactions.
As a result, W (k) will increase linearly with speed λh

regardless of L(k). The transition probabilities under L2HR
are shown as follows.

P {W (k+1)= i+1 | W (k)= i}=1, (3)

where i=1, 2, ...∞.
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Similarly, we use this model to capture the best case to
study the upper performance bound in L2HR where transaction
arrival rate changes from λl to λh when W (0)=1. In contrast,
the worst case for lower performance bound in L2HR is that
transaction arrival rate changes from λl to λh when W (k)=m,
which can refer to the consensus process under LR.

Note that the unsteady regimes defined in this work refer
to abrupt changes of load to provide upper and lower per-
formance bounds. For the slow-changing load case, we can
approximately predict its impact on performance by using
the derived performance bounds. However, the closed-form
expression for the slow-changing load case is not analytically
derived in this work.

IV. PERFORMANCE ANALYSIS

A. Cumulative Weight

HR: The growth of cumulative weight under steady
regimes, HR and LR, has been discussed in previous work
[13]. We briefly review this work as the preliminaries to
provide further analysis of confirmation delay and double-
spending. The cumulative weight of an observed transaction
begins to grow when the reveal stage ends. In HR, the weight
accumulation stage has two periods: adaptation period and
linear growth period. The adaptation period of an observed
transaction can be thought as the time until almost all the tips
indirectly approve that transaction. The expected cumulative
weight of an observed transaction grows with E[W (t)] =
2 exp(0.352t/hr) during adaptation period [13]. Next, when
the adaptation period ends, all incoming transactions will
indirectly approve the observed transaction, and the expected
cumulative weight grows with speed λh, which is called as
linear growth period. Let t0 be the duration time of adaptation
period. The adaptation period ends when cumulative growth
rate becomes λh, namely dE[W (t)]

dt |t=t0 = λh. Accordingly,
we can obtain t0 =

hr
0.352×ln(Lh/1.408) and W (t0) =

Lh
0.704 .

Hence, the cumulative weight growth of an observed transac-
tion in this regime is

E[W (t)hr]=

{
2 exp(0.352t/hr), 0≤ t≤ t0,
Lh

0.704+λh(t−t0), t>t0.
(4)

LR: Since L(0)=1 in LR, the incoming new transactions
will approve the observed transaction with probability 1.
Consequently, the average cumulative weight growth rate is
λl in this regime. The expected cumulative weight in LR at
time t can be expressed as

E[W (t)lr]=1+λlt, t≥0. (5)

H2LR: As shown in Fig. 4, when 0 ≤ k ≤ Lh−1, each
column of the state transition diagram stands for all possible
states {W (k), L(k)} at a specific step k. For example, when
k=0, the possible state is {1, Lh}; when k=1, the possible
states are {1, Lh−1} and {2, Lh−1}; when k =Lh−1, the
possible states are {2, 1}, {3, 1}, ..., {Lh, 1}. In the case of
k ≥ Lh, the number of possible states will remain Lh−1.
For example, if the step moves from Lh − 1 to Lh, the
cumulative weight of all possible states will increase by 1
simultaneously, i.e., change from {2, 1}, {3, 1}, ..., {Lh, 1} to

{3, 1}, {4, 1}, ..., {Lh+1, 1}. The reason is that the observed
transaction has been indirectly approved by all tips when
k ≥Lh.

Based on this, we could obtain the expected cumulative
weight at step k in H2LR as

E[W (k)h2lr] =
∑

∀i

∑

∀j

P{W (k) = i, L(k) = j |

W (0) = 1, L(0) = Lh}× i,

(6)

where k = 0, 1, · · · ,∞, and P{W (k) = i, L(k) = j |
W (0)=1, L(0)=Lh} is the k-step transition probability
which can be calculated from (2). If and only if {i, j} is a
possible state at step k, the corresponding k-step transition
probability is greater than 0.

As mentioned before, the new transaction arrival is a
Poisson process. Let {Hi, i = 1, 2, ...∞} be the sequence of
interarrival times between two neighboring transactions, where
Hi, i= 1, 2, ...∞, are independent and identically distributed
exponential random variables with mean 1/λl under H2LR.

According to t =
k∑

i=1
Hi, (6) can be transformed as the

expected cumulative weight at time t as follows.

E[W (t)h2lr] =
∑

∀i

∑

∀j

P{W (t) = i, L(t) = j |

W (0) = 1, L(0) = Lh}× i,

(7)

where t=0, H1, H1+H2, H1+H2+H3, · · · ,∞.
L2HR: In this regime, due to L(0)= 1, all new incoming

transactions will direct and indirectly approve the observed
transaction. As a result, W (k) increases by 1 with probability
1 in each transaction arrival interval. The expected cumulative
weight with k in L2HR is

E[W (k)l2hr]=1+k, k=0, 1, 2, · · · ,∞. (8)

The expected cumulative weight in L2HR at time t can be
expressed as

E[W (t)l2hr]=1+k, t=
k∑

i=1

Hi, (9)

where t=0, H1, H1+H2, · · · ,∞.

B. Confirmation Delay

Confirmation delay is defined as the time from W (0) = 1
to W (t)=m.

HR: Let E[Thr] be the expected confirmation delay in
HR. Based on (4), if confirmation threshold m ≤ [W (t0)],
the observed transaction will be confirmed during adaptation
period. Accordingly, we have m = 2 exp(0.352E[Thr]/hr).
Otherwise, the confirmation will happen during linear growth
period, where m= Lh

0.704+λh(E[Thr]−t0). We can obtain that

E[Thr] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

hr

0.325
ln(m/2)

︸ ︷︷ ︸
Confirmed in adaptation

, 2≤m≤ [W (t0)],

hr

0.325
ln(Lh/1.408)

︸ ︷︷ ︸
Time for adaptation

+
1
λh

(m− Lh

0.704
)

︸ ︷︷ ︸
Time for liner growth

,m> [W (t0)].

(11)
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E[Th2lr] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Case I :

Lh−2∑
k=m−1

P{W (k−1)=m−1, L(k−1)=Lh−k+1 |W (0)=1, L(0)=Lh }× 2
Lh−k+1×khl

+
m+Lh−3∑
k=Lh−1

P{W (k)=m,L(k)=1 |W (0)=1, L(0)=Lh }×khl, 2≤m<Lh,

Case II :
m+Lh−3∑
k=m−1

P{W (k)=m,L(k)=1 |W (0)=1, L(0)=Lh }×khl, m≥Lh.

(10)

1,5 1,4 1, 2

2,4 2,2 2,1

3,1

5,1

4,2

...

Valid paths to get confirmed 

Repeated confirmation path

1,3

2,3

3,3 3,2

4,1
Confirmation state when m=3

Fig. 6: Simplified Markov Chain model in H2LR; Lh = 5 and m = 3

LR: Let E[Tlr] be the expected confirmation delay in this
regime. Based on the cumulative weight growth of LR in (5),
we can obtain that

E[Tlr]=(m−1)hl, m≥2, (12)

where hl=1/λl.
H2LR: As shown in Fig. 4, there are various paths from

the initial state {1, Lh} to the confirmation state {m,L(k)}.
Among them, the green path with short dashed is the shortest
one, where the transaction will be approved by m−1 new
incoming transactions with the smallest expected confirma-
tion delay. In contrast, the red path with long dashed is
the longest confirmation path that goes through m+Lh−3
new transactions. Let E[Th2lr] be the expected confirmation
delay in H2LR, which can be expressed as (10). Note that

2
Lh−k+1 is the probability P{W (k) = m,L(k) = Lh −
k|W (k−1)=m−1, L(k−1)=Lh−k+1}. As shown in Fig.
6, in the case of 2≤m<Lh, the consensus process cannot
go through the repeated confirmation path according to the
definition of confirmation delay. Hence, the first line in (10)
is to ensure that the observed transaction reaches confirmation
though the valid paths in Fig. 6. In the case of m ≥ Lh,
{W (k) = m,L(k) = 1} is the only state for confirmation.

L2HR: In this regime, the cumulative weight of an observed
transaction increases by 1 with probability 1 in each transac-
tion arrival interval. The expected confirmation delay E[Tl2hr]
in L2HR can be expressed as follows.

E[Tl2hr]=E
m−1∑

i=1

Hi=(m−1)hh, m≥2, (13)

where hh=1/λh.

V. DOUBLE-SPENDING ATTACK MODEL

In this section, we first introduce the most typical double-
spending attack in a DAG-based ledger. Then, we use a

H
H

H

H

H

H

H
H

H

H

P

H
A

H

H

H H
H

H H

H

H

H

H H

H
H

A

A

A

C

A

A A

A

AttackHonest PaymentH A P

C Conflict with payment
Honest chain

Parasite chain

0 T1 T2 tTd

Fig. 7: Parasite chain for double-spending attack

stochastic model to examine the probability of a successful
double-spending attack.

A. Attack Descriptions and Assumptions
In preliminaries, we mentioned that a DAG-based ledger

uses the cumulative computational power of honest nodes to
prevent data from tampering, and meanwhile, the cumulative
computational power is proportional to cumulative weight.
When the transaction arrival rate is low, the cumulative weight
growth rate will decrease, and it would be easy for an attacker
to outweigh the cumulative weight of the branch maintained
by the honest nodes for double-spending. Moreover, as we
analysed before, the consensus process is affected by network
load. Therefore, a rational attacker would optimise its strategy
by considering network load to increase the success probabil-
ity.

To systematically analyse this problem, we introduce the
most typical double-spending attack in the DAG-based ledger,
the parasite chain attack, which is shown in Fig. 7.

1) Let T1 be the time when the attacker sends a payment
to a merchant and the honest nodes begin to approve it.

2) Let T2 be the time when the attacker builds an offline
branch (called as parasite chain) and no honest node
knows that. The parasite chain contains a transaction
that conflicts with the payment. Note that this could be
acted before T1. In other words, T1 < T2 or T1 ≥ T2

are both allowed (we will analyse these two cases later).
3) The attacker continually uses its computational power

to perform hash operations, and issues new transactions
to extend the parasite chain for increasing its overall
cumulative weight.

4) Let Td be the time when the payment for merchant
reaches confirmation threshold m, so the merchant sends
goods to the attacker.

5) As long as the cumulative weight of the parasite chain
outweighs the honest chain after Td, the attacker will
broadcast the parasite chain to the whole network. The
honest nodes will select the parasite chain gradually
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based on MCMC algorithm. The payment for merchant
will be orphaned finally, but the goods (e.g., a piece of
useful message) have already been sent to the attacker,
so the double-spending attack is successful.

Next, we present the assumptions for double-spending anal-
ysis. Assume that the process of incoming new transactions
issued by honest nodes follows a Poisson process with λ.
Assume that the time of an attacker to perform hash operations
to meet the targets1 is exponentially distributed having mean
1/µ [8].

Proof: according to the widely used Keccak-384 hash algo-
rithm [18], all results of this hash algorithm are in (0, 2384].
As a result, the probability to meet the target is

the number of targets

2384 − 1− hashrate× time
. (14)

Considering the current hashrate of mining pool is 45EH/s
in Mar. 2019 [19], the practical progress of hash operations
(hashrate × time) is still much less than 2384. Meanwhile,
since the hashrate of honest nodes and attackers in DAG
network are much less than mining pool usually, the impact
of hash operations progress on the probability to meet the
target is negligible. This means the hash operations process in
distributed ledgers can be treated as memoryless.

B. Probability of A Successful Attack

Based on the previous assumption of the own weight of
each transaction is 1, the attack would be successful when the
number of transactions issued by the attacker are more than
that by honest nodes after Td.

We can divide the competition process between the attacker
and honest nodes into multiple rounds. Each round depicts
the overall number of issued transactions increasing by 1.
Suppose the attacker creates a parasite chain by extending tips
at T2. The competition begins and the overall number of issued
transactions at two branches is 0 at this moment.

Let {Hi, i=1, 2, ...∞} denote the sequence of interarrival
times between two neighbouring transactions, where Hi, i=
1, 2, ...∞, are independent identically distributed exponential
random variables with mean 1/λ. Let {Aj , j=1, 2, ...∞} be
the sequence of interarrival times of transactions issued by the
attacker, where Aj , j=1, 2, ...∞, are independent identically
distributed exponential random variables with mean 1/µ.

In the first round, according to [20], we can obtain the
probability that one exponential random variable is smaller
than another as follows.
P{the transaction in round 1 is issued by honest nodes}

=P{H1<A1}=
λ

λ+µ
,

(15)

P{the transaction in round 1 is issued by the attacker}

=1− λ
λ+µ

=
µ

λ+µ
.

(16)

1The targets are the hash value which begin with a specified number of
zero bits announced by system.

In the second round, if the first transaction is issued by
honest nodes, we have
P{the transaction in round 2 is issued by honest nodes}
=P{H2<A1−H1 |H1<A1 }=P{A1>H2+H1 |A1>H1}

=P{A1>H2}=
λ

λ+µ
.

(17)

Alternatively, if the first transaction is issued by the attacker,
we have
P{the transaction in round 2 is issued by honest nodes}
=1−P{H1−A1>A2 |H1>A1 }=1−P{H1>A1+A2 |H1>A1}

=1−P{H1>A2}=
λ

λ+µ
.

(18)

Generally, in any round, we have

P{the new transaction is issued by honest nodes}

=P{Hi<Aj}=
λ

λ+µ
,

(19)

P{the new transaction is issued by the attacker}= µ
λ+µ

.

(20)
Let the probability in (19) be p and that in (20) be q, the

attack process can be treated as independent Bernoulli trials.
Accordingly, we analyse the attack process before Td. In this

process, the attacker cannot broadcast its parasite chain even if
it outweighs the honest chain at some point, since the merchant
has not sent goods yet. Let α be the number of transactions
issued by honest nodes from T2 to Td, and N be the possible
number of transactions issued by the attacker when the honest
nodes have issued α transactions. Based on negative binomial
distribution theory [12], the probability mass function of N
can be given as

P{N=n}=
(
n+α−1

α−1

)
pαqn, α≥ 1. (21)

If N > α, the parasite chain attack will succeed at Td.
Otherwise, in order to win, the attacker should catch up
the difference of issued transactions until the parasite chain
outweighs the honest chain after Td. This event is analogous
to a Gambler’s Ruin problem [12], the attacker should catch
up the difference of α−N+1 transactions at least, and the
corresponding probability to catch up is shown as follows,

Pc(α−N+1)=

{
(q/p)α−N+1, p>q and α≥ 1,
1, p≤q.

(22)

In summary, the probability of a successful double-spending
attack when α≥ 1 is
P{attack succeeds}=P{N>α}+P{N ≤ α}Pc(α−N+1)

=
∞∑

n=α+1

(
n+α−1
α−1

)
pαqn+

α∑

n=0

(
n+α−1
α−1

)
pαqn(min(q/p, 1))α−n+1

=

⎧
⎪⎨

⎪⎩
1−

α∑
n=0

(
n+α−1
α−1

)
(pαqn−pn−1qα+1), p>q and α≥ 1,

1, p≤q.
(23)

Especially, when α=0, the attacker should build the parasite
chain as soon as the honest payment is confirmed, and in this
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Fig. 8: Successful attack probability vs. β
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Fig. 9: Successful attack probability vs. α
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Fig. 10: The influence of T1 and T2 on α

case we can have T2=Td. As a result, the competition before
Td disappears. However, in order to outweigh honest chain, the
attacker also should outpace honest nodes by 1 transaction at
least after Td. The probability of a successful attack in the
case of α = 0 is

P{attack succeeds}=Pc(1)=

{
q/p, p>q and α=0,
1, p≤q. (24)

By integrating (23) and (24), the probability of a successful
double-spending attack is

P{attack succeeds}

=

⎧
⎪⎪⎨

⎪⎪⎩

q/p, p>q and α=0,

1−
α∑

n=0

(
n+α−1
α−1

)
(pαqn−pn−1qα+1), p>q and α≥ 1,

1, p≤q,
(25)

where p=λ/(λ+µ), q=µ/(λ+µ).
In this work, we use λ and µ representing the transaction

arrival rate of honest nodes and the attacker to conduct the
double-spending analysis. To extend this attack model to other
consensus algorithm such as PoS, we only need to change is
the way to generate λ and µ, e.g., using balance (stake in PoS)
to replace computational power.

VI. SECURITY ANALYSIS

In this section, we analyse the strategy to increase the prob-
ability of a successful parasite chain attack on the perspective
of the attacker. Based on (25), the probability of a successful
attack is identically equal to 1 when p≤q (i.e., λ≤µ). So we
only analyse the situation when p>q.

A. Attack Strategy
1) How to attach the parasite chain into DAG: If the

attacker builds a parasite chain on earlier transactions that
have been approved by some other transactions at T2, it needs
to catch up the difference between the honest chain and its
own from the start, which is generated by the number of
transactions from the selected earlier transactions to tips. Let
the difference be β, at Td, the attacker should issue α+β+1
at least to succeed. Otherwise, after Td, the attacker should
catch up the difference of α +β−N +1 transactions. The
corresponding probability is

Pc(α+β−N+1)=(q/p)α+β−N+1, p>q and α≥1. (26)

Especially, when α = 0, the attacker should catch up
the difference of β + 1 transactions at least after Td. The
probability of a successful attack for α=0 is Pc( β+1).

In summary, when the attacker builds a parasite chain on
earlier transactions, the probability of a successful attack is

P{attack succeeds with the difference β}

=

{
Pc( β+1), α=0
P{N>α+β}+P{N≤α+β}Pc(α+β−N+1), α≥1

=

⎧
⎪⎨

⎪⎩

(q/p)β+1, p>q and α=0,

1−
α+β∑
n=0

(
n+α−1
α−1

)
(pαqn−pn−β−1qα+β+1), p>q and α≥1.

(27)

To capture the impact of β, we use (27) to conduct a case
study and let α=1. The results in Fig. 8 clearly illustrate that
the probability of a successful attack decreases with β, which
shows the impact of β on the attack. Moreover, we can see
that β is generated when the attacker does not choose tips to
build the parasite chain. As a result, it is a natural option to
choose tips for the attacker if possible, which can increase the
probability of a successful attack with the minimum β.

2) Minimize the number of transactions of honest chain
from T2 to Td: Intuitively, when p>q, the transaction arrival
rate on the honest chain is higher than that of parasite chain,
and thus the probability of a successful attack would be
declined with the increasing of α on the honest chain from
T2 to Td. Different from the previous case that shows the
impact of β, we conduct another case study to investigate the
impact of α using (27), where β = 1.

In Fig. 9, we can see that the probability of a successful
attack declines obviously with the increasing of α. The reason
is that the larger α indicates the higher cumulative weight of
honest chain and it would be safer. As a result, the attacker
should invest much more computational power against the
larger α, otherwise, it is difficult to succeed.

Therefore, the attacker should also minimize α to optimise
its attack strategy. Moreover, we know that α is determined
by the time in attack process shown in Fig. 10, and thus the
attacker can adjust its action at the right time to minimize α as
follows. Denote the number of transactions issued by honest
nodes from T1 to Td as m0, it is a constant value for a specific
attack. As shown in Fig. 10, in order to decrease α, we can see
that the duration between T1 and T2 is the less the better when
T1≥T2. In contrast, it is the more the better when T1<T2.
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However, the attacker cannot defer T2 indefinitely for de-
creasing α. By comparing Fig. 8 (the lowest value shown is
10−6) with Fig. 9 (the lowest value shown is 10−2), we could
notice that the decline rate of probability in Fig. 8 is faster than
that in Fig. 9, which reflects the impact of β is higher than
α. Therefore, to maximize success probability, the attacker
should first follow the strategy of building the parasite chain
on tips to minimize β, then postpone T2 to the time before
the honest payment has been indirectly approved by all the
tips. Since if T2 is later than that time, the parasite chain for
double-spending will indirectly approve the honest payment,
and the attack cannot succeed.

In summary, to launch a better parasite chain attack, the
attacker should minimize α and β by choosing the tips to build
a parasite chain at the last time before the honest payment has
been indirectly approved by all tips.

B. Adopt Attack Strategy in Different Load Regimes
Next, we analyse how to determine the strategy to increase

the probability of a successful attack according to the network
load. To distinguish the impact of network load on p and q, let
ph=λh/(λh+µ), qh=µ/(λh+µ) in HR and pl=λl/(λl+µ),
ql=µ/(λl+µ) in LR, respectively.

HR: According to the physics meaning of adaptation period
in Section IV, the attacker should build the parasite chain at
the end of adaptation period, which is the best time for T2. At
this moment, the honest payment will be indirectly approved
by all tips very soon, and the expected cumulative weight of
the honest payment at T2 is W (t0)−1. Meanwhile, based on
the definition of α, we have α=max{m−[W (t0)]+1, 0}. Let

fh(x)=1−
x∑

n=0

(
n+x−1

x−1

)
(pxhq

n
h−pn−1

h qx+1
h ), we can obtain

the probability of a successful attack in HR based on (25),
which is expressed as follows.

P{attack succeeds in HR}

=

⎧
⎨

⎩

qh/ph, ph>qh and 2≤m< [W (t0)],
fh(m−[W (t0)]+1), ph>qh and m≥ [W (t0)],
1, ph≤qh.

(28)

LR: As mentioned before, the DAG-based ledger can be
treated as a single chain since L(0) = 1 in this regime.
The honest payment is indirectly approved by all tips at T1.
According to the analysis of attack strategy, we can know the
best T2 in LR is T2=T1. However, since the honest payment
is the only tip as soon as it reveals, the attacker can only attach
the parasite chain before it, and thus the best case is β = 1.
Meanwhile, since the own weight of honest payment is 1, we
can obtain that α=m−1. Based on m≥ 2, we have α≥ 1.
Using (27), the probability of a successful attack in LR is

P{attack succeeds in LR}

=

⎧
⎨

⎩
1−

m∑
n=0

(
n+m−2

m−2

)
(pm−1

l qnl −pn−2l qm+1
l ), pl>ql,

1, pl≤ql.
(29)

H2LR: In this regime, the number of tips would decrease
from L(0) = Lh = 2λhhr to L(k) = 1 finally. The honest

payment will be indirectly approved by all tips when the
number of tips becomes 2, and the attacker should build the
parasite chain at this moment. According to the Markov chain
in Fig. 4, we can obtain the possible states of the honest
payment at T2 is {W (Lh− 2) = i, L(Lh− 2) = 2}, where
i=1, 2, · · · , Lh−1. Accordingly, after T2, the honest payment
needs max{m−i, 0} approvals at least to reach confirmation
threshold m, which means α = max{m− i, 0}. Based on
(25), the probability of a successful attack in H2LR can be
expressed as

P{attack succeeds in H2LR}

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m−1∑
i=1

P{i,2}×fl(m−i)+
Lh−1∑
i=m

P{i,2}×ql/pl, pl>ql, 2≤m<Lh,

Lh−1∑
i=1

P{i,2}×fl(m−i), pl>ql,m≥Lh,

1 pl≤ql,
(30)

where fl(x) = 1−
x∑

n=0

(
n+x−1

x−1

)
(pxl q

n
l − pn−1

l qx+1
l ) and

P{i,2} = P {W (Lh−2)= i, L(Lh−2)=2 |W (0)=1, L(0)=Lh },
i=1, 2, · · · , Lh − 1.

Note that it is very difficult to capture the probability
distribution function of cumulative weight in HR due to too
many possible states of covered transactions in this regime.
Therefore, we use the expected value W (t0) to evaluate the
probability of a successful attack in HR. In contrast, since
the distribution function of cumulative weight in H2LR can
be calculated from Fig. 4, we have used it to analyse the
probability of a successful attack shown in (30), which is
different from HR.

In order to show the accuracy of the analysis using expected
value, we conduct a case study to compare the analytical
results based on expected value and distribution function in
H2LR. Compared with (30) that is based on distribution func-
tion, the probability of a successful attack based on expected
value in H2LR is
P{attack succeeds using expected value}

=

⎧
⎨

⎩

ql/pl, pl>ql and 2≤m<W0,
fl(m−W0), pl>ql and m≥W0,
1 pl≤ql,

(31)

where fl(x)=1−
x∑

n=0

(
n+x−1

x−1

)
(pxl q

n
l −pn−1

l qx+1
l ), and the

average cumulative weight of honest payment at the end of

adaptation period in H2LR is W0 =
Lh−1∑
i=1

P{i,2}× i, where

P{i,2} = P {W (Lh−2)= i, L(Lh−2)=2 |W (0)=1, L(0)=Lh },
i=1, 2, · · · , Lh − 1.

To show the accuracy of the analysis using expected value,
we use (30) and (31) to conduct a comparison, where the
initial number of tips Lh is set as 100. The result in Fig. 11
shows that using expected value to evaluate the probability of
a successful attack is feasible, and the probability evaluation
results more accurate as long as the difference between m and
W0 gets larger.

L2HR: Similar with LR, the DAG-based ledger can be also
treated as a single chain in this regime, since the honest pay-



11

10 20 30 40 50
Confirmation threshold (m)

0

0.2

0.4

0.6

0.8
P

ro
ba

bi
lit

y 
of

 a
 s

uc
ce

ss
fu

l a
tta

ck

Fig. 11: Probability of a successful attack with
expected value and distribution function

10-2 10-1 100 101 102 103

Time in log scale [second]

0

20

40

60

80

100

C
um

ul
at

iv
e 

w
ei

gh
t

Analysis H2LR
Simulation H2LR
Analysis L2HR
Simulation L2HR
Analysis HR
Simulation HR
Analysis LR
Simulation LR

Fig. 12: Cumulative weight vs. time

10-2 10-1 100 101 102

Transaction arrival rate ( ) in log scale

10-1

100

101

102

103

104

105

C
on

fir
m

at
io

n 
de

la
y 

in
  l

og
 s

ca
le

 [s
ec

on
d]

H2LR, m=50
H2LR, m=200
L2HR, m=50
L2HR, m=200
HR, m=50
HR, m=200
LR, m=50
LR, m=200

Fig. 13: Confirmation delay vs. λ

ment is indirectly approved by all tips at T1. The expression of
the probability to conduct a successful attack in this regime is
similar to (29) but with ph and qh, which is shown as follows.

P{attack succeeds in L2HR}

=

⎧
⎨

⎩
1−

m∑
n=0

(
n+m−2

m−2

)
(pm−1

h qnh−pn−2h qm+1
h ), ph>qh,

1, ph≤qh.
(32)

VII. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we numerically evaluate the performance of
DAG consensus process in terms of cumulative weight and
confirmation delay. Meanwhile, we show the probability of a
successful double-spending attack in different load regimes.

The parameter settings are listed as follows. The transaction
reveal delay is hr=1(s); the transaction arrival rate in HR is
λh=50; the transaction arrival rate in LR is λl=0.5. Based on
the analysis in Section III, the number of tips in HR and LR
can be calculated as Lh = 2λhhr = 100 and Ll = 2λlhr = 1,
respectively. To study the impact of confirmation threshold on
the consensus process, we set m=50, 100 and 200 to make
a comparison. All the numerical results are obtained using
Matlab.

A. Cumulative Weight and Confirmation Delay
In the first experiment, we calculate the cumulative weight

growth of an observed transaction based on (4), (5), (7), and
(9). To calculate the analytical results, we use the average in-
terarrival time of new transaction (1/λh or 1/λl). Meanwhile,
we use Poisson distribution to simulate the arrival process of
new transactions and obtain simulation results.

Fig. 12 shows the growth trend of cumulative weight for an
observed transaction under various load regimes. It is clear to
see that the simulation results match well with their analytical
results, which indicates the rightness and effectiveness of the
proposed model. We can see that the cumulative weights for
all load regimes increase over time, since the new transactions
arrive continuously, and select tips to indirectly approve un-
confirmed transactions. In this figure, HR and LR can act as
a contrast to reflect the impact of network load as follows.
Although the arrival rate λh in L2HR and HR are the same,
we can see that L2HR achieves m faster than HR. This is

because the initial number of tips in HR is much larger than
that in L2HR, which results in a lower probability to select
the observed transaction in HR, and thus a lower growth rate.
Meanwhile, although the arrival rates are the same (λl) in
LR and H2LR, we can see that LR outperforms H2LR. The
reason is that adaptation period that is discussed in HR also
exists in H2LR. In this period, the observed transaction has not
been indirectly approved by all the tips, and thus the growth
rate of cumulative weight in H2LR would be lower than λl

until the adaptation period ends. In contrast, the growth rate
of cumulative weight in LR is λl all the time, since without
adaptation period, all new transactions will indirectly approve
the observed transaction.

In the second experiment, using (10), (11), (12), and (13),
we vary transaction arrival rate λ to compare the confirmation
delay under different load regimes.

Fig. 13 shows the confirmation delay of an observed trans-
action under various load regimes, we can see that hr = 1
can be seemed as a boundary between low and high network
loads, where the performance of LR and H2LR are shown in
λ ∈ [0, 1], and the performance of HR and L2HR are shown
in λ∈ [1, 100]. The result demonstrates that the confirmation
delay decreases with the increasing arrival rate. Meanwhile,
for a given m, we can see the confirmation delay in H2LR is
higher than LR and the confirmation delay in HR is higher
than L2HR due to the impact of adaptation period, which
matches well with the result in Fig. 12. When m changes from
50 to 200, the confirmation delay for all regimes increases.
Meanwhile, the confirmation delay of unsteady regimes moves
close to steady regimes due to a lower ratio of adaptation
period to the whole consensus process. Moreover, we could
notice that the confirmation delay in HR does not decrease
linearly with increasing λ. This is because a higher λ can
result in a larger W (t0) = 2λhr

0.704 . Based on (11), when
m ≤ W (t0), the observed transaction would be confirmed
during adaptation period, and λ plays no role in this case.
The rationality behind this is the higher λ, the more number of
tips based on L=2λhr, and thus the probability to select the
observed transaction would decrease. So when m ≤ W (t0),
even if the new transactions arrive faster, the confirmation
delay would not decrease. Furthermore, with the increasing of
W (t0)=

2λhr
0.704 , the curve of m=50 in HR reaches the lower

bound of confirmation delay faster than that of m=200.
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Fig. 14: The probability of a successful attack in HR and L2HR

B. Probability of A Successful Attack

The following experiments are to examine the probability of
a successful attack under steady and unsteady regimes based
on network load.

In the third experiment, using (28) and (32), we examine the
probability of a successful attack in HR and L2HR by varying
transaction arrival rate of the attacker µ. Considering the
confirmation threshold m would result in different expressions
in HR, which have been discussed in (28), we set m = 50, 100
and 150 based on the average cumulative weight at the end of
adaptation period W (t0)=

Lh
0.704 ≈142. As a contrast, we also

use the same m in L2HR to illustrate the impact of adaptation
period on the probability of a successful attack.

The result in Fig. 14 shows that when λ>µ, the probability
of a successful attack increases with µ, and it is identically
equal to 1 when λ≤µ based on the Gambler’s Ruin problem.
For a given confirmation threshold m, the probability of a
successful attack in HR is higher than L2HR when λ > µ.
This is because HR has the adaptation period, and therefore,
the attacker can “steal” the computational power of the trans-
actions that do not approve the honest payment by creating a
parasite chain upon it.

Meanwhile, we notice that m=50 and m=100 in HR have
the same success probability due to W (t0)=142. According
to (28), as long as m < W (t0), the honest payment would
be confirmed during adaptation period, and thus T2=Td. The
attacker only needs to outpace honest nodes by one transaction.
Except that, we can find that a higher m would result in a lower
probability of a successful attack when the honest payment is
confirmed during linear growth period. The reason is that the
higher m, the more transactions issued by honest nodes from
T2 to Td, and the harder for the attacker to outweigh honest
chain since λ>µ.

Finally, based on (29) and (30), we compare the probability
of a successful attack in LR with that in H2LR. The result
in Fig. 15 shows that the attacker could win with much less
transaction arrival rate µ compare with that in Fig. 14. This
is because the transaction arrival rate of honest nodes is very
low in H2LR and LR, thus, the cumulative weight of honest
payment increases slowly. This phenomenon indicates that the
low network load is harmful to the security. Meanwhile, Fig.
15 also reflects that the higher m, the success probability
between H2LR and LR is closer. This means that a larger m
can result in a lower ratio of adaptation period to consensus
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Fig. 15: The probability of a successful attack in LR and H2LR

process, which can reduce the adverse impact of adaptation
period on security.

In summary, our analyses and experimental results reflect
that the larger m can reduce the adverse impact of adaptation
period and decrease the probability of a successful attack in
any regime. But on the other hand, a larger m will result in
a larger confirmation delay. Therefore, it is valuable to find
a suitable confirmation threshold m based on the trade-off
between security level and confirmation delay according to
the specific needs in a practical scenario.

VIII. RELATED WORK

Besides DAG-based ledgers (e.g., Tangle [13], Byteball
[14] and Hashgraph [15]), many other researches have been
carried out to improve the throughput of traditional blockchain
systems. Bitcoin-NG [21] selects a leader to post multiple
blocks, thus increasing the block generation rate and the
throughput. Hybrid-IoT [22] proposes a two-tier blockchain
architecture for IoT, where subgroups of IoT devices achieve
consensus through PoW algorithm and the connection among
the sub-blockchains employs a Byzantine Fault-Tolerant (BFT)
framework. Monoxide [23] runs multiple independent and
parallel PoW sub-blockchains termed as zones, in which
different zones can conduct trading using the cross-zone
algorithm. Although the high throughput can be achieved, the
security in these systems are compromised since generating
sub-blockchains will dilute the mining power of honest nodes.
Meanwhile, due to the existence of single chain structure
and PoW consensus algorithm, resource consumption and
transaction fee are also the limitations of these distributed
ledger technologies in IoT context. From this perspective, the
DAG-based ledger is more appropriate for the IoT system,
since it can satisfy high throughput, security and low cost
simultaneously.

To validate this observation, mathematical models are re-
quired to quantitatively study the performance and limitation
of different distributed ledgers. In [24], the authors analyse
signalto-interference-plus-noise ratio, transaction transmission
successful rate and throughput in blockchain-enabled IoT sys-
tems. Based on the performance analysis, the authors design
an optimal node deployment algorithm for maximizing trans-
action throughput. In [25], the authors develop a stochastic
model for the evolution and dynamics of blockchain networks,
which provides a deeper understanding of crucial design issues
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for difficulty-of-work, block generation rate and adversarial
attacks. The above mathematical models is designed for PoW
algorithm and the single chain structure. For DAG consensus,
[26] examines the expected number of tips by formulating
the tips selection algorithm as a “balls into bins” problem.
However, the balls into bins method is not precise enough,
since it conflicts with the fact that a new transaction cannot
select one tip twice. As another work for DAG, [27] discusses
the parasite chain absorption probabilities in the DAG-based
ledger using two-way Markov chain Model. The author in
this work focuses on the impact of cumulative weight on the
result of the MCMC algorithm and does not study the double-
spending attack.

Double-spending attack analysis is critical to a distributed
ledger system. In [1], the author studies the require com-
putational power for launching a double-spending attack in
Bitcoin system by using Poisson distribution and Gambler’s
Ruin problem. However, due to the time for the honest
nodes to find six blocks is variable, the Poisson distribution
method relying on a constant time is not efficient enough. To
improve this method, [12] uses negative binomial distribution
to replace the Poisson distribution method, which involves the
randomness of confirmation delay. After that, [25] summarizes
four methods for double-spending. The authors involve the
impact of network delay by extending the model proposed in
[12]. The above double-spending analyses are based on PoW
algorithm, and there is not a quantitative analysis to study the
double-spending in DAG consensus.

As the most related work, the mathematical analysis of the
IOTA White paper [13] includes three parts: 1) the expected
number of tips. 2) cumulative weight growth process of an
observed transaction in steady regimes, i.e. HR and LR.
3) probability of the double-spending for large own weight
attack. The author in this work does not consider the impact
of unsteady network load in a practical IoT system, which
would determine the upper and lower performance bound of
the DAG-based ledger. Meanwhile, the analysis for double-
spending attack does not consider the impact of adaptation
period in DAG consensus process, and does not provide
the simplest closed-form expression of the attack success
probability.

To this end, we focus on the impact of unsteady network
load on DAG consensus process. Compared with the behavior
under steady load regimes, we analyse the cumulative weight
and confirmation delay under unsteady load regimes to show
the upper and lower performance bound of the DAG-based
ledger. For the security analysis, we study the most typical
double-spending attack in the DAG-based ledger, the parasite
chain attack, which refers to the MCMC tips selection algo-
rithm in the practical IOTA system. We consider the adverse
impact of adaptation period on security, where the attacker
can optimize the strategy by using the computational power
of honest nodes. The adverse impact of adaptation period and
the attack strategy have not been considered in previous work.

IX. CONCLUSIONS AND FUTURE WORK

In this work, we use Markov chain model to formulate the
consensus process of DAG-based ledger. By identifying four

load regimes, our model can capture the dynamic changing
of the cumulative weight and the number of tips after a new
transaction revealed to the network. Based on the model for
DAG consensus process, we leverage a theoretical approach
for evaluating the impact of the network load on the key
performance metrics in terms of cumulative weight and confir-
mation delay with non-attack situation. After that, we involve
a typical double-spending attack in consensus process, and use
a stochastic model to examine the probability for launching a
successful attack under the four load regimes. By conducting
numerical simulations, the results demonstrate that the pro-
posed Markov chain model could reflect the features of DAG
consensus process under different load regimes accurately, and
this can provide an analytical guideline for building optimal
and secure DAG-based ledgers in the future.

Compared with PoW and PoS, the impact of network
load is a common issue in DAG consensuses (e.g., Tangle,
Byteball and Hashgraph), which has been thoroughly analyzed
in this work. However, we cannot directly apply the proposed
mathematical models to other DAG consensuses due to the
differences in the characteristics among the consensus process-
es. Nevertheless, the studied problem and designed analysis
approach can serve as a foundation for future research of other
DAG consensuses. For example, Byteball and Hashgraph have
the main chain convergence and famous witnesses election in
consensus process respectively. The main chain convergence
and famous witnesses election play a key role on system
performance and will be directly affected by network load.
These topics can be considered as the future work of DAG
consensuses.
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